Domain Analysis Models and Detailed Clinical Models

A methodological comparison to support a project decision
Outline

• Representing Requirements
• Methodologies for Representing Data Requirements
• Comparison
• Options
REPRESENTING REQUIREMENTS
The Problem

• How do we specify interoperability requirements so that
 – Clinicians can confirm that they are documented correctly
 – Technologists can confirm that they are complete enough to support development
Business Drives Technology

• Start by documenting the process that defines the problem space
 – Process flows
 – Use cases
 – Activity diagrams

• Then derive or enhance whatever else you need
 – Glossary
 – State machines
 – Information model
 – Usability brief
Project Approach: Problem Space

1. Use Cases
2. Workflows
3. Analysis Information Model
 a. With DCMs
Information Requirements

• Early efforts: A Glossary
 – Definitions in natural language help, but they leave room for ambiguity

• Recent efforts: An “information model”* at the analysis level
 – Aristotelian, fairly legible; minimal training required
 – Uses natural language definitions but unambiguously clarifies boundary conditions (relationships, cardinalities, properties)
 – Like an entity-relationship diagram
 – Easy to do as a Class Diagram in UML, a commonly understood language

*A.k.a. Conceptual model, domain model, business object model, business viewpoint, information model, etc.
Analysis Information Model
Partial Example

Class (Thing)

Property

Relationship

Class Cardinality

Property Cardinality

Data Type

EMS DAM, May 2010 HL7 Ballot
Problem First, Then Solution

- Two sorts of information model:
- An **Analysis** model represents the **problem space** in terms the Clinician can confirm.

 ![Diagram](image)

 6 Classes

- A **Design** model represents the **solution space**; it is derived from the analysis model. It need not be comprehensible to clinicians.
METHODOLOGIES FOR REPRESENTING DATA REQUIREMENTS
Clarification

• We are using the **Domain Analysis Process** to model the **domain** in support of specification development

• We may identify other tools for modeling subsets of detailed clinical information **within** that **domain**

• The following comparison addresses modeling at the **detail level**
Some Clinical Analysis Modeling Methodologies

• HL7 Domain Analysis Process
• ISO 11973 DCM requirements document
 – Associated with HL7 Patient Care Workgroup, DCM project
• Other modeling efforts
 – Intermountain Healthcare, with GE
 – Kaiser Permanente and VA Nursing Charter Innovation
 – Clinical LOINC Nursing Subcommittee
 – Any other project aiming at modeling clinical information in detail

http://xkcd.com/
Criteria

• If we’re authoring a standard for the domain, we don’t need to be inventing new methods: we want an off the shelf methodology, if possible

• It needs to be documented

• It needs to be open
Approaches for Detailed Modeling

<table>
<thead>
<tr>
<th>Approach</th>
<th>Non-proprietary intellectual property?</th>
<th>Published methodology?</th>
<th>Consider</th>
</tr>
</thead>
<tbody>
<tr>
<td>HL7 Domain Analysis Process</td>
<td>Yes</td>
<td>Yes</td>
<td>✔️</td>
</tr>
<tr>
<td>ISO 11973 DCM</td>
<td>Planned</td>
<td>Partially</td>
<td>✔️</td>
</tr>
<tr>
<td>Other</td>
<td>Unknown</td>
<td>Unknown</td>
<td>✗</td>
</tr>
</tbody>
</table>
Domain Analysis Model

• “Domain Analysis produces a set of artifacts that clearly describe the healthcare business in a given domain in terms familiar to the people who work in that business area.”
 – HL7 Development Framework

• Clear

• Familiar
Detailed Clinical Model

- At the conceptual level, a Detailed Clinical Model (DCM) is an information model of a discrete set of precise clinical knowledge which can be used in a variety of contexts.
 - ISO NWIP *Detailed Clinical Models* – Draft 01
- Precise
- Reusable
COMPARING THE EFFORTS
The DAM uses UML conventions to represent clinical information, e.g., a thing is a box.

Properties of a thing are listed inside the box.

A property has a valid set of values, called a “data type.” This one is a Physical Quantity.

Things have relationships, and relationships have Cardinality. A patient has zero or more height observations.
Option for Representing Valid Values

Some properties have enumerated lists of valid values. These may or may not be represented in the picture, depending on size and volatility of the list.
An HL7 Patient Care DCM

The DCM uses many of the same UML conventions as the DAM (data types, relationships).

DCMs require an empty “root” concept.

Properties are in boxes, like classes in a UML class diagram.

All enumerated values are represented explicitly in the diagram.

Many relationships are represented as “compositions,” a pattern with specific semantic implications.

