
HL7 Recommendation:
Using XML as a Supplementary Messaging Syntax for HL7 Version 2.3.1

HL7 XML Special Interest Group
Informative Document

Editors:
Robert H. Dolin, MD (Robert.H.Dolin@kp.org)
Paul V. Biron, MLIS (Paul.V.Biron@kp.org)

I. OBJECTIVES... 1

II. INTRODUCTION .. 1

A. BACKGROUND ... 1
B. INTRODUCTION TO THE XML REPRESENTATION.. 1
C. EXAMPLE MESSAGE... 1
D. OVERVIEW OF NORMATIVE HL7 DATABASE... 2
E. DESIGN CONSIDERATIONS.. 3

1. XML DTD Optimization .. 3
2. Localization .. 4
3. "Looseness" of the DTD .. 4
4. Conformance with HL7 Version 3 XML Representation ... 5

III. ALGORITHMS .. 5

A. EXTRACTING SUBSETS OF THE NORMATIVE HL7 DATABASE .. 6
1. Messages and their segments... 6
2. Segments, fields, and data types... 8
3. Data types and their data type components.. 9

B. ALGORITHMS FOR XML DTD GENERATION FROM THE EXTRACTED SUBSETS10
1. Messages contain segments ..10
2. Segments contain fields ..13
3. Fields contain data types..14
4. Data types contain data type components ...14

C. LOCALIZATION ...16

IV. DTDS AND MESSAGE INSTANCES ..16

A. HL7 VERSION 2.3.1 DTD ...16
B. EXAMPLE DTD FRAGMENT...17
C. LONG EXAMPLE MESSAGE ..18
D. TRANSLATING BETWEEN STANDARD ENCODING AND XML ENCODING ...19

V. REFERENCES ..20

VI. APPENDIX - ISSUES IDENTIFIED WITH THE HL7 DATABASE......................................22

1

I. OBJECTIVES

Chapter 2 of the HL7 2.3.1 specifies standard encoding rules for HL7 message instances. The objective of
this report is to present XML encoding rules for HL7 Version 2.3.1 messages that could be used in
environments where senders and receivers both understand XML. It is not the intent of this
recommendation to replace the standard encoding rules, but if you are going to use XML, this is the way
HL7 recommends that you do it.

Many XML encodings could serve as alternate messaging syntaxes for HL7 Version 2.3.1 messages. This
document recommends one such encoding of HL7 Version 2.3.1 messages in XML. An algorithm is
presented that will translate normative diagrams and tables within the HL7 Standard to an XML Document
Type Definition (DTD).

The report also addresses the translation between standard encoded and XML encoded HL7 Version 2.3.1
messages.

II. INTRODUCTION

A. Background

In 1993, The European Committee for Standardization (CEN) studied several syntaxes (including ASN.1,
ASTM, EDIFACT, EUCLIDES, and ODA) for interchange formats in healthcare [CEN, 1993]. A
subsequent report extended the CEN study to look at SGML [Dolin, 1997]. By using the same
methodology, example scenarios, healthcare data model, and evaluation metrics, the report presented a
direct comparison of SGML with the other syntaxes studied by CEN, and found SGML to compare
favorably.

In February, 1998 XML [XML, 1998] became a recommendation of the World Wide Web Consortium
(W3C). XML was further tested as a messaging syntax for HL7 Version 2.x and Version 3 messages
[Dolin, 1998]. In 1999, Wes Rishel coordinated a 10-vendor HL7-XML interoperability demonstration at
the annual HIMSS Conference. All vendors rated the demo a success.

Based on experience to date, XML shows promise as an interchange format for HL7 messages. Findings
have shown that XML can serve as an implementable message specification for HL7 Version 2.3.1
messages and that the ability to explicitly represent an HL7 requirement in XML confers the ability to
validate that requirement with an XML parser.

For more information on SGML and XML, see the references ([Clark], [Cover], [IBM], [Megginson,
1998], [Microsoft], [St.Laurent, 1999], [XML.com], [XML.org])

B. Introduction to the XML representation

The XML representation presented here represents HL7 message structures as XML elements. Message
structures contain segments, also represented as XML elements. Segments contain fields, again represented
as XML elements. A field's data type is stored as a fixed attribute in the field's attribute list, while a field's
content model contains the data type components. Other fixed attributes are used to expand abbreviations
and indicate HL7 Table value restrictions.

C. Example Message

Here we see a simple message in the syntax of the standard encoding rules.

MSH|^~\&|LAB^foo^bar|767543|ADT|767543|19900314130405||ACK^|XX3657|P|2.3.1<CR>
MSA|AA|ZZ9380<CR>

2

Here we see the same message in the syntax of the recommended XML encoding rules.

<!DOCTYPE ACK SYSTEM "hl7_v231.dtd">
<ACK>
<MSH>

<MSH.1>|</MSH.1>
<MSH.2>^~\&</MSH.2>
<MSH.3>

<HD.1>LAB</HD.1>
<HD.2>foo</HD.2>
<HD.3>bar</HD.3>

</MSH.3>
<MSH.4><HD.1>767543</HD.1></MSH.4>
<MSH.5><HD.1>ADT</HD.1></MSH.5>
<MSH.6><HD.1>767543</HD.1></MSH.6>
<MSH.7>19900314130405</MSH.7>
<MSH.9><CM_MSG_TYPE.1>ACK</CM_MSG_TYPE.1></MSH.9>
<MSH.10>XX3657</MSH.10>
<MSH.11><PT.1>P</PT.1></MSH.11>
<MSH.12><VID.1>2.3.1</VID.1></MSH.12>

</MSH>
<MSA>

<MSA.1>AA</MSA.1>
<MSA.2>ZZ9380</MSA.2>

</MSA>
</ACK>

As is always the case with XML when processed with a validating processor, the extra whitespace between
elements (provided to make the message easier for people to read) can be removed in actual message
instances, resulting is shorter messages in situations when overall message length is a factor.

A longer example message is included in Section "Long Example Message".

D. Overview of Normative HL7 Database

Underlying the HL7 Standard is a normative Microsoft Access database (the "HL7 Database") that contains
the official definitions of events, messages, segments, fields, data types, data type components, tables, and
table values.

This database arose as the German HL7 user group undertook careful analysis of the Standard. They
became aware that the chapters of the Standard had been developed by different groups, and that there had
been no distinct rules or guidelines for the development of various parts of the Standard. They therefore
defined a comprehensive database of the HL7 Standard (including Version 2.1 through Version 2.3.1) to
allow consistency checks of items and to support the application of the Standard by the user.

Within the HL7 Database, all data added is checked for its consistency. Referential integrity among
relations assures this consistency. The side effect of referential integrity is to modify the data from the
standard documents because the standard is defined in the form of a document but not in the form of a
database.

