
 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 1

 Health Level Seven Standard

 Context Management Specification
Technology- and Subject-Independent Component Architecture

Version CM-1.0

 DOCUMENT ID: HL7SIGVI_2_1_99

 REVISION ID: Rev. A, February 13, 1999

 FILE NAME: hl7_vi_arch_rev_a.doc

 SUPERCEDES: n/a

 Copyright 1999 Health Level Seven

 Context Management Specification, Technology and Subject-Independent Component Architecture

 2 Copyright 1999, Health Level Seven Version CM-1.0

 Table of Contents

 1 INTRODUCTION ...7

 1.1 CLINICAL CONTEXT ..7
 1.2 LINKS AND SUBJECTS ..7
 1.3 READING THIS DOCUMENT ..9

 2 SCOPE AND OBJECTIVES...10

 2.1 SPECIFICATION ORGANIZATION ...10
 2.2 ASSUMPTIONS/ASSERTIONS ...11
 2.3 CMA DESIGN CENTER..13

 3 TECHNOLOGY NEUTRALITY ...14

 4 REQUIREMENTS AND CAPABILITIES...17

 5 SYSTEM ARCHITECTURE..19

 5.1 USE-MODEL ...19
 5.2 CONTEXT MANAGEMENT RESPONSIBILITY ...28
 5.3 CONTEXT CHANGE DETECTION ...29
 5.4 CONTEXT DATA REPRESENTATION ..29
 5.5 CONTEXT DATA ACCESS ...30
 5.6 CONTEXT DATA INTERPRETATION ...31

 5.6.1 Establishing the Meaning Context Data Item Names ..32
 5.6.2 Establishing the Meaning for Context Data Item Values...33
 5.6.3 Representing Context Subjects That Cannot Be Uniquely Identified33
 5.6.4 Context Subjects...34
 5.6.5 Representing “Null” Item Values ...34
 5.6.6 Representing an Empty Context Subject ...35
 5.6.7 Case Sensitivity with Regard to Item Names and Item Values ...35

 6 COMPONENT MODEL...37

 6.1 COMPONENT AND INTERFACE CONCEPTS ...37
 6.1.1 Interfaces and References ..38
 6.1.2 Interface Interrogation...38
 6.1.3 Principal Interface ...39
 6.1.4 Interface Reference Registry ..39
 6.1.5 Interface Reference Management ...39

 7 PATIENT LINK THEORY OF OPERATION ..41

 7.1 PATIENT LINK COMPONENT ARCHITECTURE...41
 7.2 PATIENT SUBJECT ...42
 7.3 PATIENT MAPPING AGENT...43
 7.4 CONTEXT CHANGE TRANSACTIONS..43
 7.5 JOINING THE COMMON CONTEXT SYSTEM..44
 7.6 CONTEXT CHANGE TRANSACTIONS..45
 7.7 TRANSACTIONAL CONSISTENCY ..45
 7.8 CONTEXT CHANGE NOTIFICATION PROCESS ...46
 7.9 LEAVING A COMMON CONTEXT SYSTEM ..48
 7.10 BEHAVIORAL DETAILS...48

 7.10.1 Application Behavior When it Cannot Cancel Context Changes48
 7.10.2 Application Behavior When it Does Not Understand Context Identifiers49

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 3

 7.10.3 Application Behavior with Regard to an Empty Context ...49
 7.10.4 Surveying Details ...49

 7.11 COMMON CLINICAL CONTEXT USE MODEL ..51
 7.11.1 Lifecycle of Common Context...52
 7.11.2 Context Selection Change Use Case...56
 7.11.3 Abnormal Termination of Common Context Use Case ..65

 7.12 STAT ADMISSIONS ..67
 7.13 OPTIMIZATIONS ..67
 7.14 THE SIMPLEST APPLICATION ...68

 8 MAPPING AGENTS...71

 8.1 ASSUMPTIONS AND ASSERTIONS ..71
 8.2 INTERFACES..72
 8.3 THEORY OF OPERATION ..73

 8.3.1 Initializing a Context System When a Mapping Agent is Present74
 8.3.2 Terminating a Context System When a Mapping Agent is Present75
 8.3.3 Distinguishing Between Mapping Agents and Context Participants76
 8.3.4 Mapping Agent Updates to Context Data ...77
 8.3.5 Conditions for Mapping Agent Invalidation of Context Changes77
 8.3.6 Treatment of Mapping Agent Invalidation of Context Changes...79
 8.3.7 Mapping Null-Valued Identifiers ..80
 8.3.8 Initializing Mapping Agents ...81
 8.3.9 Handling Mapping Agent Failures ...82

 8.4 MAPPING AGENT EFFECT ON APPLICATION SECURITY POLICIES ..82
 8.5 IDENTIFYING MAPPING AGENT IMPLEMENTATIONS...83
 8.6 PERFORMANCE COSTS AND OPTIMIZATIONS ...83

 9 USER LINK THEORY OF OPERATION...85

 9.1 USER LINK TERMS AND ASSUMPTIONS ...85
 9.2 DESKTOP ASSUMPTIONS ..86
 9.3 USER SUBJECT ..86
 9.4 USER AUTHENTICATION DATA IS NOT PART OF THE USER CONTEXT ...87
 9.5 USER LINK COMMON CONTEXT SYSTEM DESCRIPTION ...87

 9.5.1 User Mapping Agent ..88
 9.5.2 Context Management Interfaces ...88
 9.5.3 Authentication Repository ..89
 9.5.4 Overall User Link Component Architecture..89

 9.6 USER LINK SIGN-ON PROCESS ...90
 9.7 DESIGNATING APPLICATIONS FOR USER AUTHENTICATION ...91
 9.8 SIGNING-ON TO APPLICATIONS NOT DESIGNATED FOR AUTHENTICATING USERS92
 9.9 APPLICATION BEHAVIOR WHEN LAUNCHED ...93
 9.10 MULTIPLE CONTEXT SUBJECTS..93

 9.10.1 The Effect of Multiple Subjects on the Meaning of “Link”..93
 9.10.2 Context Manager Support for Multiple Context Subjects ..94
 9.10.3 Effect of Multiple Subjects on Context Change Transaction ...95
 9.10.4 Context Manager Treatment of Multi-Subject Context Data ...96
 9.10.5 Application Treatment of Multiple Subjects..96

 9.11 ACCESS CONTROL LISTS ...96
 9.12 EMPTY CONTEXTS ..97
 9.13 CHANGING USERS ...97
 9.14 LOGGING-OFF AND APPLICATION TERMINATION ..98
 9.15 AUTOMATIC LOG-OFF...101
 9.16 REAUTHENTICATION TIME-OUT ...102
 9.17 BUSY APPLICATIONS ...103

 Context Management Specification, Technology and Subject-Independent Component Architecture

 4 Copyright 1999, Health Level Seven Version CM-1.0

 9.18 CO-EXISTENCE WITH APPLICATIONS NOT CCOW-ENABLED...103
 9.19 POPULATING THE USER MAPPING AGENT ...103
 9.20 AUTHENTICATION REPOSITORY ...104

 9.20.1 Repository Implementation Considerations ..105
 9.20.2 Populating the Repository ..106

 10 CHAIN OF TRUST ...107

 10.1 USER CONTEXT CHANGE TRANSACTIONS AND THE CHAIN OF TRUST ...107
 10.2 CREATING THE CHAIN OF TRUST..107

 10.2.1 Object Infrastructures ..108
 10.2.2 Secure Communications Protocols ...108
 10.2.3 Security Building Blocks ..109
 10.2.4 Security Attacks On the Chain Of Trust ..111
 10.2.5 Chain of Trust Implementation Limitations...113

