
2000-05-22 Paul V. Biron, Intro to W3C XML Schemas

1

Introduction to
W3C XML Schemas

Paul V. Biron, MLIS
Kaiser Permanente, So Cal Medical Group

Pasadena, CA

HL7 Spring Working Group Meetings
May 22, 2000

2000-05-22 Paul V. Biron, Intro to W3C XML Schemas

2

Intro

• Background
– XML, DTDs, other schema languages, namespaces

• Goals of XML Schema
• Intro to XML Schema

– Simple Types (Datatypes) and Complex Types
(Structural Types)

– Element and Attribute Declarations

• Advanced Topics
– Restriction, extension, Namespaces, schema

composition and access, local element declarations

• Namespaces in XML (optional)

2000-05-22 Paul V. Biron, Intro to W3C XML Schemas

3

XML

<?xml version=“1.0”?>
<LevelOne><head>
<patient>
<patient.id>123456789</patient.id>
<patient.name>Jane Doe</patient.name>
<patient.date.of.birth>May 13,

1923</patient.date.of.birth>
<patient.address>123 Main St., Anytown, USA

(home)</patient.address>
<patient.phone>555-345-9876

(home)</patient.phone>
</patient>
</head>
</LevelOne>

2000-05-22 Paul V. Biron, Intro to W3C XML Schemas

4

<?xml version="1.0" ?><?xml version="1.0" ?>

<PATIENT><PATIENT>

<PATIENT.NAME><PATIENT.NAME>

<GIVEN.NAME ><GIVEN.NAME > Jane</ GIVEN.NAME ></ GIVEN.NAME >

<FAMILY.NAME ><FAMILY.NAME >Doe</ FAMILY.NAME ></ FAMILY.NAME >

</PATIENT.NAME></PATIENT.NAME>

</PATIENT></PATIENT>

Prolog

Start Tag

End Tag

Character Data

2000-05-22 Paul V. Biron, Intro to W3C XML Schemas

5

Graphical XML Document View

Patient

Patient.Name

Given.Name

Family.Name

Jane

Doe

2000-05-22 Paul V. Biron, Intro to W3C XML Schemas

6

Elements
• An element is a logical unit of the document.

– Patient information might contain the following
elements:

• patient id date of birth
• given name address

• family name

• Each XML document contains one or more
elements.

• Elements must nest properly within each
other, beginning with the document element.

Each XML document contains one or more elements, the boundaries of which
are either delimited by start-tags and end-tags, or, for empty elements, by an
empty-element tag. Each element has a type, identified by name, sometimes
called its "generic identifier" (GI), and may have a set of attribute specifications.
Each attribute specification has a name and a value.

2000-05-22 Paul V. Biron, Intro to W3C XML Schemas

7

Elements and Tags

• Elements are delimited with start “tags”
and end “tags”

• Have unique names

Start tag Content End tag

<patient.sex ><patient.sex >Female </ patient.sex ></ patient.sex >

One element

Tag names must begin with a letter or underscore. Characters allowed
include letters, digits, underscores, hyphens, and periods. White space is
not allowed. Tag names are case sensitive.

Tag begin with < and end with >. When surrounding content, the start tag
name is surrounded by <> (e.g., <patient.sex>) and the end tag is
surrounded by </> (e.g., </patient.sex>)

2000-05-22 Paul V. Biron, Intro to W3C XML Schemas

8

Element Content

• An element’s content or the text between
that start and end tag has the name
#PCDATA.

• #PCDATA means parsed character data.
Think of it as text.

2000-05-22 Paul V. Biron, Intro to W3C XML Schemas

9

Special Case

• The Empty Element

• Some information does not have content; in
HTML a line break is an empty element
–
</BR> does not make sense

• Empty elements in XML have the syntax:

– <EmptyElement/>

2000-05-22 Paul V. Biron, Intro to W3C XML Schemas

10

Attributes

• An attribute is additional information
associated with an element

• Example: A coding scheme such as ICD-9, CPT and a
reference to an HL7 table

• Attributes may appear only within start-tags
and empty-element tags.

• Attribute-list declarations specify the name,
data type, and default value (if any) of each
attribute associated with a given element

Attributes are used to associate name-value pairs with elements

Attribute declarations begin with <!ATTLIST, followed by element name,
attribute name, type, occurrence indicator and closing >, i.e.,

<!ATTLIST ELEMENT attr type occurrence_indicator>

Attribute-list declarations may be used:

 To define the set of attributes pertaining to a given element type;

 To establish type constraints for these attributes;

 To provide default values for attributes

2000-05-22 Paul V. Biron, Intro to W3C XML Schemas

11

Attribute Syntax

• Elements may have multiple attributes

• Attributes are name value pairs
• Attribute assignment syntax
• [name of attribute] = “[value of attribute]”

– Quotation marks are not optional around the
value of the attribute in XML

Attribute names must begin with a letter or underscore. Characters
allowed include letters, digits, underscores, hyphens, and periods. White
space is not allowed.

Attribute values can contain white space. Attribute values are delimited by
and must be enclosed in quotation marks.

2000-05-22 Paul V. Biron, Intro to W3C XML Schemas

12

Attribute = Modifier

• Attributes are immediately specified after
the element they are associated with and
provide further information

Start tag Attribute Content End tag

<patient.sex table = <patient.sex table = “HL70001“HL70001” > > Female</ patient.sex ></ patient.sex >

One element with one attribute

2000-05-22 Paul V. Biron, Intro to W3C XML Schemas

13

Two Classes of XML Documents
• Valid

– Valid XML documents conform to DTDs

• Well-formed
– Well-formed XML documents do not have DTDs

but conform to the basic XML grammar

Well-formed XML

Valid XML

Valid XML
is Well-
formed

Well-formed

Document must have at least one tag following the prolog
— the root tag or document tag, which encloses the entire
document

All elements must be nested and may not overlap

All elements must have balanced start and end tags

Empty tags must end with />

Attribute values must be enclosed by quotation marks

There must be declarations for any entities used

An entity reference always starts with &. Entity references
pre-defined by XML:

& = &

< = <

> = >

" = “

' = ‘

2000-05-22 Paul V. Biron, Intro to W3C XML Schemas

14

Two Classes of XML Processors

• Validating parsers
– parse documents according to conformance to

the DTD

• Non-validating
– parse XML documents without reference to the

DTD

Any processor
capable of

checking validity
must check for

well-formedness

Non-validating processors

Validating processors

If the validating parser finds that the document conforms to the DTD, it
passes the data along to the XML application (e.g., Web browser). If it
finds a mistake, it reports an error.

2000-05-22 Paul V. Biron, Intro to W3C XML Schemas

15

Document Type Definition: DTD

• The names of allowable elements and
attributes

• The content model of each element type
(what each element can contain)
– The structure of the document including

• the order in which elements must appear

• how often elements can appear

• The properties of the elements (attributes)

The DTD is included in the prolog (which also contains the XML
declaration)

Content of elements is PCDATA (text).