While developing the analytic object model for the definition of the comprehensive HL7 Database, the
German HL7 user group became aware that two problems are not handled satisfactorily in the Standard:
• The relationship between message types, event types, and the structure of a message;
• The relationship between fields, data types, data type components, and tables.

3

The XML representation of HL7 messages presented here is algorithmically derived directly from the HL7
Database. Therefore, ambiguities or errors in the Standard are reflected "as is" in the XML encoding.
Fixing any such errors in the XML will require making appropriate modifications to the HL7 Database.
(The issues we identified with the HL7 Database are summarized below in Section "Appendix - Issues
Identified with the HL7 Database", and have all been submitted back to HL7 for consideration.)

Further details of the HL7 Database as well as known problems encountered in the construction of the
database have been documented by Frank Oemig, et al [Oemig, 1996] [Oemig].

E. Design Considerations

As noted above, there are many possible XML representations of HL7 messages. This section describes
those factors considered in deciding on the particular representation presented in this report.

1. XML DTD Optimization

XML DTD optimization means balancing functional, technical, and practical requirements. Some metrics
are fairly straightforward to quantify (e.g. message length), while others are less so. There is a risk that the
easily quantifiable measurements will assume significance out of proportion to other metrics. All relevant
metrics must be factored together in the determination of the optimal XML representation.

a) Message Length

Message length minimization techniques are employed to decrease the total number of characters
(including data and/or markup) comprising a message. The optimal techniques used to minimize SGML
messages are not necessarily the same as those best suited to minimize XML messages. Techniques used
here, common to both SGML and XML, include the use of abbreviations and the assumption that a slot not
sent represents a null value. In some cases modeling components as XML attributes as opposed to elements
results in further minimization. This Informative Document represents HL7 message structures, segments,
and fields as XML elements. A field's data type is represented as a fixed attribute, while data type
components are represented as XML elements. Full SGML provides even greater minimization capacity
with the use of SHORTTAG, OMITTAG, and SHORTREF techniques, resulting in very small messages
that are not valid XML, and are therefore not employed here.

The greater the percentage of data characters (as opposed to markup characters) in an average message, the
less important any additional overhead imposed by changing from the standard HL7 encoding rules to
XML becomes. Data from the Duke HL7 production environment suggests that on average, data characters
comprise about 70% of overall message length. (Data from Duke courtesy of Al Stone, and posted to the
HL7 SGML/XML SIG List Server 1/15/98 and 1/16/98.) As a result, we anticipate that the XML encoding
recommended here will result in messages that are approximately 40% to 100% longer, although this
estimate has yet to be subjected to rigorous testing.

b) Structural Complexity

Krueger [Krueger] describes the use of 'structural complexity' as a metric to analyze HL7 messages. "It
would be nice to be able to estimate or compare the time needed by human users to understand or
implement different messages or the time needed for a parsing program to analyze different messages." The
exact determinates of structural complexity were outside the scope of Krueger's work, although he
comments that "empirical investigations must be carried out to monitor the effort users will take to
understand and implement different HL7 messages". We have listed potential components of this metric
below. In some cases, the metric will be the time and/or space complexity required to carry out the
functions. We agree with Krueger that "it does not make any sense to expect absolute results. However,
relative (i.e. comparable) results could also be a valuable source of information."

4

• Message Creation : Encompasses the processing requirements to create a message.
• Message Augmentation : Augmentation might include changing the format of a field or data type

component or transforming the message from one syntax from another.
• Message Debugging : Determine why an application is generating an HL7-invalid message.
• Message Filtering : Filtering might include sending only a subset of the message to a particular

message receiver.
• Message Routing : Routing includes extracting from the message what is necessary to determine where

to send it.
• Message Parsing : Parsing can include message validation and extraction of field values and data type

components.

2. Localization

The HL7 Standard describes the responsibilities for parties sending and receiving HL7 messages. These
responsibilities enable exchange of messages that contain localizations (or local variations or z-segments).
Consequent to these requirements, an XML representation needs to fulfill the following design
considerations:

• Allow senders to introduce local variations into standard HL7 messages where necessary.

• Allow receivers to use well-formed XML processors or validating XML processors. Receivers using
validating processors should not have to fall back to using a non-validating processor in those cases
when the sender includes localized content in their messages.

3. "Looseness" of the DTD

XML is a formal grammar that can be used to encode HL7 business rules. When an XML processor
validates that a message is valid per its DTD, it is also validating that a message is conformant to those
HL7 rules that are explicitly represented in the XML DTD. Some HL7 rules are easy to explicitly represent
within an XML DTD, such as the optionality and repetition of a field within a segment. Some HL7 rules
are difficult to explicitly represent within an XML DTD, such as the maximum allowable field length.
Representing such rules within a DTD, while possible, may conflict with other design considerations.
Therefore, determining the "looseness" of the DTD, or the degree to which HL7 business rules are
explicitly represented in the DTD, is itself a design consideration.

A very loose DTD might look something like this:

<!ELEMENT MESSAGE (SEGMENT+)>
<!ATTLIST MESSAGE MESSAGE.ID CDATA #IMPLIED>

<!ELEMENT SEGMENT (FIELD+)>
<!ATTLIST SEGMENT SEGMENT.ID CDATA #IMPLIED>

<!ELEMENT FIELD (DATATYPE)>
<ATTLIST FIELD FIELD.ID CDATA #IMPLIED>

<!ELEMENT DATATYPE (#PCDATA)>
<!ATTLIST DATATYPE DATATYPE.ID CDATA #IMPLIED)

You can carry HL7-valid messages in this construct, but you can also carry a lot of HL7-invalid messages.
An XML processor can't do much to help validate that a message received is a valid HL7 message. The
decision in the XML representation presented here is to capture as many HL7 business rules as reasonably
possible. This includes enabling a validating parser to verify the optionality, repetition, and ordering of

5

segments within messages and fields within segments; and the correct use of data types and their
components within fields. Easing the burden on the application with regard to *structural* validity (e.g., are
all the pieces in the proper place) is itself a big win, despite the fact that the application will still have to
perform *semantic* validation (e.g., is that code really a valid SNOMED code).

4. Conformance with HL7 Version 3 XML Representation

The XML messaging syntax in this document is not the same as that which is being proposed for Version
3.0 [HL7 V3/XML]. The Version 3 XML project is a moving target, and consensus on XML representation
has not yet been reached. Given the different philosophies underlying Versions 2.3.1 and 3.0, there will
probably be some differences.

III. ALGORITHMS

The current mapping from HL7 V2.3.1 into XML is a formal algorithm, driven from the HL7 Database
described above. As such, ambiguities or errors in the Standard are reflected as is in the XML encoding.
Fixing any such errors in the XML will require making appropriate modifications to the HL7 Database.
(Prior to running the algorithms described in this section, we modified the HL7 Database as described
below in Section "Appendix - Issues Identified with the HL7 Database".)