 10.3 DIGITAL SIGNATURES AND CMA COMPONENTS ...114
 10.3.1 Public Key / Private Key Encryption as a Means for Generating Signatures114
 10.3.2 Incorporation of Signatures into the Context Management Architecture.........................116
 10.3.3 Computing a Digital Signature...118
 10.3.4 Public Key Distribution..119

 10.3.4.1 Passcode Generation Requirements ...121
 10.3.4.2 Protecting Passcodes ...122
 10.3.4.3 Protecting Private Keys ...123

 10.3.5 System Configuration Requirements ...123
 10.4 TRUST RELATIONSHIPS..124

 10.4.1 Trust Between Applications and Context Manager ...124
 10.4.2 Trust Between Context Manager and User Mapping Agent...125
 10.4.3 Trust Between Applications and Authentication Repository ..125

 10.5 CHAIN OF TRUST INTERACTIONS..126

 11 INTERFACE DEFINITIONS..129

 11.1 INTERFACE DEFINITION LANGUAGE ...129
 11.1.1 Interface Definition Body ...130
 11.1.2 Simple Data Types ...131
 11.1.3 Exception Declaration ...132
 11.1.4 Sequences ..132
 11.1.5 Interface References...133
 11.1.6 Principal Interface ...133
 11.1.7 Qualifying Names...133

 11.2 INTERFACE IMPLEMENTATION ISSUES...134
 11.2.1 NotImplemented Exception...134
 11.2.2 Coupon Representation ..134
 11.2.3 Format for Application Names ...134
 11.2.4 Extraneous Context Items...135
 11.2.5 Forcing the Termination of a Context Change Transaction ..135
 11.2.6 Character-Encoded Binary Data..136
 11.2.7 Representing Message Authentication Codes, Signatures and Public Keys137
 11.2.8 Representing Basic Data Types as Strings..138

 11.3 INTERFACES..140
 11.3.1 AuthenticationRepository (AR) ...140

 11.3.1.1 Connect...140
 11.3.1.2 Disconnect ..141
 11.3.1.3 SetAuthenticationData...141
 11.3.1.4 DeleteAuthenticationData ...142
 11.3.1.5 GetAuthenticationData..143

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 5

 11.3.2 ContextData (CD) ..145
 11.3.2.1 GetItemNames ..145
 11.3.2.2 DeleteItems...146
 11.3.2.3 SetItemValues...147
 11.3.2.4 GetItemValues ..148

 11.3.3 ContextManager (CM) ...150
 11.3.3.1 MostRecentContextCoupon ...151
 11.3.3.2 JoinCommonContext ...151
 11.3.3.3 LeaveCommonContext ..152
 11.3.3.4 StartContextChanges...152
 11.3.3.5 EndContextChanges ..153
 11.3.3.6 UndoContextChanges..154
 11.3.3.7 PublishChangesDecision ...154
 11.3.3.8 SuspendParticipation...155
 11.3.3.9 ResumeParticipation ...156

 11.3.4 ContextParticipant (CP)...158
 11.3.4.1 ContextChangesPending..158
 11.3.4.2 ContextChangesAccepted ..159
 11.3.4.3 ContextChangesCanceled ..159
 11.3.4.4 CommonContextTerminated..160
 11.3.4.5 Ping ..160

 11.3.5 ImplementationInformation (II) ..161
 11.3.5.1 ComponentName...161
 11.3.5.2 RevMajorNum ..161
 11.3.5.3 RevMinorNum ..161
 11.3.5.4 PartNumber...161
 11.3.5.5 Manufacturer ..161
 11.3.5.6 TargetOS ..161
 11.3.5.7 TargetOsRev ...162
 11.3.5.8 WhenInstalled ...162

 11.3.6 MappingAgent (MA)...163
 11.3.6.1 ContextChangesPending..163
 11.3.6.2 Ping ..163

 11.3.7 SecureBinding (SB) ..165
 11.3.7.1 InitiateBinding ..165
 11.3.7.2 FinalizeBinding...167

 11.3.8 SecureContextData (SD) ..169
 11.3.8.1 GetItemNames ..169
 11.3.8.2 SetItemValues...169
 11.3.8.3 GetItemValues ..170

 12 BACKWARDS COMPATIBILITY..172

 APPENDIX: DIAGRAMMING CONVENTIONS ..173

 Context Management Specification, Technology and Subject-Independent Component Architecture

 6 Copyright 1999, Health Level Seven Version CM-1.0

 Preface

 This document was prepared by Robert Seliger, Sentillion, Inc., on behalf of Health Level
Seven’s Special Interest Group on Visual Integration (formerly the Clinical Context Object
Workgroup --- CCOW). Comments about the organization or wording of the document should
be directed to the author (robs@sentillion.com). Comments about technical content should be
directed to ccow@list.mc.duke.edu.

 Changes Based Upon CCOW January and February Technical Meetings:

• Started (but have not completed) integration of CCOW Patient Link and CCOW User
Link specifications into a single document.

• Added the “Desktop” subject.

• Added section Reauthentication Timeout.

• Redefined secure binding process. Now use message authentication codes. Public keys
no longer stored in secure registry. (In fact, concept of secure registry has been
eliminated.)

• Modified interface SecureBinding to enable new binding secure process.

• Clarified the behavior of applications not designated for authenticating users.

 Still to be done:

• Table of contents for figures, tables, and interaction diagrams needs to be added.

• Chapter need to aligned so that they start on odd pages.

• Formatting needs to be checked for consistency.

• Cross-references need to be checked.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 7

1 Introduction

 This document specifies the Health Level Seven Context Management Architecture (CMA).
This architecture enables multiple applications to be automatically coordinated and
synchronized in clinically meaningful ways at the point-of-use. The architecture specified in
this document establishes the basis for bringing interoperability among healthcare applications
to the point-of-se, such as the clinical desktop.

1.1 Clinical Context
 Clinical context is state information that users establish and modify as they interact with

healthcare applications. The context is common because it establishes parameters that should
uniformly affect the behavior or operation of multiple healthcare applications. The context
needs to be managed so that the user has a way of controlling it, and so that applications have
a way of robustly coordinating their behavior as the context changes.

 Examples of clinical context includes:

• The identity of a patient whose data the user wants to view or update via the
applications.

• The identity of the user who wants to access the applications.

• A moment in time around which temporal data displays should be centered by the
applications.

• A particular patient encounter that the user wants to review via the applications.

 Healthcare application developers often implement a common clinical context capability for
their own applications. However, there are currently no standards that enable independently-
developed applications to share a common clinical context. Further, with the diversity of
application programming technologies currently available, a common context solution should
strive to be applicable to at least several of the dominant and emerging technologies.

1.2 Links and Subjects
 The approach taken for the CMA is to define an architecture that enables applications to

establish a single link based upon a set of clinical subjects of common interest. The
applications automatically and cooperatively change their state whenever the user sets a new
value for one or more of these subjects. Two link subjects are defined as core to the CMA, and
are therefore introduced in this document:

 Context Management Specification, Technology and Subject-Independent Component Architecture

 8 Copyright 1999, Health Level Seven Version CM-1.0

• Patient, which enables the user to select the patient of interest once from any
application as the means to automatically “tune” all of the applications to the selected
patient.

• User, which enables the user to securely logon once to any application as the means to
automatically “tune” all of the applications to the user.

 A third subject, Desktop, is also defined in this document. This subject complements the User
subject by enabling applications to establish common visual preferences for the clinical
desktop upon which the linked application present themselves.

 Applications that share the same common context are said to comprise a common context
system. These applications have established and maintain a common context link. There is only
one link, while there can be multiple subjects. However, in the vernacular that arose as the
CMA was being developed, it became useful to refer to an application in terms of a specific
link subject. This has given rise to the terms such as Patient Link and User Link. An example
of Patient Linked applications is shown in Figure 1.