Structure of the document—XML differs from SGML in that it is not
possible to require all elements but allow them to occur in any order; the
order must be specified if all elements are required.

Cardinality of elements is indicated by the following symbols (occurrence
indicators):

+ = 1 or more
* = 0 or more
? = optional (0 or 1)
no symbol = required

The DTD may be included in the document it describes or may be linked
to from an external URL. External DTDs can be shared by different
documents and Web sites.

XML is a self-describing format (the document can be read and displayed
by any program that understands DTDs).

2000-05-22 Paul V. Biron, Intro to W3C XML Schemas

16

<?xml version="1.0" ?><?xml version="1.0" ?>

<PATIENT><PATIENT>

<PATIENT.NAME><PATIENT.NAME>

<GIVEN.NAME ><GIVEN.NAME > Jane</ GIVEN.NAME ></ GIVEN.NAME >

<FAMILY.NAME ><FAMILY.NAME >Doe</ FAMILY.NAME ></ FAMILY.NAME >

</PATIENT.NAME></PATIENT.NAME>

</PATIENT></PATIENT>

2000-05-22 Paul V. Biron, Intro to W3C XML Schemas

17

Elements

…

< !ELEMENT Paragraph (#PCDATA|Code)+ >
...

<Findings>
 <Paragraph>
 Comparison is made with a
 <Code term="chest-x-ray" value="71010" codingSystem="CPT"/>
 done 6 months ago. The 1cm nodule previously noted in the right lower lobe
 is larger, approximately 1.8 cm.
 </Paragraph>
 …
</Findings>

"Element"
Keyword

Element
Name

Content
Model

Decl.
Closing

Decl.
Opening

[45] elementdecl ::= ’<!ELEMENT’ S Name S contentspec S? ’>’

[46] contentspec ::= ’EMPTY’ | ’ANY’ | Mixed | children

[39] element ::= EmptyElemTag | STag content Etag

[40] Stag ::= ’<’ Name (S Attribute)* S? ’>’

[41] Attribute ::= Name Eq AttValue

[43] content ::= (element | CharData | Reference | CDSect | PI | Comment)*

[42] ETag ::= ’</’ Name S? ’>’

This slide shows both the productions from the XML Specification and an real-world example of the how those productions are
used in the prolog and/or element content (in a DTD and/or instance document). Note, the terminology used in the instance cases
differs from that used in the productions and elsewhere in the XML Specification.

Each XML document contains one or more elements, the boundaries of which are either delimited by start-tags and end-tags, or,
for empty elements, by an empty-element tag. Each element has a type, identified by name, sometimes called its "generic
identifier" (GI), and may have a set of attribute specifications. Each attribute specification has a name and a value.

The beginning of every non-empty XML element is marked by a start-tag. The Name in the start- and end-tags gives the element’s
type. The end of every element that begins with a start-tag must be marked by an end-tag containing a name that echoes the
element’s type as given in the start-tag.

If an element is empty, it must be represented either by a start-tag immediately followed by an end-tag or by an empty-element
tag. An empty-element tag takes a special form.

The element structure of an XML document may, for validation purposes, be constrained using element type and attribute-list
declarations. An element type declaration constrains the element’s content. Element type declarations often constrain which
element types can appear as children of the element. At user option, an XML processor may issue a warning when a declaration
mentions an element type for which no declaration is provided, but this is not an error.

2000-05-22 Paul V. Biron, Intro to W3C XML Schemas

18

Type Meaning Example

Element Only other elements <!ELEMENT Name (First, Middle?, Last,
Suffix?)>

Mixed Both character data and
other elements

<!ELEMENT Paragraph
(#PCDATA|Code)*>

EMPTY No element or character
data (only attributes) <!ELEMENT Code EMPTY>

ANY Any element, but no
character data <!ELEMENT MarkUp ANY>

Content Model Types
• Element content models are where you

specify the makeup of an element's content,
which might be
– hierarchically nested sub-elements
– character data (text)
– no content whatsoever

The element structure of an XML document may, for validation purposes, be

constrained using element type and attribute-list declarations. An element type

declaration constrains the element’s content.

Element type declarations often constrain which element types can appear as

children of the element. At user option, an XML processor may issue a

warning when a declaration mentions an element type for which no declaration

is provided, but this is not an error.

2000-05-22 Paul V. Biron, Intro to W3C XML Schemas

19

Element Content Models

…
<!ELEMENT NAME (First, Middle?, Last, Suffix?)>
...

<RadiologyReport>
 <PatientInfo>
 <Name>
 <First>Amy</First>
 <Middle>A.</Middle>
 <Last>Fall</Last>
 </Name>
 …
 </PatientInfo>
 ….
</RadiologyReport>

XML Document

Element
Only other elements may be present in the element’s content
You can control the order of these sub-elements

An element type has element content when elements of that type may contain only
child elements. The types, order, and number of occurrences of the child elements
may all be constrained.

[45] elementdecl ::= ’<!ELEMENT’ S Name S contentspec S? ’>’

[46] contentspec ::= ’EMPTY’ | ’ANY’ | Mixed | children

[47] children ::= (choice | seq) (‘?’ | ‘*’ | ‘+’)?

[48] cp ::= (Name | choice | seq) (‘?’ | ‘*’ | ‘+’)?

[49] choice ::= ‘(‘ S? cp (S? ‘|’ S? cp)* S? ‘)’

[50] seq ::= ‘(‘ S? cp (S? ‘,’ S? cp)* S? ‘)’

[4] NameChar ::= Letter | Digit | '.' | '-' | '_' | ':' | CombiningChar | Extender

[5] Name ::= (Letter | '_' | ':') (NameChar)*

where the Names give the types of elements that may appear as children.

2000-05-22 Paul V. Biron, Intro to W3C XML Schemas

20

Attributes

<! ATTLIST Code term CDATA #IMPLIED
 value CDATA #REQUIRED
 system CDATA #REQUIRED >

<Findings>
 <Paragraph>
 Comparison is made with a
 <Code term="chest-x-ray" value="71010" system="CPT"/>
 done 6 months ago. The 1cm nodule previously noted in the right lower lobe
 is larger, approximately 1.8 cm.
 </Paragraph>
 …
</Findings>

"Element"
Keyword

Element
Name

Attr
Type

Decl.
Closing

Decl.
Opening

Attr
Name

Req/Opt
Default

[52] AttlistDecl ::= ’<!ATTLIST’ S Name AttDef* S? ’>’

[53] AttDef ::= S Name S AttType S DefaultDecl

[41] Attribute ::= Name Eq AttValue

This slide shows both the productions from the XML Specification and a real-
world example of the how those productions are used in the prolog and/or element
content (in a DTD and/or instance document). Note, the terminology used in the
instance cases differs from that used in the productions and elsewhere in the XML
Specification.