SQL queries are applied to the HL7 Database to extract tables containing definitions of messages,
segments, fields, and data types. These tables are exported into ASCII delimited files. Perl scripts are
applied to the ASCII delimited files to generate XML DTDs. The structure of the generated DTDs follows
from the design considerations described above.

We provide two sets of DTDs:
• A single DTD (hl7_v231.dtd) that contains all HL7 V2.3.1 definitions. This file is logically broken up

into a DTD containing all message declarations (messages.dtd), a DTD containing all segment
declarations (segments.dtd), a DTD containing all field declarations (fields.dtd), and a DTD containing
all data type declarations (datatypes.dtd).

• One DTD for each message structure. Each of these DTDs (e.g. "ACK.dtd", "MFN_M05.dtd"),
imports the same datatype DTD referenced by hl7_v231.dtd, but is otherwise self contained with all
message, segment, and field declarations necessary for a particular message structure.

Message instances can be validated against either "hl7_v231.dtd" or against the DTD for that particular
message structure, by specifying the desired DTD in the DOCTYPE declaration of the message instance.

The following table summarizes the files that, along with this document, comprise the work products of this
recommendation. All of these files are included in the zip file “hl7v231xml.FINAL.zip”, available on
www.HL7.org.

HL7 Structure ASCII delimited file Perl script DTD
Messages messages.txt messages.pl messages.dtd;

one DTD per message
Segments fields.txt* segments.pl segments.dtd
Fields fields.txt* fields.pl fields.dtd
Data types datatypes.txt datatypes.pl datatypes.dtd
*fields.txt is used in the generation of both segments.dtd and fields.dtd.

The structure of these ASCII delimited files is described below in "Extracting Subsets Of The Normative
HL7 Database ". The algorithms instantiated in these Perl scripts are described below in "Algorithms For
XML DTD Generation From The Extracted Subsets".

6

A. Extracting Subsets Of The Normative HL7 Database

1. Messages and their segments

While developing the analytic object model for the definition of a comprehensive HL7 Database, the
German HL7 user group became aware that the relationship between message types, event types, and the
structure of a message is problematic and not handled satisfactorily in the Standard. There is no distinct
rule defining the relationship between events and messages. Sometimes the event type describes the
structure and function of the message. In other cases, it defines the target file the data in the message has to
be transmitted to.

As noted above, ambiguities or errors in the Standard are reflected "as is" in the XML encoding. Fixing any
such errors in the XML will require making appropriate modifications to the HL7 Database. Our approach
to representing messages and their contained segments is detailed here.

a) HL7 Database tables used

The following HL7 Database tables are used in the creation of messages.dtd:
(Only those fields being queried are shown. The field names and their descriptions are taken verbatim from
the HL7 Database.)

EventMessageTypeSegments : Table
Primary
Key

Field Name Data Type Description

* event_code Text-3 Event-Code
* hl7_version Text-8 version number
* message_type Text-3 Type of this Message
* lfd_nr Integer consecutive increasing number used for 1:n

relation
seg_code Text-3 Segment-Code
repetitional Yes/No Repetitional
optional Yes/No Optional

MsgStructIDSegments : Table
Primary
Key

Field Name Data Type Description

* message_structure Text-7 Message Structure ID
* hl7_version Text-8 version number
* lfd_nr* Integer consecutive increasing number used for 1:n

relation
seg_code Text-3 Segment-Code
repetitional Yes/No Repetitional
optional Yes/No Optional

*The field names and their descriptions are taken verbatim from the HL7 Database.

b) SQL query

The following union query is used to gather together message structures from tables
EventMessageTypeSegments and MsgStructIDSegments:

SELECT [message_type] + "_" + [event_code] AS MsgStruct, lfd_nr, seg_code, repetitional, optional
FROM EventMessageTypeSegments
WHERE hl7_version = "2.3.1"

7

UNION

SELECT message_structure, lfd_nr, seg_code, repetitional, optional
FROM MsgStructIDSegments
WHERE hl7_version = "2.3.1";

We create a new table MsgStructUnion to hold the results of the union query. The structure of
MsgStructUnion is shown here:

MsgStructUnion : Table
Primary
Key

Field Name Data Type Description

* MsgStruct Text-7 Message Structure ID
* lfd_nr Integer consecutive increasing number used for 1:n

relation
seg_code Text-3 Segment-Code
repetitional Yes/No Repetitional
optional Yes/No Optional

The results of the union query are copied into MsgStructUnion.

c) Select from MsgStructUnion those message structures
reflected in Table 0354

Chapter 2 of HL7 V2.3.1 "Control/Query" describes the message header (MSH) segment. Field 9 "Message
Type" (MSH.9) contains the message type, trigger event, and the message structure ID for the message.
The third component of MSH.9 is the abstract message structure code defined by HL7 Table 0354 -
Message structure. We extract from MsgStructUnion those message structures contained in Table 0354
using this SQL query:

SELECT MsgStruct, lfd_nr, seg_code, repetitional, optional
FROM TableValues INNER JOIN MsgStructUnion ON TableValues.table_value =
MsgStructUnion.MsgStruct
WHERE (table_id=354) AND (hl7_version="2.3.1")
ORDER BY MsgStruct, lfd_nr;

This resulting table is exported to messages.txt, a subset of which is shown here:

MsgStruct lfd_nr seg_code repetitional Optional
ACK 1 MSH No No
ACK 2 MSA No No
ACK 3 ERR No Yes
ADT_A02 1 MSH No No
ADT_A02 2 EVN No No
ADT_A02 3 PID No No
ADT_A02 4 [No No
ADT_A02 5 PD1 No No
ADT_A02 6] No No
ADT_A02 7 PV1 No No
ADT_A02 8 [No No
ADT_A02 9 PV2 No No
ADT_A02 10] No No
ADT_A02 11 [No No
ADT_A02 12 { No No

8

ADT_A02 13 DB1 No No
ADT_A02 14 } No No
ADT_A02 15] No No
ADT_A02 16 [No No
ADT_A02 17 { No No
ADT_A02 18 OBX No No
ADT_A02 19 } No No
ADT_A02 20] No No

2. Segments, fields, and data types

a) HL7 Database tables used

The following HL7 Database tables are used in the creation of segments.dtd and fields.dtd:
(Only those fields being queried are shown. The field names and their descriptions are taken verbatim from
the HL7 Database.)