 Figure 1: Patient Linked Applications

 The architecture for Patient Link was developed prior to the extensions defined for User Link.
In particular, User Link introduced substantial additional security-related capabilities. This
specification presents a single consolidated view of the overall CMA.

Nancy
Furlow

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 9

 The CMA enables additional subjects to be defined in a manner that does not require changes
to the architecture. This capability is the basis for extensible standards-based context
management solutions that can evolve to address new requirements without requiring massive
architecture or application implementation changes.

1.3 Reading This Document
 This document presents a comprehensive specification of the HL7 Context Management

Architecture. The precision of the specification becomes increasingly more detailed as the
document progresses. Several of the early chapters present concepts that underly the
architecture and lead the reader through the rationale for various architectural choices.

 The document concludes with the complete set of component interface definitions, including
methods and their argument signatures. These interfaces are ultimately the basis for the
implementation of applications and components that comply with the CMA specification.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 10 Copyright 1999, Health Level Seven Version CM-1.0

2 Scope and Objectives

 The HL7 Context Management Architecture (CMA) enables independently developed
applications to share data that describes a common clinical context. This document emphasizes
the policies, protocols, software interfaces, and responsibilities applications must implement
and adhere to as participants in a shared context system.

 A common context system is comprised of applications launched directly or indirectly by a
particular clinical end-user, wherein the applications share the same context data. Also
included in this system is a context management facility that enables applications to share the
context data.

2.1 Specification Organization
 It is beyond the scope of this document to provide all of the details that are needed in order to

fully implement a conformant CMA system. The necessary additional details are covered in a
series of companion specification documents. As illustrated in Figure 2, these documents are
organized to facilitate the process of defining additional link subjects and to accelerate the
process of realizing the CMA using any one of a variety of technologies.

 Figure 2: Organization of HL7 Context Management Specification Documents

 Technology Neutral Context
Management Architecture

Specification

 Technology Specific User
Interface Specifications

Technlogy X

Technology Y

Technlogy Z

Technology 1

Technlogy 2

Technology 3

 Technology Specific
Component Mapping

Specification

 Technology-Neutral
Subject Data Definition

Specifications

Subject A

Subject B
Subject C

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 11

 The context management subjects and technologies that are of interest are determined by the
HL7 constituency:

• There is an HL7 context management data definition specification document for each
of the standard link subjects. Each document defines the data elements that comprise a
link subject. Concurrent with the publication of this document, the following
documents have been developed:

 Health Level-Seven Standard Context Management Specification,
Data Definition: Patient Subject, Version CM-1.0

 Health Level-Seven Standard Context Management Specification,
Data Definition: User Subject, Version CM-1.0

 Health Level-Seven Standard Context Management Specification,
Data Definition: Workstation Subject, Version CM-1.0

• There is an HL7 context management user interface specification document for each of
the user interface technologies with which CMA-enabled applications can be
implemented. Each document reflects the user interface requirements established in
this document in terms of a technology-specific look-and-feel. Concurrent with the
publication of this document, the following document has been developed:

 Health Level-Seven Standard Context Management Specification,
User Interface: Microsoft Windows OS, Version CM-1.0

• There is an HL7 context management component technology mapping specification
document for each of the component technologies that provided the technology-specific
details needed to implement CMA-compliant applications and the associated CMA
components, as specified in this document. Concurrent with the publication of this
document, the following document has been developed:

 Health Level-Seven Standard Context Management Specification,
Component Technology Mapping: ActiveX, Version CM-1.0

2.2 Assumptions/Assertions
 Key assertions and assumptions that were made during the course of developing the CMA are

indicated below:

• The architecture does not intend to solve nor is it a substitute for solving the patient
identification problem. However, the architecture does attempt to accommodate
established means for achieving consistent interpretations of patient identification
information.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 12 Copyright 1999, Health Level Seven Version CM-1.0

• Architectural support for context data other than that which is used to identify patients
is a non-objective to the extent it complicates the architecture. However, the
architecture is currently applicable to a wide range of context data elements.

• Architectural support for distributed applications is a non-objective to the extent it
complicates the architecture. However, the architecture is currently applicable to
distributed as well as co-located applications.

• Context management is not a form of data interchange nor is it a substitute for data
interchange. However, the common context might contain data that can also be
obtained by an application through data interchange mechanisms such as those based
upon HL7 (e.g., a patient’s name or data of birth in addition to a patient identifier).
When such data is provided, it is only as a means to simplify or optimize the sharing
of common context.

• The context management facility is not visible to the clinical end-user. However, it
might be visible to a systems integrator or systems administrator.

• The architecture is intended for use in clinical systems that are configured by an IT
staff. Ad-hoc installation and configuration of a common context system by the
clinical user is a non-objective to the extent it complicates the architecture.

• There is at most one context management facility per clinical desktop. However,
applications shall work correctly with any facility implementation that conforms with
the CMA specification. It is the decision of the IT staff as to which facility
implementation is actually used by a clinical system.

• Implementation complexities will be shifted to the context management facility, as
opposed to the applications, whenever this tactic is practical and reasonable.
Minimizing the burden for the application developer is valued as an essential element
for attracting the participation of the widest possible array of applications.

• It is assumed that the clinical desktop host operating system is capable of and
responsible for identifying and authenticating the user.

• It is assumed that the clinical data used by applications that share a common clinical
context are appropriately synchronized (e.g., via back-end data interchange) to the
degree necessary to ensure the consistent interpretation of the common context.

• It is assumed that any application that has been activated by the user can be used to set
the user’s common clinical context as long as the application conforms to the CMA
specification. This enables multiple applications to provide context setting capabilities,
which is convenient for the user.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 13

• It is assumed that any application that does not understand or is otherwise unable or
unwilling (e.g., for security reasons) to respond to a change in the common clinical
context will ignore the change. However, any application that chooses to ignore a
context change must clearly indicate its decision, for example by blanking its data
display and/or minimizing itself.

2.3 CMA Design Center
 The CMA specification is primarily aimed at enabling interoperability in the form of

application control by the end user. This is in contrast to traditional healthcare standards,
which have been primarily aimed at enabling interoperability in the form of data interchange
between applications. Further, the design center for the CMA specification are applications
that have a means for interchanging clinical data. The overall role of the CMA specification is
illustrated in Figure 3.

 Figure 3: Overall Role of the CMA Specification

 (No Data Interchange)

 Application
#2

 Application
#3

 Application
#1

 Common
Clinical Data

 Common
Clinical Context

 Not CMA Design Center

 “application control”

 “data interchange”

 CMA Design Center

 Database Database

 Context Management Specification, Technology and Subject-Independent Component Architecture

 14 Copyright 1999, Health Level Seven Version CM-1.0

3 Technology Neutrality

 As recently as one year ago, it would have sufficed to architect and implement a common
clinical context solution that was targeted specifically for the Microsoft Window platforms.
With the recent explosion of Web-based technologies, such as Java, this restriction is no longer
practical. Fortunately, it is possible to architect a solution that is not predicated upon a specific
technology. Specifically, in the architecture described in this document, the concept of
technology neutrality is also applied.

 The term “technology neutral” does not mean that any technology is applicable. Rather, it
means that the common clinical context approach should work equally well with any one of a
candidate set of relevant technologies.

 The candidate technologies considered for this document are based upon market leadership:

• Inter-component communication: via Microsoft Automation through COM/DCOM;
via any CORBA 2.0 compliant object request broker.

• Programming languages: any language that can be interfaced with Microsoft
Automation and/or CORBA (e.g., VisualBasic®, C++, Java, MUMPS).

• Operating Systems: Windows 95®; Windows NT®; any platform that can host a Java
virtual machine.