Attributes are used to associate name-value pairs with elements. The Name-
AttValue pairs are referred to as the attribute specifications of the element, with
the Name in each pair referred to as the attribute name and the content of the
AttValue (the text between the ’ or " delimiters) as the attribute value. Attribute
specifications may appear only within start-tags and empty-element tags.

Attribute-list declarations may be used:

 To define the set of attributes pertaining to a given element type.

 To establish type constraints for these attributes.

 To provide default values for attributes.

Attribute-list declarations specify the name, data type, and default value (if any) of
each attribute associated with a given element type.

2000-05-22 Paul V. Biron, Intro to W3C XML Schemas

21

Type Meaning Example

CDATA String <!ATTLIST Code term CDATA #IMPLIED>

Enumerated Table
Restrictions <!ATTLIST Address type (home|work) #IMPLIED>

Tokenized Lexical/Semantic
Contraints

<!ATTLIST PatientInfo LevelOne NMTOKEN #FIXED "header">

Attribute Types

• XML supports limited attribute value typing
– XML supports a few more types than we are

covering here
– SGML supports even a few more types, but not

many

XML attribute types are of three kinds: a string type, a set of tokenized types,

and enumerated types. The string type may take any literal string as a value;

the tokenized types have varying lexical and semantic constraints, as noted:

[54] AttType ::= StringType | TokenizedType | EnumeratedType

[55] StringType ::= ’CDATA’

[56] TokenizedType ::= ’ID’| ’IDREF’| ’IDREFS’| ’ENTITY’| ’ENTITIES’|
’NMTOKEN’| ’NMTOKENS’

[57] EnumeratedType ::= NotationType | Enumeration

[58] NotationType ::= ’NOTATION’ S ’(’ S? Name (S? ’|’ S? Name)* S? ’)’

[59] Enumeration ::= ’(’ S? Nmtoken (S? ’|’ S? Nmtoken)* S? ’)’

2000-05-22 Paul V. Biron, Intro to W3C XML Schemas

22

…
<!ELEMENT Code EMPTY>
<!ATTLIST Code

term CDATA #IMPLIED
value CDATA #REQUIRED
codingSystem CDATA #REQUIRED>

<RadiologyReport>
 ...
 <Impressions>
 RLL nodule, suggestive of malignancy. Compared with a prior
 <Code term="CXR" value="71010" codingSystem="CPT"/>
 from < 6 months ago, nodule size has increased.
 </Impressions>
</RadiologyReport>

XML Document

CDATA (string)
CDATA (or string) attributes may take any literal string as a value, including
whitespace characters

CDATA Type

CDATA stands for character data.

As an attribute type, it is analogous to the #PCDATA element type.

2000-05-22 Paul V. Biron, Intro to W3C XML Schemas

23

Enumerated Type

XML Document

Enumerated
Enumerated attributes can take one of a list of values provided in the declaration
Enumerated values cannot contain whitespace

…
<!ELEMENT Address (#PCDATA)>
<!ATTLIST Address type (home | work) #IMPLIED>
...

<RadiologyReport>
 <PatientInfo>
 ...
 <Address type="home">123 Main St., Anytown, USA</Address>
 <Phone>555-345-9876</Phone>
 <Address type="office">765 First St., Hometown, USA</Address>
 <Phone type="office">555-987-1234</Phone>
 </PatientInfo>
 ...
</RadiologyReport>

Enumerated attributes can take one of a list of values provided

in the declaration. There are two kinds of enumerated types:

[57] EnumeratedType ::= NotationType | Enumeration

[58] NotationType ::= ’NOTATION’ S ’(’ S? Name (S? ’|’ S? Name)* S? ’)’

[59] Enumeration ::= ’(’ S? Nmtoken (S? ’|’ S? Nmtoken)* S? ’)’

A NOTATION attribute identifies a notation, declared in the DTD with

associated system and/or public identifiers, to be used in interpreting the

element to which the attribute is attached.

[Note, we will not be discussing NOTATION attributes during this tutorial]

2000-05-22 Paul V. Biron, Intro to W3C XML Schemas

24

Intro

• Background
– XML, DTDs, other schema languages, namespaces

• Goals of XML Schema
• Intro to XML Schema

– Simple Types (Datatypes) and Complex Types
(Structural Types)

– Element and Attribute Declarations

• Advanced Topics
– Restriction, extension, Namespaces, schema

composition and access, local element declarations

2000-05-22 Paul V. Biron, Intro to W3C XML Schemas

25

What’s Wrong with DTDs

• Special ad hoc notation

• no datatypes (well, hardly)
• Complex to extend (risk of rigidity)
• Do not play well with namespaces
• No formal role for documentation

2000-05-22 Paul V. Biron, Intro to W3C XML Schemas

26

Goals of XML Schema

• Specific goals beyond DTD functionality are
– integration with namespaces
– incomplete constraints on the content of an

element
– integration with primitive data types
– inheritance: existing mechanisms use content

models to specify part-of relations and only
specify kind-of relations implicitly or informally.
Making kind-of relations explicit would make
both understanding and maintenance easier.

2000-05-22 Paul V. Biron, Intro to W3C XML Schemas

27

Intro

• Background
– XML, DTDs, other schema languages, namespaces

• Goals of XML Schema
• Intro to XML Schema

– Simple Types (Datatypes) and Complex Types
(Structural Types)

– Element and Attribute Declarations

• Advanced Topics
– Restriction, extension, Namespaces, schema

composition and access, local element declarations

2000-05-22 Paul V. Biron, Intro to W3C XML Schemas

28

The Schema Specification(s)

• The XML Schema language is defined by
three separate specifications:
– Part 0: Primer (non-normative)

• this is a good place to start when reading the spec(s)

– Part 1: Structures
– Part 2: Datatypes

"XML Schema Part 0: Primer" is a non-normative document intended to provide
an easily readable description of the XML Schema facilities and is oriented
towards quickly understanding how to create schemas using the XML Schema
language. XML Schema Part 1: Structures and XML Schema Part 2: Datatypes
provide the complete normative description of the XML Schema definition
language, and the primer describes the language features through numerous
examples which are complemented by extensive references to the normative
texts.

The purpose of "XML Schema Part 1: Structures" is to provide an inventory of
XML markup constructs with which to write schemas, that is, to define and
describe a class of XML documents by using these constructs to constrain and
document the meaning, usage and relationships of their constituent parts:
datatypes, elements and their content, attributes and their values, entities and
their contents and notations.

"XML Schema Part 2: Datatypes" discusses datatypes that can be used in an
XML Schema. These datatypes can be specified for element content that would
be specified as #PCDATA and attribute values of various types in a DTD. It is
the intension of the specification that it be usable outside of the context of XML
Schemas for a wide range of other XML-related activities such as XSL and RDF
Schema.

2000-05-22 Paul V. Biron, Intro to W3C XML Schemas

29

Datatypes

• A datatype is a 3-tuple, consisting of
– a set of distinct values, called its value space
– a set of lexical representations, called its lexical

space
– a set of facets that characterize properties of the

value space, individual values or lexical items.