SegmentDataElements : Table
Primary
Key

Field Name Data Type Description

* seg_code Text-3 Name of the Segment
* hl7_version Text-8 version number
* lfd_nr Integer Position within the segment

data_item Long Integer Data Element ID
req_opt Text-5 required/ optional/backward compatibility
repetitional Text-1 Repetitional

DataElements : Table
Primary
Key

Field Name Data Type Description

* data_item Long Integer ID of the Data Element
* hl7_version Text-8 HL7-Version

description Text-78 Field description according to the standard
documentation

data_structure Text-20 Name of the Data Structure
table_id Long Integer ID assigned table

b) SQL query

The following SQL query extracts data from tables SegmentDataElements and DataElements:

SELECT seg_code, lfd_nr, SegmentDataElements.data_item, description, data_structure, req_opt,
repetitional, table_id
FROM DataElements INNER JOIN SegmentDataElements ON (DataElements.hl7_version =
SegmentDataElements.hl7_version) AND (DataElements.data_item = SegmentDataElements.data_item)
WHERE SegmentDataElements.hl7_version="2.3.1"
ORDER BY seg_code, lfd_nr;

This resulting table is exported to fields.txt, a subset of which is shown here:

seg_code lfd_nr data_item description data_structure Req_opt repetitional table_id
ACC 1 00527 Accident Date/Time TS O 0000
ACC 2 00528 Accident Code CE O 0050

9

ACC 3 00529 Accident Location ST O 0000
ACC 4 00812 Auto Accident State CE O 0347
ACC 5 00813 Accident Job Related Indicator ID O 0136
ACC 6 00814 Accident Death Indicator ID O 0136

3. Data types and their data type components

a) HL7 Database tables used

The following HL7 Database tables are used in the creation of datatypes.dtd:
(Only those fields being queried are shown. The field names and their descriptions are taken verbatim from
the HL7 Database.)

DataStructures : Table
Primary
Key

Field Name Data Type Description

* data_structure Text-20 logical data type
* hl7_version Text-8 version number

Description Text-80 Description

DataStructureComponents : Table
Primary
Key

Field Name Data Type Description

* data_structure Text logical data type
* hl7_version Text version number
* lfd_nr consecutive increasing number used for 1:n

relation
comp_nr identifying number of the cKomponent
table_id Number of assigned table if different from

component (overwrites table number of
component)

Components : Table
Primary
Key

Field Name Data Type Description

* comp_nr Long Integer Component Number (ID)
* hl7_version Text-8 Version of HL7

description Text-50 Description
table_id Long Integer reference to an assigned Table
data_type_code Text-3 Data type

b) SQL query

The following SQL query extracts data from tables DataStructures, DataStructureComponents, and
Components:

SELECT DataStructures.data_structure, lfd_nr, DataStructures.description,
DataStructureComponents.table_id, Components.description, Components.table_id,
Components.data_type_code
FROM DataStructures LEFT JOIN (DataStructureComponents LEFT JOIN Components ON
(DataStructureComponents.comp_nr = Components.comp_nr) AND
(DataStructureComponents.hl7_version = Components.hl7_version)) ON (DataStructures.hl7_version =
DataStructureComponents.hl7_version) AND (DataStructures.data_structure =
DataStructureComponents.data_structure)

10

WHERE DataStructures.hl7_version="2.3.1"
ORDER BY DataStructures.data_structure, lfd_nr;

This resulting table is exported to datatypes.txt, a subset of which is shown here:

DataStructures.d
ata_structure

DataStructureC
omponents.lfd_
nr

DataStructures.de
scription

DataStructureCo
mponents.table_i
d

Components.descriptio
n

Componen
ts.table_id

Components.dat
a_type_code

AD 2 address 0000 other designation 0000 ST
AD 3 address 0000 city 0000 ST
AD 4 address 0000 state or province 0000 ST
AD 5 address 0000 zip or postal code 0000 ST
AD 6 address 0000 country 0000 ID
AD 7 address 0000 address type 0190 ID
AD 8 address 0000 other geographic

designation
0000 ST

AD 1 address 0000 street address 0000 ST
ST string data
WILDCARD jeder Datentyp

ist einsetzbar

B. Algorithms For XML DTD Generation From The Extracted Subsets

1. Messages contain segments

a) Introduction

This section describes the creation of messages.dtd from messages.txt. The algorithm is instantiated in
messages.pl.

The Abstract Message Syntax in HL7 V2.3.1 specifies the arrangement of segments within a message, as
shown in the following imaginary WRP message:

WRP Widget Report
MSH Message Header
MSA Message Acknowledgment
{ WDN Widget Description

WPN Widget Portion
{ [WPD]} Widget Portion Detail

}

The brackets and braces in the Abstract Message Syntax relate to XML occurrence indicators as shown in
the following table:

HL7 Abstract Message Syntax Equivalent XML Occurrence Indicator
[] ? (zero or one)
{ } + (one or more)
{[]} = [{ }] * (zero or more)
-no bracket or brace- -no occurrence indicator- (one exactly)

Standard HL7 encoding rules flatten this out, such that one valid message might look something like:

MSH|...
MSA|...
WDN|...
WPN|...
WPD|....

11

WPD|...
WDN|...
WPN|...

In this recommendation, we've introduced grouping and list elements, similar to what is being proposed for
HL7 Version 3 messages (irrespective of XML), to allow the wire format to reflect the inherent abstract
hierarchy. A resulting DTD fragment for the above would be:

<!ELEMENT WRP (MSH,MSA,WRP.LST.2)>
<!ELEMENT WRP.LST.1 (WPD)+>
<!ELEMENT WRP.LST.2 (WRP.GRP.1)+>
<!ELEMENT WRP.GRP.1 (WDN,WPN,WRP.LST.1?)>

and a valid message might look something like:

<WRP>
<MSH>...</MSH>
<MSA>...</MSA>
<WRP.LST.2>

<WRP.GRP.1>
<WDN>...</WDN>
<WPN>...</WPN>
<WRP.LST.1>

<WPD>...</WPD>
<WPD>...</WPD>

</WRP.LST.1>
</WRP.GRP.1>
<WRP.GRP.1>

<WDN>...</WDN>
<WPN>...</WPN>

</WRP.GRP.1>
</WRP.LST.2>

</WRP>

b) Detailed Algorithm

The example WRP message shown here:

WRP Widget Report
MSH Message Header
MSA Message Acknowledgment
{ WDN Widget Description

WPN Widget Portion
{ [WPD]} Widget Portion Detail

}

would look like this in messages.txt, as described above in "Messages and their segments":

MsgStruct lfd_nr seg_code repetitional optional
WRP 1 MSH No No
WRP 2 MSA No No
WRP 3 { No No
WRP 4 WDN No No
WRP 5 WPN No No
WRP 6 { No No

12

WRP 7 WPD No Yes
WRP 8 } No No
WRP 9 } No No

The algorithm walks through each row that has the same value of MsgStruct in order to build a linear
message definition. During the walk through, if the value of repetitional = "Yes" then wrap the value of
seg_code with braces ("{" and "}"), and if the value of optional = "Yes" then wrap the value of seg_code
with brackets ("[" and "]"). The resulting linear definition of WRP becomes:

MSH MSA { WDN WPN { [WPD] } }

Next, add commas. Following a segment name, insert a comma before the next segment name, open
bracket (“[“), or open brace (“{“):

MSH,MSA,{ WDN,WPN,{ [WPD]} }

Next, braces and brackets are converted to parenthesis and XML occurrence indicators.
• Convert open braces (“{“) and open brackets (“[“) to open parentheses (“(“).
• Convert close braces (“}”) to close parenthesis followed by a plus-sign (“)+”).
• Convert close brackets (“]”) to close parenthesis followed by a question mark (“)?”).