 The primary reason that technology neutrality is practical is because all of these technologies
have a lot in common, including:

• They are all based upon object-oriented principles.

• They are all embraced by Microsoft or are readily available on Microsoft platforms.

 These two points have an interesting consequence: the technologies are compatible and
interoperable. This makes it a lot easier to be technology neutral. For example:

• CORBA supports multiple programming languages. Support already exists for C,
C++, Smalltalk, Java, and MUMPS. Objects implemented in any of these languages
can transparently interoperate using CORBA.

• COM supports multiple programming languages. Support already exists for C++,
VisualBasic, ObjectPascal, Java, and MUMPS. Objects implemented in any of these
languages can transparently interoperate using COM.

• Most vendor’s CORBA object request brokers enable CORBA objects to transparently
interoperate with COM objects.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 15

• Microsoft’s Java virtual machine enables Java objects (applets) to transparently
interoperate with COM objects.

• Java objects (applets) can transparently communicate with remote Java objects using
the Java Remote Method Invocation (RMI) mechanism.

 Given the synergistic state of the dominant object technologies, the emphasis of this document
is on the structure of the common context system, the roles and responsibilities of the
components that comprise the system, the precise definition of the interfaces they need to
implement in order to be participants, the interactions between the components (via their
interfaces), and a host of architectural decisions that are intended to result in a robust,
practical, and useful common context solution.

 Figure 4 illustrates a COM-encapsulated Java object that interoperates with other COM
objects, and C++ and Java CORBA objects that interoperates with other CORBA objects.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 16 Copyright 1999, Health Level Seven Version CM-1.0

 Figure 4: COM/Java/CORBA Interoperability

 Windows
platform

 Microsoft Java
Virtual Machine

 COM-
encapsulated
Java object
(applet)

 IUnknown

 IDispatch

 Virtual
Machine-
provided COM
wrapper

 a COM
Object

 Ixxx

 C++
CORBA
Object

 Host platform

 C++
Object
Request
Broker
Library

 Java
CORBA
Object
(applet)

 Any Java
Virtual Machine

 Java
Object
Request
Broker

 Host platform

 Tool-generated
C++ CORBA
Interface Stubs

 Tool-generated
Java CORBA
Interface Stubs

 CORBA
Object

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 17

4 Requirements and Capabilities

 The architecture described in this document is intended to serve as an extensible basis for
future, more advanced, common clinical context capabilities. However, for now, an attempt
will be made to focus on the immediate issue of developing a robust solution for sharing a
common patient selection context.

 In a complete solution, at least the following issues need to be addressed:

• Extensibility - how can new context elements be easily added in the future?

• Coordination - how can applications be coordinated so that they respond to context
setting changes in an orchestrated and manageable manner?

• Flexibility - how can applications and common context managers be structured so that
they implement only the capabilities that they need?

• Performance - how can applications and common context managers be structured so
that their temporal performance and utilization of computing resources is acceptable to
the end-user?

• Localizability - how are internationalization issues addressed (e.g., local character
sets, etc.)?

• Scalability - how is the performance of a common context system affected by the
quantity of active applications?

• Applicability - how should context information be structured and managed so that
application behaviors are useful to the end user?

• Usability - what are the policies that govern the use of a common context such that the
resulting application behaviors are intuitive and reasonable?

• Verifiability - how will the correctness of independently developed common context
implementations be verified?

 Architectural approaches that address these issues are presented next.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 19

5 System Architecture

 At the most abstract level, the Context Management Architecture (CMA) provides a way for
independent applications to share data that describes a common clinical context. However, the
CMA must provide solutions for the following problems:

• What is the general use model for a common context, from the user’s perspective?

• Where does the responsibility for context management reside?

• How are changes to context data detected by applications?

• How is context data organized and represented so that it can be uniformly understood
by applications?

• How is context data accessed by applications?

• How is the meaning of context data consistently interpreted by applications?

 Before drilling into the details of the complete CMA, this chapter presents approaches and
associated trade-offs for these problems listed above.

5.1 Use-Model
 There many possible use-models for a common clinical context.

 The extremes of application support for making context changes are represented by:

• Context changes can be performed only via a single, distinguished, application.

• Context changes can be performed via any application.

 In the model chosen for the CMA, context changes can be performed via any application. This
is because it is not reasonable to assume the universal existence of a distinguished application,
and it is beyond the interests and scope of HL7 to specify one.

 The extremes of application behavior when context changes are made are represented by:

• When the user changes the context, the changes are automatically communicated to all
of the applications that share the context. Applications that are able and willing to
apply the context changes do so immediately. Applications that are unable or unwilling
to apply the context changes maintain their current context. It is assumed that the user
can easily determine which context an application is using.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 20 Copyright 1999, Health Level Seven Version CM-1.0

• When the user changes the context, the changes are automatically communicated to all
of the applications that share the context. However, the context changes are only
allowed if all of the applications are able and willing to apply the context changes
immediately.

 The model developed for the CMA is a hybrid of these two extremes that attempts to enable a
high degree of automatic context management while also emphasizing patient safety:

• The likelihood that applications can become uncoordinated with regard to a common
clinical context is minimized.

• The circumstances that can prevent context changes from being automatically applied
are expected to be infrequent.

 The CMA model also respects the challenges of retrofitting common context capabilities into
existing healthcare applications. Only modest assumptions about the capabilities of these
applications and technology used to develop them are presumed. The CMA model is as
follows:

• All or part of the common context can be set by the user from any application for
which providing this capability is functionally relevant.

• When the user changes the context, the change is automatically communicated to all of
the applications that share the context. The applications are expected to apply the new
context in a clinically meaningful manner. In general, applications are also expected to
apply the context changes immediately. Exceptions are described below.

• An application may choose to defer applying a context change until some time in the
future. For example, an application that retrieves large medical image files (that
require substantial processing) might choose to not retrieve images each time a
different patient is selected as part of the clinical context. Instead, the application
might wait for an explicit directive or gesture from the user before actually retrieving
the image. An application that behaves in this manner must be sure that it does not
show data for an earlier context. Blanking-out its data displays or minimizing itself are
possible ways that this can be accomplished.

• An application for which a change in the context might result in the loss of work
performed by the user can request that the user explicitly decide whether to proceed
with the context change anyway, or to cancel the change. The solicitation of user input
is performed by the application that is being used to change the context. The
solicitation includes an identification of the application for which work might be lost
and a description of the work that might be lost. An application that behaves in this
manner is expected to be able to discard its work in progress and apply the context
changes if instructed to do so. For example, a medication ordering application might

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 21

indicate that the inputs for a medication order that has not yet been completed by the
user will be lost if the context is changed to a different patient.

• When an application is unable to respond to a context change, perhaps because the
user left it waiting for user input, the user is asked to explicitly decide about how to
proceed. The solicitation of user input is performed by the application that is being
used to change the context. The solicitation includes the identification of the non-
responsive application and indicates that the application cannot respond to a context
change. For patient safety reasons, when there are applications that cannot respond to
the changes, context changes will not be automatically applied to the applications that
share a common context.

• When it is not desirable or possible for context changes to be automatically applied,
either because there are applications for which work might be lost, or there are busy
applications that cannot be notified about context changes, the user can explicitly
interact with these applications to correct the situation, and then apply the context
changes. For example, the user might complete or terminate a dialog that was left open
in order to enable an application to apply the context changes.

• When it is not desirable or possible for context changes to be automatically applied,
the user can also decide to apply the context change only to the application that is
being used to change the context. The decision to do this is typically in response to an
interruption during which the user needs to momentarily divert his attention to a
different context for a specific application. The application is, in effect, disconnected
from the common context, and must clearly indicate this fact to the user in a visual
manner. The application can be subsequently instructed by the user to reconnect and
apply the common context. The common context may have changed between the time
the application was disconnected and the time it is reconnected to the common context.