• Used to type attribute values and PCDATA
content of elements

2000-05-22 Paul V. Biron, Intro to W3C XML Schemas

30

Value Space
• A value space is the set of values for a given

datatype. Each value in the value space of a
datatype is denoted by one or more literals in its
lexical space

• A value space can be:
– defined axiomatically from fundamental notions

(intensional definition)
– enumerated outright (extensional definition)
– defined by restricting the value space of an already

defined datatype to a particular subset with a given
set of properties

– defined as a combination of values from an already
defined value space(s) by a specific construction
procedure

Value spaces defined "axiomatically" are those of the primitive, built-in
datatypes.

Value spaces defined by restricting the value space of another datatype are those
of the derived types (both built-in and user-derived types).

Value spaces defined by combining values are those of the "list" types (list is a
form of derivation, more later). Note: hopefully, a future version of the
specification will allow the explicit definition of other forms of "combination"
(or aggregate) datatypes, such as matricies (lists of lists), sets and records.

2000-05-22 Paul V. Biron, Intro to W3C XML Schemas

31

Lexical Space

• A lexical space is the set of valid literals for
a datatype
– literals may appear as one or more character

information items as defined in the XML
Information Set specification.

• The lexical space of each built-in primitive
types is completely specificed and the
lexical spaces of all derived types are
subsets of those lexical spaces
– that is, an individual schema cannot define a

new lexical space for a given datatype

While it would be extremely useful to allow schema authors to define their own
lexical spaces, it was felt that for the first version of the schema language we
would not allow this for (at least) the following reasons:

1. To keep the specification as simple as possible

2. To insure interoperability

 a. The best method of associating individual literals in the

"user-defined" lexical space has yet to be determined

b. Until such time, it is unclear how a general purpose schema

processor would know how to datatype validate an instance

governed by such a schema.

2000-05-22 Paul V. Biron, Intro to W3C XML Schemas

32

Datatype Derivation: Facets

• length
• minLength
• maxLength
• maxInclusive
• minInclusive
• maxExclucive
• minExclusive

• enumeration
• pattern
• precision
• scale
• encoding
• duration
• period

Constraining Facets

The constraining facets of a datatype serve to distinguish those aspects of one
datatype which differ from other datatypes. Rather than being defined solely in
terms of a prose description the datatypes in this specification are defined in
terms of the synthesis of facet values which together determine the value space
and properties of the datatype. A constraining facet is an optional property that
can be applied to a datatype to constrain its value space.

Each constraining facet (hereafter, referred to simply as facets) is applicable to a
particular primitive datatype; some facets are applicable to multiple datatypes.
Derived datatypes "inherit" all of the facets of their primitive ancestor.

There is not enough time/space in this tutorial to individually cover all of the
facets in detail; we’ll cover some of the more useful ones in due course.

Note: enumeration is not really a facet and should be considered a form of
derivation, but I lost that editorial battle within the Schema WG.

2000-05-22 Paul V. Biron, Intro to W3C XML Schemas

33

Datatype Dichotomies

• Atomic vs. list datatypes
– Atomic datatypes are those having values which

are regarded by this specification as being
indivisible.

– List datatypes are those having values which
consist of a finite-length sequence of values of
an atomic datatype.

atomic datatypes may be either primitive or derived. The value space of an
atomic datatype is a set of "atomic" values, which for the purposes of this
specification, are not further decomposable. The lexical space of an atomic
datatype is a set of literals whose internal structure is specific to the datatype in
question and completely defined in the schema language.

list datatypes are always derived. The value space of a list datatype is a set of
finite-length sequences of atomic values. The lexical space of a list datatype is a
set of literals whose internal structure is a whitespace separated sequence of
literals of the atomic datatype of the items in the list.

.

Note: Other type systems (including V3 Datatypes) treat list datatypes as special
cases of the more general notions of aggregate or collection datatypes.

2000-05-22 Paul V. Biron, Intro to W3C XML Schemas

34

Datatype Dichotomies

• Primitive vs. Derived:
– Primitive datatypes are those that are not

defined in terms of other datatypes; they exist ab
initio

– Derived datatypes are those that are defined in
terms of other datatypes

For example, a float is a well-defined mathematical concept that cannot be
defined in terms of other datatypes, while a date is a special case of the more
general datatype recurringDuration.

The datatypes defined by the schema language fall into both the primitive and
derived categories. It is felt that a judiciously chosen set of primitive datatypes
will serve the widest possible audience by providing a set of convenient
datatypes that can be used as is, as well as providing a rich enough base from
which the variety of datatypes needed by schema designers can be derived.

Every derived datatype is defined in terms of an existing datatype, referred to as
the base type. base types may be either primitive or derived.

2000-05-22 Paul V. Biron, Intro to W3C XML Schemas

35

Datatype Dichotomies

• Built-in vs. User-derived
– Built-in datatypes are those which are defined in

this specification, and may be either primitive or
derived

– User-derived datatypes are those derived
datatypes that are defined by individual schema
designers by giving values to constraining facets

Conceptually there is no difference between the built-in derived datatypes
included in the schema language and the user-derived datatypes which will be
created by individual schema authors. The built-in derived datatypes are those
which are believed to be so common that if they were not defined in this
specification many schema authors would end up "reinventing" them.

Furthermore, including these derived datatypes in language serves to
demonstrate the mechanics and utility of the datatype generation facilities of this
specification, as well as providing a "santity check" that the language includes
those features necessary to define the datatypes which are most useful to the
widest possible audience.

2000-05-22 Paul V. Biron, Intro to W3C XML Schemas

36

Built-In Primitive Datatypes

• string
• boolean
• float
• double
• decimal
• timeDuration
• recurringDuration

• binary
• uriReference
• ID
• IDREF
• ENTITY
• NOTATION
• QName

• Primitive datatypes are those that are not defined in terms of other datatypes;
they exist ab initio.

• Derived datatypes are those that are defined in terms of other datatypes.

2000-05-22 Paul V. Biron, Intro to W3C XML Schemas

37

Built-In Derived Datatypes
• language
• IDREFS

• ENTITIES

• NMTOKEN

• NMTOKENS
• Name

• NCName

• integer
• nonPositiveInteger

• negativeInteger

• long

• int
• short

• byte

• nonNegativeInteger

• unsignedLong
• unsignedInt

• unsignedShort

• unsignedByte

• positiveInteger
• timeInstant

• time

• timePeriod
• date

• month

• year

• century
• recurringDate

• recurringDay

• Primitive datatypes are those that are not defined in terms of other datatypes;
they exist ab initio.

• Derived datatypes are those that are defined in terms of other datatypes.