The result:

MSH,MSA,(WDN,WPN,((WPD)?)+)+

In some cases "?" and "+" XML occurrence indicators can be merged.
• ((xxx)?)+ = ((xxx)+)? = (xxx)*

The result:

MSH,MSA,(WDN,WPN,(WPD)*)+

Next, we deepen the XML element hierarchy by adding listing and grouping elements where there are "+"
and "*" occurrence indicators and where there is more than one element in a list:
• LIST: Content model has 1 element, with a "+" occurrence indicator.

• Balanced parentheses with an outer "+" or "*" become a new LIST element.
• LIST element replaces what is contained in parenthesis and the occurrence indicator.

• If occurrence indicator is "*", add a "?" occurrence indicator to the new LIST element.
• Content model of LIST element is what is contained in parenthesis along with a "+" occurrence

indicator.
• GROUP: Content model has >1 element, none of which have have "+" or "*" occurrence indicator.

• If content model of a LIST element has > 1 element, create a GROUP element container.

<!ELEMENT WRP (MSH,MSA,(WDN,WPN,(WPD)*)+)>

becomes…

<!ELEMENT WRP (MSH,MSA,(WDN,WPN,WRP.LST.1?)+)>
<!ELEMENT WRP.LST.1 (WPD)+>

becomes…

<!ELEMENT WRP (MSH,MSA,WRP.LST.2)>
<!ELEMENT WRP.LST.1 (WPD)+>
<!ELEMENT WRP.LST.2 (WDN,WPN,WRP.LST.1?)+>

13

becomes…

<!ELEMENT WRP (MSH,MSA,WRP.LST.2)>
<!ELEMENT WRP.LST.1 (WPD)+>
<!ELEMENT WRP.LST.2 (WRP.GRP.1)+>
<!ELEMENT WRP.GRP.1 (WDN,WPN,WRP.LST.1?)>

2. Segments contain fields

a) Introduction

This section describes the creation of segments.dtd from fields.txt. The algorithm is instantiated in
segments.pl.

Segments contain fields. Each field has an ordinal position within a segment. Optionality and repetition are
specified for each field.

b) Detailed Algorithm

The example FOO segment would look like this in fields.txt, as described above in "Segments, fields, and
data types":

seg_code lfd_nr data_item description data_structure req_opt repetitional table_id
FOO 1 9876 Acknowledgment Code ST O N 0000
FOO 2 9875 Message Control ID ST O Y 0000
FOO 3 9874 Text Message CE O Y 0933
FOO 4 9873 Expected Sequence Number CX O N 0000

The algorithm walks through each row that has the same value of seg_code in order to build a linear
segment definition. In the process, XML occurrence indicators are derived from the values of req_opt and
repetitional. Within the HL7 Database, values for req_opt include: B, (B) R, C, O, R, X, Y, and NULL; and
values for repetitional include: N, Y, and NULL. Each of these values is defined in Chapter 2 of the HL7
V2.3.1 Standard. The XML occurrence indicator is derived from the values of req_opt and repetitional as
shown in the following table:

req_opt repetitional Mapped XML Occurrence Indicator
(B) R, R N, NULL -none-
B,C,O,X,Y, NULL N, NULL ?
(B) R, R Y +
B,C,O,X,Y, NULL Y *

resulting in:

<!ELEMENT FOO (FOO.1?, FOO.2*, FOO.3*, FOO.4?)>

Next, the XML element hierarchy is deepened by adding listing elements (similar to the process described
above) where there are "+" and "*" occurrence indicators, resulting in:

<!ELEMENT LST.FOO.2 (FOO.2)+>
<!ELEMENT LST.FOO.3 (FOO.3)+>
<!ELEMENT FOO (FOO.1?, FOO.2.LST?, FOO.3.LST?, FOO.4?)

14

3. Fields contain data types

a) Introduction

This section describes the creation of fields.dtd from fields.txt. The algorithm is instantiated in fields.pl.

Each field has an official field identifier, a long name, and a data type. Some fields specify an HL7 Table
that contains enumerated values for use in the field.

b) Detailed Algorithm

The example FOO segment would look like this in fields.txt, as described above in "Segments, fields, and
data types":

seg_code lfd_nr data_item description data_structure req_opt repetitional table_id
FOO 1 9876 Acknowledgment Code ST O N 0000
FOO 2 9875 Message Control ID ST O Y 0000
FOO 3 9874 Text Message CE O Y 0933
FOO 4 9873 Expected Sequence Number CX O N 0000

The algorithm creates an XML element for each field. The content model of each field is a parameter entity
reference to the field's data type. Fixed attributes are used to express the field identifier, data type, long
name, and table, as shown here:

<!ELEMENT FOO.3 %CE;>
<!ATTLIST FOO.3
 Item CDATA #FIXED '9874'
 Table CDATA #FIXED '933'
 LongName CDATA #FIXED 'Text Message'
 Type CDATA #FIXED 'CE'>

Certain characters within the HL7 Database must be "escaped" before inclusion in a DTD. The ampersand
is a reserved XML metacharacter. Where an ampersand occurs in the long name of a field, it is converted to
an XML entity representation "&" (e.g. "Critical Range for Ordinal & Continuous Obs" becomes
"Critical Range for Ordinal & Continuous Obs"). Because the DTD wraps the value of attribute
LongName in single quotes, when a single quote occurs in the long name of a field, it is converted to an
XML entity representation "'" (e.g. "Contact's Tel. Number" becomes "Contact's Tel.
Number"). Because data types become XML element names (as described in the section that follows),
internal plus-signs ("+") are not allowed. There is a data type in the HL7 Database
(CE_TABS_136+262+263) that contains internal plus-signs ("+"). These are converted to underscores
("_") (e.g. "CE_TABS_136+262+263" becomes "CE_TABS_136_262_263").

4. Data types contain data type components

a) Introduction

This section describes the creation of datatypes.dtd from datatypes.txt. The algorithm is instantiated in
datatypes.pl.

Some data types are composite. Composite data types are comprised of data type components, which, like
fields, have a data type of their own and a long name. Some data type components also specify an HL7
Table that contains enumerated values for use in the component.

Some data types are primitive, in which case they have no components.