 A high-level summary of the interactions between applications when a clinical patient context
is changed is illustrated below. Figure 5 illustrates the use case actors (i.e. external forces)
involved in a context change such as a patient selection. (The actors are the user plus
applications, all of which are represented in the Jacobson modeling technique as stick figures.)
Figure 6 through Figure 10 illustrate some possible instances of the Patient Selection Change
Use Case from the user’s perspective. Not all possible instances of this use case are provided.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 22 Copyright 1999, Health Level Seven Version CM-1.0

Participates InParticipates In

Patient Selection Change

Chooses

Healthcare
Application

Healthcare
Application

Authorized User

 Figure 5: Patient Selection Change Use Case

 The initial condition for each of the use case instances is that the currently selected patient is
Jane Doe. In each instance, the user changes the common clinical context by selecting the
patient Sam Smith. Some possible alternative outcomes follow:

• Figure 6 illustrates all applications reacting to the context change by changing their
context to the patient “Sam Smith.”

• Figure 7 illustrates an application (Application DDD) conditionally accepting the
context change and providing information describing work that could be lost if a
context change occurs at this time. The user deciding to cancel the change is shown.

• Figure 8 illustrates a use case instance similar to Figure 7. However, the possible
outcome of the user deciding to force a context change within Application AAA while
the other applications remain with the original context is shown. This exemplifies
Application AAA disconnecting from the common context system. Once disconnected,
Application AAA’s context is no longer in synchrony with the other applications.

• Figure 9 illustrates healthcare application DDD not responding to a selection change
request in a timely fashion. The user deciding to cancel the change is shown.

• Figure 10 illustrates the user being notified of potential data loss if selection change
proceeds. The user accepting these consequences and proceeding with the change is
shown.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 23

select "Sam Smith"

User Application AAA Application BBB Application CCC

I choose "Sam Smith"

Selected patient is "Jane Doe"

select "Sam Smith"

select "Sam Smith"

change to
"Sam Smith"

change to
"Sam Smith"

 "Sam Smith"

Selected patient is "Sam Smith"

change to
"Sam Smith"

 Figure 6: Patient Context Automatically Changes within all Context Participant Applications

 Context Management Specification, Technology and Subject-Independent Component Architecture

 24 Copyright 1999, Health Level Seven Version CM-1.0

cancel selection

User Application AAA Application BBB Application CCC

Selected patient is "Jane Doe"

I choose "Sam Smith"
select "Sam Smith"

can I change
selection?

select "Sam Smith"

can I change
selection?

select "Sam Smith"

change accepted

change accepted

conditionally accept: "You could lose work."

Application DDD warns
"You could lose work."

Cancel selection

cancel selection

cancel selection

 Selected patient remains "Jane Doe"

 Figure 7: User Informed of Potential Data Loss and Cancels Context Change

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 25

cancel selection

User Application AAA Application BBB Application CCC

Selected patient is "Jane Doe"

 Selected patient is "Jane Doe"

I choose "Sam Smith"

Application DDD warns
"You could lose work."

Apply only to
AAA

select "Sam Smith"

can I change
selection?

change accepted

cancel selection

select "Sam Smith"

can I change
selection?

change accepted

cancel selection

select "Sam Smith"

conditionally accepted: "You could lose work."

Selected patient
is "Sam Smith"

"Sam Smith"

 Figure 8: User forces Application AAA to Become Out of Synchrony with other Context Participants

 Context Management Specification, Technology and Subject-Independent Component Architecture

 26 Copyright 1999, Health Level Seven Version CM-1.0

cancel selection

User Application AAA Application BBB Application CCC

Selected patient is "Jane Doe"

 Selected patient is "Jane Doe"

I choose "Sam Smith"

Application DDD
did not respond

to selection
change request.

Cancel selection

select "Sam Smith"

can I change
selection?

change accepted

cancel selection

select "Sam Smith"

can I change
selection?

change accepted

cancel selection

select "Sam Smith"

 Figure 9: Context Participant Not Responding to Selection Change Request

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 27

select "Sam Smith"

User Application AAA Application BBB Application CCC

Selected patient is "Jane Doe"

Selected patient is "Sam Smith"

I choose "Sam Smith"

Application DDD warns
"You could lose work."

Go ahead with selection change

select "Sam Smith"

can I change
selection?

change accepted

accept selection change

select "Sam Smith"

can I change
selection?

change accepted

accept selection change

conditionally accept: "You could lose work."

accept selection change

 Figure 10: User Accepts Consequences of going ahead with Patient Selection Change with all Applications

 Context Management Specification, Technology and Subject-Independent Component Architecture

 28 Copyright 1999, Health Level Seven Version CM-1.0

5.2 Context Management Responsibility
 There are two fundamental schemes for architecting the responsibility for context management:

• Distributed: The responsibility for managing the common context is uniformly
distributed among the applications. There is no central point of common context
management.

• Centralized: The responsibility for managing the common context is centralized in a
common service that is responsible for coordinating the sharing of the context among
the applications.

 In the distributed model, applications must either all know about each other, or at least form a
completely connected graph within which each application knows at least one other
application. This is necessary in order for the applications to communicate context and control
data among themselves.

 Further, each application has the responsibility to act as a server for the common context in
addition to acting as a client of the context. This is to offset the fact that there is no central
point of ownership for the context, so each application must be capable of being an owner.
This may be elegant, but it does introduce implementation complexities and burdens on all
applications.

 In the centralized model, applications only need to know about common service or resource.
This service off-loads from the applications much of the burden of maintaining and managing
the common context. While a centralized service represents a single point of failure and a
potential performance bottleneck, it is nevertheless the approach that is pursued in this
document. The primary reasons include:

• It is simpler from the perspective of the application developer.

• The consequence of the service being a single point of failure is offset by the fact that
the service and the applications it serves are typically co-resident on the same personal
computer. Failures, if any, will be localized to a single user

• The consequence of the service being a performance bottleneck is offset by the fact
that the applications are far more likely to become the performance bottlenecks.

 Given this basic system structure, the approaches for the other major architectural issues are
summarized next.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 29

5.3 Context Change Detection
 There are at least two distinct categories of architectural approaches for realizing a common

clinical context system:

• Pull-model: A shared component is used to maintain the shared context data.
Applications update this resource to change the data. Other applications periodically
poll the component to determine if the data has changed.

• Push-model: A shared component is used to maintain the shared context data. This
component notifies applications whenever the data is changed. In order to receive a
notification, an application must have first explicitly indicated its interest in being
notified.

 Both models have advantages and disadvantages. For example, the pull model is simpler to
implement (e.g., does not require applications to handle asynchronous notifications), but can
lead to performance problems due to polling even when the context data has not changed.
Conversely, the push model can be the basis for better performance, but introduces additional
implementation complexity.

 Both models introduce the additional challenges of synchronizing concurrent access to the
context data (e.g., to prevent two applications from attempting to change the data at the same
time). In addition, both models must deal with failures modes that can occur when independent
applications (i.e., applications that may be implemented as separate executables) are involved.
For example, an application that crashes in the middle of changing the context data may leave
the context data in an inconsistent state.

 Given this analysis, the approach that is taken for the CMA is perhaps best described as a
robust push-model. This is a push model that deals with synchronization and partial failure
issues.

5.4 Context Data Representation
 There are at least three distinct categories of architectural approaches for representing the

common context data:

• Fully-populated objects: Objects are defined with properties and methods that model
the real-world entities that they represent (e.g., a patient, a provider, etc.). These
objects may be complex and involve a rich structure (e.g., are comprised of a logical
network of objects).