2000-05-22 Paul V. Biron, Intro to W3C XML Schemas

38

Datatype Derivation: Atomic

<xsd:simpleType name=’nonNegativeInteger’
base=’xsd:integer’>

 <xsd:minInclusive value="0"/>
</xsd:simpleType>

<xsd:simpleType name=’positiveInteger’
base=’xsd:nonNegativeInteger’>

 <xsd:minInclusive value="1"/>
</xsd:simpleType>

XML Schema

Alternatively, the above types could have been defined using the minExclusive facet, as follows:

<xsd:simpleType name=’nonNegativeInteger’ base=’xsd:integer’>

 <xsd:minExclusive value="-1"/>

</xsd:simpleType>

<xsd:simpleType name=’positiveInteger’ base=’xsd:nonNegativeInteger’>

 <xsd:minExclusive value="0"/>

</xsd:simpleType>

2000-05-22 Paul V. Biron, Intro to W3C XML Schemas

39

Datatype Derivation: Lists

<xsd:simpleType name=’list-of-integer’
base=’xsd:integer’ derivedBy=’list’/>

<xsd:simpleType name=’four-integers’
base=’xsd:integer’ derivedBy=’list’>

 <xsd:length value="4"/>
</xsd:simpleType>

XML Schema

A list dataype must be derived from an atomic datatype. This yields a list
datatype that can contain whitespace separated lists of values of the base type.

When a datatype is derived by list, the following constraining facets may be
used:

• length

• maxLength

• minLength

• enumeration

For length, maxLenth and minLength, the unit of length is measured in number
of list items.

2000-05-22 Paul V. Biron, Intro to W3C XML Schemas

40

Enumeration

XML Document

Enumeration
enumeration constrains the value space to a specified set of values

<levelone>
 <provider>
 <tmr LOW="20000407" LOW_CLOSED=’F’/>
 ...
 </provider>
 ...
 <legal_authenticator>
 <tmr LOW="20000408" LOW_CLOSED=’False’/>
 ...
 </legal_authenticator>
</levelone>

<xsd:simpleType name=’boolean.code.set’ base="xsd:NMTOKEN">
 <xsd:enumeration value="T"/>
 <xsd:enumeration value="F"/>
</xsd:simpleType>
<xsd:complexType name="IVL_TS" content="empty">
 <xsd:attribute name="LOW_CLOSED" type=’boolean.code.set’/>
 ...
</xsd:complexType>
<xsd:element name="tmr" type=’IVL_TS’/>

The simpleType defn is from line 64 of v3dt.xsd

The complexType defn is from line 829 of v3dt.xsd

The element decl is from line 662 (modified slightly)

The valid occurrence is from line 97 of levelone.xml

The invalid occurrence is from line 49 of levelone.xml

The above example is equivalent to the following DTD fragment:

<!ELEMENT tmr EMPTY>

<!ATTLIST tmr

LOW_CLOSED (T | F) #IMPLIED

...>

2000-05-22 Paul V. Biron, Intro to W3C XML Schemas

41

Complex Types

• A Complex Type definition is:
– a content type, one of:

• empty

• a simple type (i.e., a sequence of characters of a
particular datatype)

• elementOnly

• mixed (elements and characters)

– a set of attribute declarations

There is a basic difference between complex types which allow elements in their
content and may carry attributes, and simple types (or datatypes) which cannot
have element content and cannot carry attributes.

2000-05-22 Paul V. Biron, Intro to W3C XML Schemas

42

Complex Types: Content Type

• empty
– validates elements with no character or element

information item children

<xsd:complexType name=’INT’ content="empty">
 <xsd:attribute name="V" type="xsd:integer"/>
 <xsd:attribute name="V-T" type="xsd:string"
 use="fixed" value="xsd:integer"/>
 ...
</xsd:complexType>
<xsd:element name="version_nbr" type=’INT’/>

XML Schema

Line 786 of v3dt.xsd
Line 691 of header.xsd

2000-05-22 Paul V. Biron, Intro to W3C XML Schemas

43

Complex Types: Content Type

• elementOnly
– validates elements with children that conform to

the supplied content model

<xsd:element name=’patient’>
 <xsd:complexType content=’elementOnly’>
 <xsd:sequence>
 <xsd:element ref=’patient.type_cd’/>
 <xsd:element ref=’tmr’ minOccurs=’0’ maxOccurs=’1’/>
 <xsd:element ref=’person’/>
 <xsd:element ref=’birth_dttm’ minOccurs=’0’ maxOccurs=’1’/>
 <xsd:element ref=’administrative_gender_cd’ minOccurs=’0’ maxOccurs=’1’/>
 <xsd:element ref=’local.header’ minOccurs=’0’ maxOccurs=’unbounded’/>
 </xsd:sequence>
 ...
 </xsd:complexType>
</xsd:element>

XML Schema

Line 434 of header.xsd

The above element declaration is equivalent to the following declaration in a
DTD:

<!ELEMENT patient (patient.type_cd, tmr?, person, birth_dttm?,

administrative_gender_cd?, local.header*)>

2000-05-22 Paul V. Biron, Intro to W3C XML Schemas

44

Complex Types: Content Type

• mixed
– validates elements whose element children

conform to the supplied content model (along
with any character information items)

<xsd:element name=’caption’>
 <xsd:complexType content=’mixed’>
 <xsd:choice minOccurs=’0’ maxOccurs=’unbounded’>
 <xsd:element ref=’link’/>
 <xsd:element ref=’caption_cd’/>
 </xsd:choice>
 ...
 </xsd:complexType>
</xsd:element>

XML Schema

Line 643 of levelone.xsd

The above element declaration is equivalent to the following declaration in a
DTD:

<!ELEMENT caption (#PCDATA | link | caption_cd)*>

2000-05-22 Paul V. Biron, Intro to W3C XML Schemas

45

Complex Types: Mixed Content

XML Document

mixed
validates elements whose element children conform to the supplied content
model

<levelone>
 <section>
 <caption>
 <caption_cd T="CV" V="8684-3" S="2.16.840.1.113883.6.1"/>
 History of Present Illness
 </caption>
 ...
 </section>
</levelone>

<xsd:element name=’caption’>
 <xsd:complexType content=’mixed’>
 <xsd:choice minOccurs=’0’ maxOccurs=’unbounded’>
 <xsd:element ref=’link’/>
 <xsd:element ref=’caption_cd’/>
 </xsd:choice>
 ...
 </xsd:complexType>
</xsd:element>

The valid instance is from line 141 of levelone.xml.

Unlike mixed content models in DTDs, the order and cardinality of element children in
mixed content models in XML Schema is significant. That is, that in order to imitate the
DTD mixed declaration from the previous slide that we need to explicitly note that there
is an optionally repeating <xsd:choice> surrounding the two element references in the
complex type.

If the complexType had looked like:

<xsd:element name=’caption’>

<xsd:complexType content=’mixed’>

<xsd:element ref=’link’/>

<xsd:element ref=’caption_cd’/>

 ...