15

b) Detailed Algorithm

A subset of data types found in datatypes.txt is shown here, as described above in "Data types and their
data type components":

DataStructures.d
ata_structure

DataStructureC
omponents.lfd_
nr

DataStructures.de
scription

DataStructureCo
mponents.table_i
d

Components.descriptio
n

Componen
ts.table_id

Components.dat
a_type_code

AD 2 address 0000 other designation 0000 ST
AD 3 address 0000 city 0000 ST
AD 4 address 0000 state or province 0000 ST
AD 5 address 0000 zip or postal code 0000 ST
AD 6 address 0000 country 0000 ID
AD 7 address 0000 address type 0190 ID
AD 8 address 0000 other geographic

designation
0000 ST

AD 1 address 0000 street address 0000 ST
ST string data
WILDCARD jeder Datentyp

ist einsetzbar

The algorithm walks through each row that has the same value of DataStructures.data_structure in order to
build a linear data type definition.

Data types are modeled as parameter entities reflecting their data type components, as shown here:

<!ENTITY % AD "(AD.1?,AD.2?,AD.3?,AD.4?,AD.5?,AD.6?,AD.7?,AD.8?)">

All data type components are modeled as optional. Data types having a null value for
DataStructureComponents.lfd_nr are primitive, as shown here:

<!ENTITY % ST "(#PCDATA)">

Data type components of composite data types are modeled similarly to fields. The content model of each
component is a parameter entity reference to the component's data type. Fixed attributes are used to express
the component data type, long name, and table, as shown here:

<!ELEMENT AD.1 %ST; >
<!ATTLIST AD.1
 LongName CDATA #FIXED 'street address'
 Type CDATA #FIXED 'ST'
 Table CDATA #FIXED '0'>

In the HL7 Database, data type components (as well as fields) specify an HL7 Table that contains
enumerated values for use in the component. Per the HL7 Database, if the value of
DataStructureComponents.table is not zero, it overrides the value in Components.table.

The data type "WILDCARD" is modeled as:

<!ENTITY % WILDCARD "(ANY)">

Certain characters within the HL7 Database must be "escaped" before inclusion in a DTD. The ampersand
is a reserved XML metacharacter. Where an ampersand occurs in the long name of a component, it is
converted to an XML entity representation "&" (e.g. "value1&value2&value3" becomes
"value1&value2&value3"). Because data types become XML element names, internal plus-signs
("+") are not allowed. There is a data type in the HL7 Database (CE_TABS_136+262+263) that contains
internal plus-signs ("+"). These are converted to underscores ("_") (e.g. "CE_TABS_136+262+263"
becomes "CE_TABS_136_262_263").

16

C. Localization

The HL7 Standard describes the responsibilities for parties sending and receiving HL7 messages. These
responsibilities enable exchange of messages that contain localizations (or local variations or z-segments).
This section describes how the DTD is crafted such that:

• Receivers can use well-formed XML processors or validating XML processors. Receivers using
validating processors do not have to fall back to using a non-validating processor in those cases when
the sender includes localized content in their messages.

• Senders can introduce, in a standardized manner, local variations into standard HL7 messages where
necessary. The expression of local variations is formalized such that their location in a message can be
algorithmically determined by receivers. This formalization expresses localizations as changes to the
Standard DTD within the internal subset of a transmitted message instance.

The sender includes differences from the standard DTD in the internal subset of a message instance. We
enable this by expressing all content models as parameter entities, which can then be redefined in the
internal subset. For example, rather than this:

<!ELEMENT FOO (FOO.1?, FOO.2.LST?, FOO.3.LST?, FOO.4?)>

We state an equivalent content model like this:

<!ENTITY % FOO.CONTENT "(FOO.1?, FOO.2.LST?, FOO.3.LST?, FOO.4?)">
<!ELEMENT FOO %FOO.CONTENT;>

So that the content of FOO can be changed in the internal subset like this:

<!DOCTYPE ORU_RO1 SYSTEM "hl7_v231.dtd" [
 <!ENTITY % FOO.CONTENT "(FOO.1?, FOO.2.LST?, FOO.3.LST?, FOO.4?, FOO.5?)">
 <!ELEMENT FOO.5 (#PCDATA)>]>

Receivers using non-validating XML processors can ignore the entire DOCTYPE declaration.

Senders are not required to create or provide an explicit representation of the transformation from the
localized DTD to an HL7 standard DTD. (Architectural forms do represent one way of expressing the
transformation in a machine-processable format. It is anticipated that other representations will also be
possible.)

IV. DTDs And Message Instances
As noted above, we provide two sets of DTDs:
• A single DTD (hl7_v231.dtd, shown below) that contains all HL7 V2.3.1 definitions. This file is

logically broken up into a DTD containing all message declarations (messages.dtd), a DTD containing
all segment declarations (segments.dtd), a DTD containing all field declarations (fields.dtd), and a
DTD containing all data type declarations (datatypes.dtd).

• One DTD for each message structure. Each of these DTDs (e.g. "ACK.dtd", "MFN_M05.dtd"),
imports the same datatype DTD referenced by hl7_v231.dtd, but is otherwise self contained with all
message, segment, and field declarations necessary for a particular message structure.

Message instances can be validated against either "hl7_v231.dtd" or against the DTD for that particular
message structure, by specifying the desired DTD in the DOCTYPE declaration of the message instance.

A. HL7 Version 2.3.1 DTD

17

This is the complete HL7 V2.3.1 DTD. It references the other modular DTDs described above, and
assumes that all DTDs are present in the same directory.

<!ENTITY % HL7V231-datatypes PUBLIC
"-//HL7//DTD HL7 V2.3.1 datatype definitions//EN"
"datatypes.dtd" >

%HL7V231-datatypes;

<!ENTITY % HL7V231-fields PUBLIC
"-//HL7//DTD HL7 V2.3.1 field definitions//EN"
"fields.dtd" >

%HL7V231-fields;

<!ENTITY % HL7V231-segments PUBLIC
"-//HL7//DTD HL7 V2.3.1 segment definitions//EN"
"segments.dtd" >

%HL7V231-segments;

<!ENTITY % HL7V231-messages PUBLIC
"-//HL7//DTD HL7 V2.3.1 message definitions//EN"
"messages.dtd" >

%HL7V231-messages;

B. Example DTD Fragment

These are actual fragments of the real DTD provided as illustrations. There is not enough of the DTD
included here to allow for validation of the example messages. The example message will validate against
the complete DTD.

All content models and attribute lists are defined as parameter entities, for reasons described above in
"Localization".