• Fully-populated messages: Messages (as in “HL7 messages”) are used to convey
detailed information about the context data.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 30 Copyright 1999, Health Level Seven Version CM-1.0

• Name-value pairs: A set of name-value pairs represent only key summary information
about the common context (e.g., just the patient’s name and medical record number).
The symbolic name for an item describes its meaning. The data types for the items
come from a set of simple primitive data types.

 The fully-populated object approach is perhaps the purest approach, but is subject to
performance concerns. Copies of the objects could be produced and then communicated to each
application every time the state of the primary copy changes. However, this involves the
performance cost of marshaling the objects. The problem is further compounded by the fact
that marshaling capability would need to be explicitly implemented in either CORBA or COM.
(Java RMI implicitly supports the capability to communicate objects by value.)

 The fully-populated message approach is actually a stylized way of marshaling objects. While
it is appealing to think of leveraging existing healthcare standards such as HL7, it is non-trivial
to implement the parsers and translators to create and interpret these messages. Even if such an
implementation was commercially available, it is not clear that it would be desirable to require
that all of the applications in a shared context system be able to support HL7 messages.

 The name-value pair approach represents the compromise that is pursued in this document.
Using simple primitive data types enables the values of the items to be easily communicated
between processes. Performance concerns are mitigated because an application will be able to
examine the values of only those items of interest in a single out-of-process access. (The
application simply indicates the names of the items whose values it is interested in.) The
approach is also readily extensible, as new items (i.e., new name-value pairs) can easily be
added to the set of items.

 All of the context data representation approaches described above are subject to establishing
semantic agreement about the meaning of the data. This is true whether the context data is
represented as objects, messages, or name-value pairs. The process for establishing this
agreement is beyond the scope of the CMA, and is instead specified in a series of HL7 context
management subject-specific data definition documents. These data definitions are key to
implementing a plug-and-play common clinical context system.

5.5 Context Data Access
 Any common context architecture must provide a way for an application that has just started

to obtain its initial view of the common context. The pull-model implicitly solves this problem.
With the push-model, there are two basic approaches:

• When the application joins the common context system, the necessary data is pushed
to it.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 31

• The data can be accessed from a well-known location, such as a file, or from the
component that is responsible for pushing changes to the context system participants.
This is, in effect, a specialized use of the pull-scheme.

 The approach to this problem is linked to the approach by which applications access the
context data for updating it, and the approach by which applications obtain the values for the
context data when it has changed.

 The options are straightforward:

• Each application maintains a copy of the context data. As changes occur, each
application updates its local copy accordingly.

• A central “authentic” copy of the context data is maintained. Context data updates are
directed by applications to this copy. Applications access this copy in order to inspect
changes.

 The approach in which each application maintains its own copy of the context data has an
elegance to it. However, in the absence of an authentic copy, an application that has gotten out
of synchrony with its peers may have a difficult time restoring its notion of the common
context. Further, the communication costs of keeping all applications in synchrony can become
significant, particularly as the complexity and size of the common context increases over time
as additional common context items are defined.

 The approach that taken for the CMA is to maintain a single authentic copy of the common
context for each common context system. Applications can choose to cache context data or
they can simply access the authentic copy whenever they need to. Applications can also
selectively read or write specific context data name-value pairs. Further, when the context
changes, an application is only informed about the change and is not provided with the data
that has changed. The application can selectively access this data when it needs to.

 This approach was chosen as a balance between performance and complexity. Performance
issues are addressed by enabling applications to have selective access to context data.
Complexity issues are addressed by not forcing applications to maintain their own copy of the
common context data.

5.6 Context Data Interpretation
 In order for applications to apply common context data in a clinically consistent manner, they

must interpret the meaning of the data in a uniform manner. With context items represented as
name-value pairs, applications must be able to uniformly interpret both the meaning of the
name and the value of a context item, or determine that it cannot correctly interpret the item.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 32 Copyright 1999, Health Level Seven Version CM-1.0

 Context data items logically represent two categories of information: data that identifies a real-
world entity or concept (such as a specific patient or a specific encounter), and data that can be
used to corroborate the identity data. Identity information is required in order to establish a
common context between applications that involves a real-world entity or concept.
Corroborating data can be used by applications and/or users as a basis for checking further
that the identified entity or concept is what was expected.

 For example, a patient’s name can rarely be used to uniquely identify a patient. Typically, a
medical record number or similar identifier that is generally unique over some population of
patients for one or more clinical systems is used. However, these identifiers are rarely
meaningful to the user. Corroborating data might be comprised of the patient’s name, sex, and
data of birth. This data provides applications and/or the user with an additional means to check
that the identified patient is the intended patient.

 The clinical context is considered to have changed in a meaningful manner when identifier data
is changed. Applications are notified of changes to the context when identifier data, and
possibly corroboration data, are changed. Changes to corroboration data that are not
accompanied by associated changes to identifier data are not meaningful and are rejected.

5.6.1 Establishing the Meaning Context Data Item Names
 Given this approach of organizing context data items into identity and corroborating data, there

are two basic techniques for establishing the meaning of context item names:

• Apply a Context Management-specific information modeling process to identify and
define candidate clinical context item names and meanings.

• Leverage names and their meaning as established by existing healthcare standards,
such as the HL7 messaging standard.

 The approach that is taken for the CMA is that existing HL7 messaging terms and their
meaning will be used as the default source for clinical context item names. New item names
and associated meanings will be created only when the HL7 messaging standard is not
applicable. The standard set of clinical context data context item names are specified in
separate HL7 context management data definition specification documents. Only the specified
set of context data items shall be implemented by conformant systems.

 The reason for this approach is that the value-added for HL7 context management is not in
defining clinical content, but rather in enabling new forms of clinically-rooted desktop-based
interoperability between independently-developed healthcare applications. There is little
incentive to create new information models and develop new clinical concepts when there are
existing concepts, such as those already specified for HL7 messaging, which can be leveraged.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 33

5.6.2 Establishing the Meaning for Context Data Item Values
 The abstract data types used to represent context data item values will also be leveraged from

the HL7 messaging standard. These types may be represented as strings encoded using a
simple subset of the HL7 character encoding rules. These types may also be mapped into
convenient technology-specific data types. The actual clinical context data context item data
types are specified in the HL7 context management data definition specification documents.

 There are two basic approaches for establishing the meaning of context item values:

• Assume that each item has a value that can be globally interpreted by all of the
applications that share a common clinical context.

• Provide multiple values for each item name such that each value represents that same
real-world entity or concept. Each application can apply the value it understands.

 In some cases, it is safe to assume that a context item’s value can be globally interpreted by all
applications. For example, if a patient’s data of birth is defined to be a corroborating context
data item, the value of this item has a single global interpretation.

5.6.3 Representing Context Subjects That Cannot Be Uniquely Identified
 Unfortunately, it is not possible to assume that all context subjects, such as patients, can be

identified using globally unique identifier values. For example, a patient cannot necessarily be
globally identified using a single identifier, such as a medical record number.

 However, in these cases, there may be multiple synonymous identifier values, each of which is
pertinent to a subset of the applications that share a common context. For example, a hospital
and its affiliated clinics may assign their own medical record numbers to the same patient
population. Applications, such as master patient index systems, enable tracking and mapping
between these values. The result is multiple distinct values that identify the same patient.

 It is not the purview of the CMA to resolve global identification issues. It is within the scope of
the CMA to at least recognize that multiple identifier values may be necessary. Therefore, the
approach taken in this document is to support multiple identifier values for context items when
necessary.

 An item that can have multiple values is actually represented as multiple items that have a
common name prefix and a distinct site-specific name suffix. The prefix for an item is defined
in the HL7 context management subject-specific data definition specification document within
which the item is defined. The suffixes are configured into an application using an application-
specific process when the application is installed at a site.