</xsd:complexType>

</xsd:element>

we would still have a mixed content model (that is, <caption> could contain text mixed in
with <link> and <caption_cd> elements), however the element children would have to
match (in order and cardinality) exactly with what is specified in the content model.

2000-05-22 Paul V. Biron, Intro to W3C XML Schemas

46

Complex Types: Grouping

• sequence
– validates elements whose children correspond,

in order, to the named (or referenced) elements

<xsd:element name=’levelone’>
 <xsd:complexType content=’elementOnly’>
 <xsd:sequence>
 <xsd:element ref=’clinical_document_header’/>
 <xsd:element ref=’body’/>
 </xsd:sequence>
 ...
 </xsd:complexType>
</xsd:element>

XML Schema

Line 94 of levelone.xsd

XML Schema enables unnamed groups of elements to be defined and
constrained to appear in the same order (sequence) as they are declared.

The above element declaration is equivalent to the following declaration in a
DTD:

<!ELEMENT levelone (clinical_document_header, body)>

2000-05-22 Paul V. Biron, Intro to W3C XML Schemas

47

Complex Types: Grouping

• choice
– validates elements whose children correspond to

exactly one of the specified the named (or
referenced) elements

<xsd:element name=’section’>
 <xsd:complexType content=’elementOnly’>
 ...
 <xsd:group ref=’structures’/>
 …
 </xsd:complexType>
</xsd:element>
<xsd:group name='structures'>
 <xsd:choice>
 <xsd:element ref='paragraph'/>
 <xsd:element ref='list'/>
 <xsd:element ref='table'/>
 </xsd:choice>
</xsd:group>

XML Schema

Line 173 and 86 of levelone.xsd

A choice group element allows only one of its children to appear in an instance.

The above element declaration is equivalent to the following declaration in a
DTD:

<!ELEMENT section (… (list | paragraph | table) …)>

Named groups of elements can also defined and later referenced from a content
model. Named groups can be used to build up the content models of complex
types (thus mimicking common usage of parameter entities in XML 1.0). The
way the above is actually specified in the PRA DTDs is as follows:

<!ENTITY % structures "paragraph | list | table">

<!ELEMENT section (caption?,(%structures; | section)*)>

2000-05-22 Paul V. Biron, Intro to W3C XML Schemas

48

Complex Types: Grouping

• all
– validates elements whose children contain

exactly zero or one of each specified element
– The elements can occur in ANY order

• all groups provide a simplified version of the
SGML &-connector

Since all groups are not expressible in DTDs, there are no simple examples in
the PRA schemas of this construct and I have not found the time to sufficiently
examine the inherent structure of these DTDs enough to know whether we
should be using all groups anywhere.

2000-05-22 Paul V. Biron, Intro to W3C XML Schemas

49

Attribute Declarations

• Attribute declarations provide for
– Requiring/preventing the appearance of attribute

information items
– Constraining attribute information item values by

a simple type definition
– Providing default or fixed values for an attribute

information item.

<xsd:element name=’observation_media’>
 <xsd:complexType content=’elementOnly’>
 …
 <xsd:attribute name='HL7-NAME' type='xsd:string' use='fixed' value='observation'/>
 <xsd:attribute name=’T’ type=’xsd:string’ use=’fixed’ value=’observation’/>
 </xsd:complexType>
</xsd:element>

XML Schema

Line 329 of levelone.xsd

An attribute declaration is an association between a name and a simple type
(datatype) definition, together with occurrence information and (optionally) a
default value. The association is either global, or local to its containing complex
type definition. Attribute declarations contribute to schema-validity as part of
complex type definition validation, when their occurrence, defaults and type
components are checked against an attribute information item with a matching
name and namespace.

The occurrence of an attribute is controlled by the use attribute, whose value
may be one of: fixed | default | required | optional. If not specified, optional is
assumed. If either fixed or default is specified, then the value attribute must also
be present and its value specifies the fixed or default attribute value.

The above attribute declaration is equivalent to the following declaration in a
DTD:

<!ELEMENT observation_media (...)>

<!ATTLIST observation_media

...

HL7-NAME CDATA #FIXED ’observation’

T CDATA #FIXED ’observation’>

2000-05-22 Paul V. Biron, Intro to W3C XML Schemas

50

Element Declarations

• Element declarations provide for
– Establishing the validity of element information

items
– Determining default values

<xsd:element name=’person’>
 <xsd:complexType content=’elementOnly’>
 <xsd:sequence>
 <xsd:element ref=’id’ minOccurs=’1’ maxOccurs=’unbounded’/>
 <xsd:element ref=’person_name’ minOccurs=’0’ maxOccurs=’unbounded’/>
 <xsd:element ref=’addr’ minOccurs=’0’ maxOccurs=’unbounded’/>
 <xsd:element ref=’phon’ minOccurs=’0’ maxOccurs=’unbounded’/>
 <xsd:element ref=’local.header’ minOccurs=’0’ maxOccurs=’unbounded’/>
 </xsd:sequence>
 …
 </xsd:complexType>
</xsd:element>

XML Schema

Line 474 of header.xsd

An element declaration is an association of a name with a type definition, either
simple or complex and an (optional) default value. The association is either
global or scoped to a containing complex type definition. A global element
declaration with name ’A’ is broadly comparable to a pair of DTD declarations as
follows, where the associated type definition fills in the ellipsis:

 <!ELEMENT A . . .>

 <!ATTLIST A . . .>

(We’ll talk about locally-scoped element declarations later).

Within a complexType definition, global element declarations are referred to by
naming them with the ref attribute of <xsd:element>

Unlike with DTDs, XML Schema provides for the ability to give a default for
elements whose content model contains only PCDATA (i.e., those whose type is
a datatype). As with all groups, there are no simple examples in the PRA
schemas of this construct and I have not found the time to sufficiently examine
the inherent structure of these DTDs enough to know whether we should be
using element default values anywhere.

2000-05-22 Paul V. Biron, Intro to W3C XML Schemas

51

Intro

• Background
– XML, DTDs, other schema languages, namespaces

• Goals of XML Schema
• Intro to XML Schema

– Simple Types (Datatypes) and Complex Types
(Structural Types)

– Element and Attribute Declarations

• Advanced Topics
– Restriction, extension, Namespaces, schema

composition and access, local element declarations

2000-05-22 Paul V. Biron, Intro to W3C XML Schemas

52

Complex Types: Extension

• A complex type definition which allows
element or attribute content in addition to
that allowed by another specified type
definition is said to be an extension

<xsd:complexType name=’CD’>
 <xsd:choice>
 …
 </xsd:choice>
 <xsd:attribute …>
 ...
</xsd:complexType>
<xsd:element name='clinical_document_header.service_cd'>
 <xsd:complexType base='CD' derivedBy=’extension’>
 <xsd:attributeGroup ref='common'/>
 <xsd:attribute name=’HL7-NAME’ type=’xsd:string’ use=’fixed’ value=’service_cd’/>
 </xsd:complexType>
</xsd:element>

XML Schema

Line 225 of v3dt.xsd and 171 of header.xsd

A complex type which extends another does so by having additional content
model particles at the end of the other definition’s content model, or by having
additional attribute declarations, or both.