<!-- Data type definitions -->
<!ENTITY % CE "(CE.1?,CE.2?,CE.3?,CE.4?,CE.5?,CE.6?)">

<!ENTITY % CE.1.CONTENT "%ST;">
<!ELEMENT CE.1 %CE.1.CONTENT;>
<!ENTITY % CE.1.ATTRIBUTES
 "LongName CDATA #FIXED 'identifier'
 Type CDATA #FIXED 'ST'
 Table CDATA #FIXED '0'">
<!ATTLIST CE.1 %CE.1.ATTRIBUTES;>

<!-- Field definitions -->
<!ENTITY % MSA.6.CONTENT "%CE;">
<!ELEMENT MSA.6 %MSA.6.CONTENT;>
<!ENTITY % MSA.6.ATTRIBUTES
 "Item CDATA #FIXED '23'
 Table CDATA #FIXED '0'
 LongName CDATA #FIXED 'Error Condition'
 Type CDATA #FIXED 'CE'">
<!ATTLIST MSA.6 %MSA.6.ATTRIBUTES;>

<!-- Segment definitions -->

18

<!ENTITY % MSH.18.LST.CONTENT "(MSH.18)+">
<!ELEMENT MSH.18.LST %MSH.18.LST.CONTENT;>
<!ENTITY % MSH.CONTENT
"(MSH.1,MSH.2,MSH.3?,MSH.4?,MSH.5?,MSH.6?,MSH.7?,MSH.8?,MSH.9,MSH.10,MSH.11,MSH.12,
MSH.13?,MSH.14?,MSH.15?,MSH.16?,MSH.17?,MSH.18.LST?,MSH.19?,MSH.20?)">
<!ELEMENT MSH %MSH.CONTENT;>

<!-- Message definitions -->
<!ENTITY % ACK.CONTENT "(MSH,MSA,ERR?)">
<!ELEMENT ACK %ACK.CONTENT;>

C. Long Example Message

Here we see a sample message in the syntax of the standard encoding rules.

MSH|^~\&|LAB|767543|ADT|767543|19900314130405||ADT^A04|XX3657|P|2.3.1<CR>
EVN|A01|19980327101314|19980327095000|I||19980327095000<CR>
PID|1||123456789ABCDEF|123456789ABCDEF|PATIENT^BOB^S||19590520|M||
 612345 MAIN STREET^^ANYTOWN^CA^91234||714-555-1212|
 714-555-1212||||123456789ABCDEF|||U<CR>
PD1||||WELBY<CR>
PV1|1|0||NEW|||SPOCK<CR>

Here we see that sample message in the syntax of the XML encoding rules.

<!DOCTYPE ADT_A03 SYSTEM "hl7_v231.dtd">
<ADT_A03>
<MSH>

<MSH.1>|</MSH.1>
<MSH.2>^~\&</MSH.2>
<MSH.3><HD.1>LAB</HD.1></MSH.3>
<MSH.4><HD.1>767543</HD.1></MSH.4>
<MSH.5><HD.1>ADT</HD.1></MSH.5>
<MSH.6><HD.1>767543</HD.1></MSH.6>
<MSH.7>19900314130405</MSH.7>
<MSH.9>

<CM_MSG_TYPE.1>ADT</CM_MSG_TYPE.1>
<CM_MSG_TYPE.2>A04</CM_MSG_TYPE.2>

</MSH.9>
<MSH.10>XX3657</MSH.10>
<MSH.11><PT.1>P</PT.1></MSH.11>
<MSH.12><VID.1>2.3.1</VID.1></MSH.12>

</MSH>
<EVN>

<EVN.1>A01</EVN.1>
<EVN.2>19980327101314</EVN.2>
<EVN.3>19980327095000</EVN.3>
<EVN.4>I</EVN.4>
<EVN.6>19980327095000</EVN.6>

</EVN>
<PID>

<PID.1>1</PID.1>
<PID.3.LST>

<PID.3><CX.1>123456789ABCDEF</CX.1></PID.3>

19

</PID.3.LST>
<PID.4.LST>

<PID.4><CX.1>123456789ABCDEF</CX.1></PID.4>
</PID.4.LST>
<PID.5.LST>

<PID.5>
<XPN.1>PATIENT</XPN.1>
<XPN.2>BOB</XPN.2>
<XPN.3>S</XPN.3>

</PID.5>
</PID.5.LST>
<PID.7>19590520</PID.7>
<PID.8>M</PID.8>
<PID.10.LST>

<PID.10><CE.1>6</CE.1></PID.10>
</PID.10.LST>
<PID.11.LST>

<PID.11>
<XAD.1>12345 MAIN STREET</XAD.1>
<XAD.3>ANYTOWN</XAD.3>
<XAD.4>CA</XAD.4>
<XAD.5>91234</XAD.5>

</PID.11>
</PID.11.LST>
<PID.13.LST>

<PID.13><XTN.1>714-555-1212</XTN.1></PID.13>
</PID.13.LST>
<PID.14.LST>

<PID.14><XTN.1>714-555-1212</XTN.1></PID.14>
</PID.14.LST>
<PID.18><CX.1>123456789ABCDEF</CX.1></PID.18>
<PID.21.LST>

<PID.21><CX.1>U</CX.1></PID.21>
</PID.21.LST>

</PID>
<PD1>

<PD1.4.LST>
<PD1.4><XCN.1>WELBY</XCN.1></PD1.4>

</PD1.4.LST>
</PD1>
<PV1>

<PV1.1>1</PV1.1>
<PV1.2>0</PV1.2>
<PV1.4>NEW</PV1.4>
<PV1.7.LST>

<PV1.7><XCN.1>SPOCK</XCN.1></PV1.7>
</PV1.7.LST>

</PV1>
</ADT_A03>

As is always the case with XML when processed with a validating processor, the extra whitespace between
elements (provided to make the message easier for people to read) can be removed in actual message
instances, resulting is shorter messages in situations when overall message length is a factor.

D. Translating Between Standard Encoding And XML Encoding

20

In environments where not all senders and receivers understand this XML encoding it may be necessary to
translate instance messages between the standard encoding and this XML encoding and vice versa. This
recommendation does not require that any such translations be supported nor does it prescribe how such
transformations should be performed in environments where they are supported.

Because of several important differences between the standard encoding and this XML encoding,
translations between the two encodings is not straightforward although it is not hard. The following
features of both encodings need to be taken into account when performing the translations:

§ in the standard encoding, optional components (or sub-components) are represented as ||; in the XML
encoding, optional components are simply omitted

§ in the standard encoding, lists and groups are not explicitly encoded; in the XML encoding they are
explicitly encoded

V. REFERENCES

1. [CEN, 1993] European Committee for Standardization / Technical Committee 251 - Medical
Informatics. Investigation of Syntaxes for Existing Interchange Formats to be used in Healthcare.
CEN/TC251. January 1993.

2. [Clark] James Clark’s Home Page (and home of James Clark’s SP, XP and Xpat validating SGML and
XML parsers) (http://www.jclark.com/) (James Clark's processor can be run in SGML or XML mode.
Please check the documentation for more information.)

3. [Cover] Robin Cover's SGML/XML Web Page, which is a comprehensive online database containing
reference information and software pertaining to the SGML and XML.
(http://www.oasis-open.org/cover/sgml-xml.html)

4. [Dolin, 1997] Dolin RH, Alschuler L, Bray T, Mattison JE. SGML as a message interchange format in
healthcare. JAMIA Fall Symposium Supplement 1997: 635-9.
(http://www.mcis.duke.edu/standards/HL7/committees/sgml/references/amia_f97.htm)

5. [Dolin, 1998] Dolin RH, Rishel W, Biron PV, Spinosa J, Mattison JE. SGML and XML as interchange
formats for HL7 messages. JAMIA Fall Symposium Supplement 1998.