 The values for such items are provided either by an application when it changes the clinical
context, or by an external mapping agent. (See Chapter 8, Mapping Agent.)

 Context Management Specification, Technology and Subject-Independent Component Architecture

 34 Copyright 1999, Health Level Seven Version CM-1.0

 Immediately following the item subject label is a short string that indicates whether the item
represents identifier data or corroborating data. The string “id” indicates identifier data. The
string “co” indicates corroborating data.

5.6.4 Context Subjects
 All context items are organized by subject. Each subject represents a real-world entity or

concept that is identified as part of the overall common clinical context.

 Subject labels are defined in the HL7 context management subject-specific data definition
specification documents. The labels comprise the first part of each context data item name.
Examples of possible subject labels are “Patient” and “User”. Item name elements are
separated by a period. Words in multi-word item name elements are separated by an
underscore.

 The general format of a context data item name is:

 Item_subject_label.id_or_co.item_name_prefix.optional_ item_name_suffix

 Examples of the name format for possible context data items is shown below. The name for the
items that represent a patient’s medical record numbers (MRN) for both a hospital and its
affiliated clinic (assuming that they use different medical record numbers):

 “Patient.Id.MRN.St_Elsewhere_Hospital”

“Patient.Id.MRN.St_Elsewhere_Clinic”

 The name for an item that represents a patient’s date of birth might be:

 “Patient.co.date_of_birth”

 The actual subject labels, item names, and rules for generating an item name suffix are
specified in each the HL7 context management subject-specific data definition specification
documents.

5.6.5 Representing “Null” Item Values
 The value of a context identifier item or corroborating data item can be set to the distinguished

value of null to indicate that the item does not have a valid value. This capability provides a
means for an application to explicitly indicate it has not set a valid value for a particular
context item. For example, setting the value of the identifier whose name is:

 “Patient.Id.MRN.St_Elsewhere_Hospital”

 to null indicates that the application has not set a valid value for this identifier.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 35

 The actual representation of null is technology-dependent and is specified in each of the
CCOW technology-specific specification documents.

5.6.6 Representing an Empty Context Subject
 A context subject is empty when a real-world entity or concept is not currently identified. For

example, for the patient subject, this means that a patient is not currently identified.

 An empty context subject is represented in either of two ways:

• There are no context identifier items.

• There are context identifier items, but the values for all of these items are null.

 The initial state for all subjects in the context is that they do not contain any identifier items.
See Section Error! Reference source not found., Error! Reference source not found..
Applications can attempt to explicitly establish an empty context, but this behavior is not
currently allowed. See Section 7.10.3, Application Behavior with Regard to an Empty Context.

5.6.7 Case Sensitivity with Regard to Item Names and Item Values
 Context item names are case insensitive. This means that case is not be used for the purposes

of comparing names. Further, the case used to represent the same item name can be different
for different applications, and the case used to represent a particular item’s name at one time
need not necessarily be the same at a later time. For example, the item names:

 “Patient.Id.MRN.St_Elsewhere_Hospital”

 “patient.id.mrn.st_elsewhere_hospital”

 “PATIENT.ID.MRN.ST_ELSEWHERE_HOSPITAL”

 are all equivalent.

 A context item whose value is represented as a character string are also case insensitive, unless
otherwise noted in the HL7 context management subject-specific data definition specification
document that defines the item.

 However, for consistency with the situations in which item values are case sensitive, the case
used to represent the value for a particular item is preserved once the value has been set. The
casing for the item’s value is maintained until a different value is subsequently established for
the item.

 For example, the following flow of events is allowed:

 Context Management Specification, Technology and Subject-Independent Component Architecture

 36 Copyright 1999, Health Level Seven Version CM-1.0

1. An application sets the value of “Patient.Id.MRN.St_Elsewhere_Hospital” to
“RS779238XZW”.

2. An application gets the value of “Patient.Id.MRN.St_Elsewhere_Hospital” as
“RS779238XZW”.

3. An application sets the value of “Patient.Id.MRN.St_Elsewhere_Hospital” to
“AS119292RUH”.

4. An application gets the value of “Patient.Id.MRN.St_Elsewhere_Hospital” as
“AS119292RUH”.

5. An application sets the value of “Patient.Id.MRN.St_Elsewhere_Hospital” to
“rs779238xzw”.

6. An application gets the value of “Patient.Id.MRN.St_Elsewhere_Hospital” as
“rs779238xzw”.

 The following flow of events is not allowed:

7. An application sets the value of “Patient.Id.MRN.St_Elsewhere_Hospital” to
“RS779238XZW”.

8. An application gets the value of “Patient.Id.MRN.St_Elsewhere_Hospital” as
“rs779238xzw”.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 37

6 Component Model

 The architecture for a common clinical context system is described in terms of components and
the interfaces they must implement in order to be participants in the system. Only the
components and interfaces that are germane to the establishment and maintenance of a
common clinical context for a clinical desktop are described.

 A role is described for each component, and the policies that govern the intended use of the
interfaces are detailed. These policies can be thought of as the patterns of allowed interactions
between components. Both normal and exceptional interactions are described.

 The key components in a common clinical context system are: a clinical context manager, one
or more context participant applications, an optional mapping agent for each context subject.

 The context manager coordinates the applications each time there is a context change. It is also
the “owner” of the authentic context for the system. The context participant applications set
and/or get the context from the context manager. They must follow the policies established
later in this document in order to behave as proper context management “citizens.”

 A mapping agent is a service component that from the perspective of an application is a
transparent participant in a context change. A mapping agent’s primary role is to add
additional subject-specific context identifier items to the context data. This is useful when a
subject is known to the various context participant applications via multiple distinct identifiers,
but only one or a few of these identifiers are known to the application that sets the context.

 Additional context management components are also defined, but serve in supporting roles. All
of the necessary components are detailed later in this document.

 The context manager does not need to know about the functionality or specific features
implemented by any of the applications. Conversely, all applications perceive the context
manager through a uniform set of interfaces and capabilities. Further, the applications do not
need to know about each other in order to participate in the same context system. Finally, a
mapping agent is

 Applications and the context management components can all be independently implemented
and will still interoperate as long as they comply with the CMA specification. The CMA
specification is in turn predicated upon an underlying component model, described next.

6.1 Component and Interface Concepts
 The clinical context manager and the applications that participate in a common context system

are modeled in the architecture as components. The component model that is used is a high-

 Context Management Specification, Technology and Subject-Independent Component Architecture

 38 Copyright 1999, Health Level Seven Version CM-1.0

level hybrid of the component models defined by Microsoft for its Component Object Model
(COM) and by the Object Management Group for its Object Management Architecture
(OMA).

6.1.1 Interfaces and References
 In the hybrid model, components have one or more formally-defined object-oriented interfaces.

Each interface defines a semantically related set of operations (methods) that the component is
capable of performing. The interfaces implemented by a component represent the only way that
other components can interact with it. Each interface is denoted by a reference that can be
resolved at run-time to access the component instance that implements the interface.

 Each method has a name and a set of inputs, outputs, and exceptions. The inputs enable a
component’s clients to parameterize the behavior of the method each time they request that it
be performed. The outputs enable the component to convey to a client the results that pertain to
having properly performed the method. The exceptions enable the component to convey to a
client the fact that something unexpected was encountered during the course of performing the
method (such as an error condition). A method completes by returning outputs or by raising
exceptions. Methods need not have inputs, outputs, or exceptions.

 The methods defined for an interface are invoked using a binary calling sequence. This means
that the component that issued the call does not need to be aware of how the component that
services the call is implemented. The components might be implemented using different tools
and libraries, and even different programming languages. Further, components can interact
with each other in a location independent manner. A component only needs a reference to
another component’s interface in order to perform calls against the component. Knowledge of
the physical location of a component that services a call is not needed.