Note, XML Schema allows only appending, and not other kinds of extensions.
This decision simplifies application processing required to cast instances from
derived to base type. Future versions may allow more kinds of extension,
requiring more complex transformations to effect casting.

A type definition used as the basis for an extension or restriction is known as the
base type definition of that definition.

A distinguished ur-type definition is present in each XML Schema, serving as
the root of the type definition hierarchy for that schema. The ur-type definition
has the unique characteristic that it can function as a complex or a simple type
definition, according to context.

2000-05-22 Paul V. Biron, Intro to W3C XML Schemas

53

Complex Types: Restriction

• A type definition whose declarations are in a
one-to-one relation with those of another
specified type definition, with each in turn
restricting the possibilities of the one it
corresponds to, is said to be a restriction

• The specific restrictions might include
narrowed ranges or reduced alternatives.

• Members of a type, A, whose definition is a
restriction of the definition of another type,
B, are always members of type B as well

In addition to deriving new complex types by extending content models, it is
also possible to derive new types by restricting the content models of existing
types. Restriction of complex types is conceptually the same as restriction of
simple types, except that the restriction of complex types involves a type’s
declarations rather than the acceptable range of a simple type’s values. A
complex type derived by restriction is very similar to its base type, except that
its declarations are more limited than the corresponding declarations in the base
type. In fact, the values represented by the new type are a subset of the values
represented by the base type (as is also the case with restriction of simple types).
In other words, an application prepared for the values of the base type would not
be surprised by the values of the restricted type.

2000-05-22 Paul V. Biron, Intro to W3C XML Schemas

54

Schema Access & Composition

• target namespaces

• include
– composing schemas for a single target

namespace

• import
– composing schemas for multiple target

namespaces

2000-05-22 Paul V. Biron, Intro to W3C XML Schemas

55

target namespaces

• A schema can be viewed as a collection
(vocabulary) of type definitions and element
declarations whose names belong to a
particular namespace
– called a target namespace

• The target namespace enables us to
distinguish between definitions and
declarations from different vocabularies

When we want to check that an instance document conforms to one or more
schemas (through a process called schema validation), we need to identify which
element and attribute declarations and type definitions in the schemas should be
used to check which elements and attributes in the instance document. The target
namespace plays an important role in the identification process.

Thus far, there has been no requirement (or utility) to make use of namespace
qualified elements in the development of either the PRA or V3 messages. This
is partly due to the fact that DTD validation of instance documents which use
multiple namespaces is not cleanly defined.

As we experiment with using XML Schemas to define the PRA and V3
messages we may find that taking advantage of namespace qualified
elements/attribute declarations provides some benefits.

2000-05-22 Paul V. Biron, Intro to W3C XML Schemas

56

Schema Composition: include

• Schema components for a single target
namespace can be assembled from several
schema documents

<levelone
 xmlns:xsi=’http://www.w3.org/1999/XMLSchema-instance’
 xsi:noNamespaceSchemaLocation=’http://www.hl7.org/schemas/levelone.xsd’>

XML Schema

Line 30 levelone.xsd

<xsd:schema>
 <xsd:include schemaLocation=v3dt.xsd’/>
</xsd:schema>

Line 36 header.xsd

As schemas become larger, it is often desirable to divide their content among
several schema documents for purposes such as ease of maintenance, access
control, and readability.

The effect of this include element is to bring in the definitions and declarations
contained in v3dt.xsd, and make them available as part of the header.xsd schema
target namespace (as well as to bring in the definitions and declarations
contained in header.xsd, and make them available as part of the levelone.xsd
schema target namespace). The one important caveat to using include is that the
target namespace of the included constructions must be the same as the target
namespace of the including schema.

The required schemaLocation attribute, which is a URI, provides hints from the
schema author to a processor regarding the location of schema documents. The
presence of these hints does not require the processor to obtain or use the cited
schema documents, and the processor is free to use other schemas obtained by
any suitable means, or to use no schema at all.

2000-05-22 Paul V. Biron, Intro to W3C XML Schemas

57

Schema Access

• Schema components for a single target
namespace can be assembled from several
schema documents

XML Document

<levelone
 xmlns:xsi=’http://www.w3.org/1999/XMLSchema-instance’
 xsi:noNamespaceSchemaLocation=’http://pbiron.tripod.com/schema/levelone.xsd’>
 ...
</levelone>

<xsd:schema xmlns:xsd=’http://www.w3.org/1999/XMLSchema’>
 <xsd:element name=’levelone’>
 ...
 </xsd:element>
 …
</xsd:schema>

The xsi:noNamespaceSchemaLocation attribute on an element in an instance
document provides hints to a processor regarding the location of schema
documents that govern elements/attributes which are not namespace qualified.

As with the schemaLocation attribute on <xsd:include>, the presence of these
hints does not require the processor to obtain or use the cited schema documents,
and the processor is free to use other schemas obtained by any suitable means, or
to use no schema at all.

There is also an xsi:schemaLocation attribute for use in instance documents
which use qualified element/attributes.

xsi:schemaLocation and xsi:noNamespaceSchemaLocation attributes can
occur on any element, and all such attributes must be processed as if they had
occurred on the element information item initially assessed for schema-validity
(e.g., the root element of the instance document).

2000-05-22 Paul V. Biron, Intro to W3C XML Schemas

58

Local Element Declarations
XML Document

<levelone> ...
 <content> ...
 <coded_entry>
 <coded_entry.value T="CV" V="D2-51000" S="2.16.840.1.113883.6.5"/>
 </coded_entry>
 ...
 <observation_media>
 <observation_media.value T="ED" MD="image/jpeg">
 ...
 </observation_media.value>
 </observation_media>
 </content>
</levelone>

<xsd:element name=’coded_entry.value’>
 <xsd:complexType base=’CD’ derivedBy=’extension’>
 ...
 </xsd:complexType>
</xsd:element>
<xsd:element name=’observation_media.value’>
 <xsd:complexType base=’ED’ derivedBy=’extension’>
 ...
 </xsd:complexType>
</xsd:element>

With DTDs, all element declarations are "global," that is, their content
model/attribute list is context independent which can cause problems.

This example from the PRA (line 322 of levelone.xsd) demonstrates a common
solution to a common problem. The problem is this: there may be many
different elements which we’d like to name value but they may have different
content models and/or attribute lists. With DTDs, the only reasonable solution is
to develop some form of naming convention for the different elements (in this
case, we prepend the name of the parent element followed by ".").