6. [HL7 V3/XML] HL7 Version 3 - XML Project Document. Draft, August, 1998
(http://www.mcis.duke.edu/standards/HL7/committees/control-query/V3XML980809.ZIP)

7. [IBM] IBM's XML Developers web site (http://www.ibm.com/developer/xml/)

8. [Krueger] Krueger G. A structured approach to HL7 application development. 1996.
(http://www.gkrueger.com/other/hl7/)

9. [Megginson, 1998] David Megginson. Structuring XML Documents (Charles F. Goldfarb Series).
1998. Prentice Hall Computer Books; ISBN: 0136422993.

10. [Microsoft] Microsoft’s XML web site. (http://msdn.microsoft.com/xml/default.asp)

11. [Oemig] Frank Oemig's Home Page (http://www.sr-solutions.de/oemig/)

12. [Oemig, 1996] Oemig F, Dudeck J. Problems in developing a comprehensive HL7 database. AMIA
Fall Symposium 1996.

13. [St.Laurent, 1999] Simon St.Laurent, Ethan Cerami. Building XML Applications. 1999. McGraw-Hill;
ISBN: 0071341161.

21

14. [XML.com] XML.com web site (http://www.xml.com/)

15. [XML.org] XML.org web site (http://www.xml.org/)

16. [XML, 1998] Extensible Markup Language (XML) 1.0. W3C Recommendation 10-February-1998.
(http://www.w3.org/TR/1998/REC-xml-19980210.html)

22

VI. APPENDIX - ISSUES IDENTIFIED WITH THE HL7 DATABASE

The material in this appendix is not a part of the balloted HL7 Recommendation, but is included here for
informative purposes only.

In the course of building the XML DTDs described in this report, we made some assumptions about and
some minor changes to the HL7 Database. We also found a couple of discrepancies between the HL7
Database and the Version 2.3.1 documents. We describe here exactly how we managed the identified
issues. Additionally, everything listed here has been submitted back to HL7 for consideration.

III. ALGORITHMS
A. EXTRACTING SUBSETS OF THE NORMATIVE HL7 DATABASE
1. Messages and their segments

HL7 Table 0354's list of message structures is incomplete. The value "ACK" is missing, as are values from
Chapter 4 Order Entry. The value for "ORM_O01" contains a typo in that there is a double underscore,
whereas there should only be a single underscore. We added the following entries to table TableValues.

Table.ID Version Value
0354 2.3.1 ACK
0354 2.3.1 ORM_O01 (fix underscore)
0354 2.3.1 OMS_O01
0354 2.3.1 OMN_O01
0354 2.3.1 OMD_O01
0354 2.3.1 ORS_O02
0354 2.3.1 ORN_O02
0354 2.3.1 ORD_O02
0354 2.3.1 ORR_O02
0354 2.3.1 RDO_O01
0354 2.3.1 RRO_O02

In Table MsgStructIDSegments, one of the segment names is in lower case. We changed it to upper case:

In table MsgStructIDSegments, change this:
Msg.Struct. Ver. No. Segm repetition code Usage repetitional optional

ORM_O01 2.3.1 48 ail O No No

to this:
Msg.Struct. Ver. No. Segm repetition code Usage repetitional optional

ORM_O01 2.3.1 48 AIL O No No

III. ALGORITHMS
B. ALGORITHMS FOR XML DTD GENERATION FROM THE EXTRACTED SUBSETS
1. Messages contain segments

Application of the algorithm described in III.B.1 results in an ambiguous XML content model for message
REF_I12. This comes about because of the following Abstract Message Syntax within the REF_I12
definition:

[PV1[PV2]] [PV1[PV2]]

which corresponds to an XML content model of:

23

(PV1,PV2?)?,(PV1,PV2?)?

With this structure, both the 1st and 2nd occurrences of "PV1" are possible. In order to fix this, we
modified table MsgStructIDSegments from this:

Message_structure lfd_nr seg_code
REF_I12 89 [
REF_I12 90 PV1
REF_I12 91 [
REF_I12 92 PV2
REF_I12 93]
REF_I12 94]
REF_I12 95 [
REF_I12 96 PV1
REF_I12 97 [
REF_I12 98 PV2
REF_I12 99]
REF_I12 100]

to this:

Message_structure lfd_nr seg_code
REF_I12 89 [
REF_I12 90 PV1
REF_I12 91 [
REF_I12 92 PV2
REF_I12 93]
REF_I12 94 [
REF_I12 95 PV1
REF_I12 96 [
REF_I12 97 PV2
REF_I12 98]
REF_I12 99]
REF_I12 100]

so that the Abstract Message Syntax becomes this:

[PV1[PV2] [PV1[PV2]]]

which corresponds to an XML content model of:

(PV1,PV2?,(PV1,PV2?)?)?

which is unambiguous (and requires no change in actual message instances).

III. ALGORITHMS
B. ALGORITHMS FOR XML DTD GENERATION FROM THE EXTRACTED SUBSETS
4. Data types contain data type components

HL7 Version 2.3.1, Chapter 2 shows the TQ data type as a composite:

24

Data Type
Category/ Data

type

Data Type Name HL7 Section
Reference

Notes/Format

TQ Timing/quantity 2.8.4.3 For timing/quantity specifications for orders, see Chapter 4, Section 4.4.
<quantity (CQ)> ^ <interval (*)> ^ <duration (*)> ^ <start date/time
(TS)> ^ <end date/time (TS)> ^ <priority (ST)> ^ <condition (ST)> ^
<text (TX)> ^ <conjunction (ID)> ^ <order sequencing (*)> ^
<occurrence duration (CE)> ^ <total occurrences (NM)>

while the HL7 Database represents the TQ data type as a primitive. We are noting this finding, and took no
action on it. As a result, the XML representation treats TQ as a primitive data type.

III. ALGORITHMS
B. ALGORITHMS FOR XML DTD GENERATION FROM THE EXTRACTED SUBSETS
4. Data types contain data type components

HL7 Version 2.3.1, Chapter 2 shows MSH.9 (Message Type) to be a CM data type, whose first component
is an ID data type:

Message type (CM): <message type (ID)> ^ <trigger event (ID)> ^ <message structure (ID)>
Table Components in the HL7 Database represents the first component of MSH.9 as a "??" data type. We
changed "??" to "ID" in the HL7 Database.

In table Components, changed this:
Comp. Vers. Description Table-ID Data Type

223 2.3.1 message type 0076 ??

to this:
Comp. Vers. Description Table-ID Data Type

223 2.3.1 message type 0076 ID