Special patterns support implementability.
<table>
<thead>
<tr>
<th>Area</th>
<th>DAM</th>
<th>PC DCM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maturity</td>
<td>Adolescent</td>
<td>Method not yet documented</td>
</tr>
<tr>
<td>Scope</td>
<td>Unrestricted</td>
<td>“Discrete”</td>
</tr>
<tr>
<td>Topic</td>
<td>Unrestricted</td>
<td>Clinical information</td>
</tr>
<tr>
<td>Detail</td>
<td>Unrestricted</td>
<td>High</td>
</tr>
<tr>
<td>Formalism</td>
<td>UML</td>
<td>UML, others</td>
</tr>
<tr>
<td>Clinical references</td>
<td>Unrestricted</td>
<td>Required</td>
</tr>
<tr>
<td>Discovery</td>
<td>HL7 V3 Edition</td>
<td>Key Goal</td>
</tr>
<tr>
<td>Reuse</td>
<td>Unrestricted (conceptual)</td>
<td>Key Goal (concrete)</td>
</tr>
<tr>
<td>Automated code</td>
<td>Wrong</td>
<td>Key Goal</td>
</tr>
<tr>
<td>generation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Key Differences

<table>
<thead>
<tr>
<th>Area</th>
<th>DAM</th>
<th>PC DCM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Separation of problem space from solution space</td>
<td>Separation is fundamental</td>
<td>Separation would prevent code generation</td>
</tr>
<tr>
<td>2. Automatic code generation</td>
<td>Code generation would break the requirements model</td>
<td>Code generation is fundamental</td>
</tr>
<tr>
<td>3. Clinical workflow orientation</td>
<td>Clinical workflow orientation is fundamental</td>
<td>Clinical workflow orientation might impair reusability</td>
</tr>
<tr>
<td>4. Reusability</td>
<td>Reusability is conceptual</td>
<td>Reusability is concrete</td>
</tr>
</tbody>
</table>
DCM Areas of Interest and Relative Fit with DAM

• Clarity
 Clarity is fundamental to both paradigms

• Reusability
 DCM envisions “plug and play” reusability; DAM standard supports conceptual reuse

• Code Generation
 Automatic code generation is fundamental to DCM, but the DAM separates problem space from solution space.
Device Project Objectives

• Primary objective: Create device interoperability specifications for selected devices to enhance patient safety

• Secondary objective: develop DCMs as needed in order to promote complete, accurate, and reusable representations of clinical information in diverse contexts
Device Project Current Situation

• The DAM seems to support representation of the information requirements we have been able to identify.

• Can we use the Patient Care formalism to represent selected elements in order to support reuse?
Options for Coordination

A. DAM Component Model: A DCM is a component of other models, including DAMs

B. DAM Enhancement Model: The DCM idea provides a set of enhancements to the DAM

C. Candidate Model: The DAM models the requirements as a candidate DCM; actual DCM(s) may or may not be derived later
A DCM is a component of other models, including DAMs.
A. Component Model
Benefits and Issues

• Benefits
 – As planned by ISO working group & HL7 Patient Care
 – Intended to be reusable
 – May evolve to automated code generation stage

• Issues
 – Divergent DAM and DCM modeling assumptions
 – Coordination of requirements, versions, and usage contexts
 – Specification of model relationships, potential recursion
A. Component Model
General issues found in Device DCM pilot

• We don’t have clear direction on what a DCM should look like—the metamodel is not specified

• We don’t know where the conceptual boundary of the DCM is—the desire for “reuse” tends to leave that door open

• We don’t know how to join the models—either to refer to an existing DCM or package a newly developed one so others can refer to it
A. Component Model
Specific issues found in Device DCM pilot

• Arterial blood gas DCM
 – Should it include peripheral gas measurement?
 – Should it include external factors that may be repeated elsewhere (e.g., patient body temperature, altitude, hemoglobin)?
 – How should it refer to the patient body temperature DCM?
 – Should it model derivation processes or just the semantic content?
 – How should it represent clinical guidelines and other deductive relationships among values?
 – How should it represent clinical citations?
A. Component Model
Specific Issues Found in DCM Pilot

• Should modeling patterns necessary for code generation be permitted to affect the representation of clinical information?
 – Root classes
 – Stereotypes
 – UML terms of art—e.g., “collection” vs. “panel”
 – Mediating classes—e.g., three classes to represent the single property of body position
B. Enhancement Model Concept

The DCM idea provides a set of enhancements to the DAM.
B. Enhancement Model Concept

Normally applicable transformations to implementation technologies

Design Model
B. Enhancement Model
Benefits and Issues

• Benefits
 – Single set of modeling assumptions
 – Single effort: no coordination of requirements, versions. Can meet requirements of developing team.
 – Single model; no potential recursion

• Issues
 – Diverges from ISO working group, HL7 Patient Care assumptions
 – No current plans to be reusable outside of domain
 – No intent to develop automated code generation
The DAM models the requirements as a candidate DCM; actual DCM(s) may or may not be derived later.
C. DCM Candidate
Benefits and Issues

• Benefits
 – Allows analysis activities to capture requirements without technical constraints
 – DAM modeling assumptions are consistent
 – Supports “downstream” technical efforts

• Issues
 – Does not support “single model” for both analysis and implementation
DECISION CRITERIA
Device DCM Project Decision Criteria

A. Continue to develop DAM with DCMs
 i. If Device project and Patient Care projects can reach agreement that on a DCM meta-model, preferably without design artifacts (or other non-clinical patterning constraints)
 ii. If Patient Care project can collaborate actively with the Device project on DCM boundary definitions and criteria

B. Develop enhanced DAM
 i. If Ai and Aii are not true

C. Develop DAM with candidate DCMs
 i. If Ai is not true but Aii is true