2000-05-22 Paul V. Biron, Intro to W3C XML Schemas

59

Local Element Declarations
XML Document

<levelone> ...
 <content> ...
 <coded_entry>
 <value T="CV" V="D2-51000" S="2.16.840.1.113883.6.5"/>
 </coded_entry>
 ...
 <observation_media>
 <value T="ED" MD="image/jpeg">
 ...
 </observation_media.value>
 </observation_media>
 </content>
</levelone>

<xsd:element name=’coded_entry’>
 <xsd:complexType content=’elementOnly’> ...
 <xsd:element name=’value’ type=’CD’/> ...
 </xsd:complexType>
</xsd:element>
<xsd:element name=observation_media’>
 <xsd:complexType content=’elementOnly’> ...
 <xsd:element name=’value’ type=’ED’/> ...
 </xsd:complexType>
</xsd:element>

Using local element declarations, we are able to tell the schema processor
(validating parser) to treat the value element differently when it appears as a
child of code_entry vs. observation_media.

2000-05-22 Paul V. Biron, Intro to W3C XML Schemas

60

Schema Tools

• Validators
– XSV

• basic support for 2000-04-07 WD

• http://cgi.w3.org/cgi-bin/xmlschema-check

– Oracle XML Schema Processor
• basic support for 2000-02-25 WD

• http://technet.oracle.com/tech/xml/schema_java/index.htm

– Xerces (Apache, IBM AlphaWorks)
• basic support for 1999-12-17 WD
• http://xml.apache.org/xerces-j/

– XML Spy
• basic support for 2000-04-07 WD

• http://new.xmlspy.com

2000-05-22 Paul V. Biron, Intro to W3C XML Schemas

61

Schema Tools

• DTD to Schema Converters
– XML Authority

• basic support for 2000-04-07 WD

• http://www.extensibility.com/products/xml_authority.htm

– XML Spy
• basic support for 2000-04-07 WD

• http://new.xmlspy.com

2000-05-22 Paul V. Biron, Intro to W3C XML Schemas

62

Namespaces in XML

2000-05-22 Paul V. Biron, Intro to W3C XML Schemas

63

Namespaces in XML

• An XML namespace is a collection of
names, identified by a URI reference, which
are used in XML documents as element
types and attribute names

• Names from XML namespaces appear as
qualified names, which contain a single
colon, separating the name into a
namespace prefix and a local part

• The prefix, which is mapped to a URI
reference, selects a namespace.

Why do we need namespace prefixes? URI references can contain characters
not allowed in names, so cannot be used directly as namespace prefixes.
Therefore, the namespace prefix serves as a proxy for a URI reference. An
attribute-based syntax described below is used to declare the association of the
namespace prefix with a URI reference.

2000-05-22 Paul V. Biron, Intro to W3C XML Schemas

64

Namespace Declarations

<!ELEMENT NAME (First, Middle?, Last, Suffix?)>
<!ELEMENT Name xmlns CDATA #IMPLIED>

<RadiologyReport>
 <PatientInfo>
 <Name xmlns="http://www.radiology.org/report">
 <First>Amy</First>
 <Middle>A.</Middle>
 <Last>Fall</Last>
 </Name>
 …
 </PatientInfo>
 ….
</RadiologyReport>

XML Document

Default Namespace
The namespace name in the attribute value is that of the default namespace in
the scope of the element to which the declaration is attached. In such a default
declaration, the attribute value may be empty.

[1] NSAttName ::= PrefixedAttName | DefaultAttName

[2] PrefixedAttName ::= ’xmlns:’ NCName

[3] DefaultAttName ::= ’xmlns’

[4] NCName ::= (Letter | ’_’) (NCNameChar)*/*An XML Name, minus the ":" */

[5] NCNameChar ::= Letter | Digit | ’.’ | ’-’ | ’_’ | CombiningChar | Extender

2000-05-22 Paul V. Biron, Intro to W3C XML Schemas

65

Namespace Declarations

<!ELEMENT NAME (First, Middle?, Last, Suffix?)>
<!ELEMENT Name xmlns:radorg CDATA #IMPLIED>

<RadiologyReport>
 <PatientInfo>
 <Name xmlns:radorg="http://www.radiology.org/report">
 <First>Amy</First>
 <Middle>A.</Middle>
 <Last>Fall</Last>
 </Name>
 …
 </PatientInfo>
 ….
</RadiologyReport>

XML Document

Namespace Prefix
The local part gives the namespace prefix, used to associate element and
attribute names with the namespace name in the attribute value in the scope of
the element to which the declaration is attached.

[1] NSAttName ::= PrefixedAttName | DefaultAttName

[2] PrefixedAttName ::= ’xmlns:’ NCName

[3] DefaultAttName ::= ’xmlns’

[4] NCName ::= (Letter | ’_’) (NCNameChar)*/*An XML Name, minus the ":" */

[5] NCNameChar ::= Letter | Digit | ’.’ | ’-’ | ’_’ | CombiningChar | Extender

Prefixes beginning with the three-letter sequence x, m, l, in any case
combination, are reserved for use by XML and XML-related specifications.

2000-05-22 Paul V. Biron, Intro to W3C XML Schemas

66

Qualified Names

Start tag Content End tag

<<radorgradorg:Name> :Name> Female </</radorgradorg:Name>:Name>

Namespace qualified element name

Start tag Attribute Content End tag

<patient.sex hl7:table=<patient.sex hl7:table=“HL70001“HL70001”>> Female</ patient.sex></ patient.sex>

Namespace qualified attribute

[6] Qname ::= (Prefix ’:’)? LocalPart

[7] Prefix ::= NCName

[8] LocalPart ::= NCName

[9] STag ::= ’<’ QName (S Attribute)* S? ’>’

[10] ETag ::= ’</’ QName S? ’>’

[11] EmptyElemTag ::= ’<’ QName (S Attribute)* S? ’/>’

2000-05-22 Paul V. Biron, Intro to W3C XML Schemas

67

Qualified Names

<!ELEMENT NAME (First, Middle?, Last, Suffix?)>
<!ELEMENT Name xmlns:radorg CDATA #IMPLIED>

<RadiologyReport>
 <PatientInfo>
 <radorg:Name xmlns:radorg="http://www.radiology.org/report">
 <First>Amy</First>
 <Middle>A.</Middle>
 <Last>Fall</Last>
 </radorg:Name>
 …
 </PatientInfo>
 ….
</RadiologyReport>

XML Document

Namespace Prefix
The local part gives the namespace prefix, used to associate element and
attribute names with the namespace name in the attribute value in the scope of
the element to which the declaration is attached.

[6] Qname ::= (Prefix ’:’)? LocalPart

[7] Prefix ::= NCName

[8] LocalPart ::= NCName

The namespace prefix, unless it is xml or xmlns, must have been declared in a
namespace declaration attribute in either the start-tag of the element where the
prefix is used or in an an ancestor element (i.e. an element in whose content the
prefixed markup occurs). The prefix xml is by definition bound to the
namespace name http://www.w3.org/XML/1998/namespace. The prefix xmlns is
used only for namespace bindings and is not itself bound to any namespace
name.