6.1.2 Interface Interrogation
 The interfaces that a component implements can be determined by other components at run-

time through direct interrogation. The interrogator uses the symbolic name of the interface, or
an identifier that denotes the interface, to indicate the desired interface. If the interface exists,
the component being interrogated returns a reference to the interface. Otherwise an error
indication is returned.

 It is assumed that all of the interfaces defined in this document include a common method that
enables interface interrogation. The name and signature for this method is the same for all
components implemented using a particular technology. The details of this method vary for
different implementation technologies and are not specified in this architecture document.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 39

6.1.3 Principal Interface
 Every component implements at least one well-known interface, referred to as the component’s

principal interface. The principal interface includes the same interface interrogation method as
a component’s other interfaces. The name of the principal interface is the same for all
components implemented using a particular technology. The principal interface enables
components to perform initial interface interrogations because the name of the principal
interface is known a priori, and because all components implement it.

 The details of the principal interface and the methods that it supports vary for different
implementation technologies and are not specified in this architecture document.

6.1.4 Interface Reference Registry
 An interface reference registry is a service that contains references to component interfaces.

Components can use the registry to obtain interface references to each other. A reference can
be used to access a component via the referenced interface. Each reference is denoted in the
registry by a symbolic name and/or description. This enables components to locate references
of interest based upon a symbolic and/or logical description of the reference of interest.

 It is assumed that an interface reference registry is provided by the underlying implementation
technology. The means by which interface references are denoted and placed into the registry,
and the means by which components access the registry to retrieve the references, are
technology-dependent.

 The registry is assumed to be a well-known service that logically resides on each clinical
desktop. This means that each component on a desktop has an a priori technology-specific
means for knowing how to locate the desktop’s registry. This provides all components on a
desktop with a common means to obtain references to each other.

6.1.5 Interface Reference Management
 In order to ensure orderly system behavior, components must have a means of knowing

whether or not other components possess references to any of its interfaces. This enables a
component to determine when it needs to be in a running state (because there is at least one
other component that possess a reference), and when it can terminate (because no components
possess a reference). The means by which this is accomplished is technology-specific.

 It is assumed that each component that holds an interface reference performs an implicit or
explicit action, which is technology specific, that indicates it wants to use a particular interface
reference that it has obtained (e.g., from the interface reference registry). It is also assumed
that a component performs an implicit or explicit action, which is technology-specific, when it
no longer intends to use a particular reference. The latter action is referred to as disposing an
interface reference.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 41

7 Patient Link Theory of Operation

 Patient Link enables the user to select a patient once, from any Patient Link-enabled application, as the
means for automatically “tuning” all of the Patient Link-enabled applications in the common context
system to the same patient.

 Patient Link also establishes the foundation for all other context management “links”. For this reason,
many of the fundamental CMA principles and rules are explained in this chapter, but are framed in
terms of Patient Link so as not to become too abstract, and therefore hard to understand.

7.1 Patient Link Component Architecture
 The following context management interfaces for Patient Link are modeled and illustrated in Figure 11:

Patient Link Component Architecture:

• ContextManager (CM) - implemented by the context manager; used by applications to
join/leave a common context system and to indicate the start/end of a set of changes to the
common context data.

• ContextData (CD) - implemented by the context manager; used by applications to set/get the
data items that comprise the common context.

• ContextParticipant (CP) - implemented by an application that wants to participate in a
common context system; used by the context manager to inform an application that the context
has changed.

• ImplementationInformation (II) – implemented by the context manager and mapping agent;
used by applications, context management components, and tools, to obtain details about a
component’s implementation, including its revision, when it was installed, etc.

 Formal definitions of these interfaces, as well as example interactions between the components via
these interfaces, are presented later in this document.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 42 Copyright 1999, Health Level Seven Version CM-1.0

 Figure 11: Patient Link Component Architecture

7.2 Patient Subject
 The context subject of Patient is defined for Patient Link. The context data identifier item for this

subject is a numeric patient identifier, such as a medical record number. The patient’s name is not used
as an identifier.

 This identifier is unlikely to be universally unique. However, it is assumed that a population of patients
across which the identifier is unique can be established. Each such population is referred to as a site, as
it is typical that each population of patients corresponds to a physical site within an overall healthcare
institution.

 Consequently, a single patient may be identified using multiple patient subject identifier items. Each
item is differentiated by a different site-specific suffix. An application shall be configurable such that it
can be instructed on-site as to which suffix (of suffices) it is to use when it interacts with the context
manager to set or get patient context data.

 The format of a patient subject identifier item name includes a site-specific suffix. Use of this suffix,
and the values that may be assigned to this suffix, is at the discretion of each healthcare institution at
which a context management system is deployed.

CP CP

Application #1
Implementation

CM CD

Context Manager
Implementation

Common
Context
Data

Optional Patient Mapping
Agent Implementation

MA

II

II

Tool, etc.

Tool, etc.

Application #N
Implementation

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 43

 In addition to identifier items, the patient subject also supports corroborating data items. The actual
names, meaning, and data types used to represent the values for both patient subject identifier items
and corroborating data items are defined in the document Health Level-Seven Standard Context
Management Specification, Data Definition: Patient Subject.

 An example of a patient subject identifier item appears below:

 Patient Subject Identifier Item

 Example Item Name Format: Example Item Name: Example Item Value:

 Patient.Id.MRN.site_name Patient.Id.MRN.St_Elsewhere_Hospital RAS1958-12939213-122

7.3 Patient Mapping Agent
 An optional patient mapping agent is also part of the common context system, The patient mapping

agent maps the identifiers for patients. Whenever an application sets the patient context, the context
manager instructs the patient mapping agent (if present) to provide any additional identifiers it knows
for the patient. The site-suffix for each of the mapped identifier items denotes the site for which the
patient identifier is valid, for example:

 Patient Subject Identifier Item

 Examples Item Names: Example Item Values:

 Patient.Id.MRN.St_Elsewhere_Hospital

Patient.Id.MRN.General_Hospital

 123-456-789Q36

6668-3923-987122

 Mapping agents are described in more detail in Chapter 8.

7.4 Context Change Transactions
 All changes to the common context are governed by a context change transaction that is initiated by an

application but is coordinated by the context manager:

• An instigating application initiates a context change transaction and sets the patient context
within the context manager. This context contains the identity of the patient.

• The context manager consults the patient mapping agent (if present) and it adds data to the
context manager’s patient context. This data includes additional identifiers by which the
patient is known.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 44 Copyright 1999, Health Level Seven Version CM-1.0

• The context manager surveys the other applications, and if the transaction completes, they
obtain pertinent patient context data from the context manager.

 The high-level events that transpire when a user selects a patient are summarized in Figure 12. This
description assumes that a patient mapping agent is present. The patient mapping agent is presumed to
know the identifiers for all patients for all applications within the common context system. (See
Chapter XXX.)

 Figure 12: Patient Link Context Change Process

 The details for how this process works and the responsibilities of the applications and CMA
components are described next.

7.5 Joining the Common Context System
 Applications join a common context system via the context manager for the system. The context

manager’s ContextManager interface is used for this purpose. The application obtains a reference to
this interface by interrogating the context manager’s principal interface. A reference to the context
manager’s principal interface is obtained from the desktop’s interface reference registry.

 An application typically retrieves the current common context data from the context manager’s
ContextData interface in order to establish its initial context. A reference to the context manager’s
ContextData interface is obtained by interrogating the context manager’s principal interface or by
interrogating the context manager’s ContextManager interface. The context data is represented as a set
of name-value pair items.

Application
XX

(1) User selects
the patient of
interest from
any application
on the clinical
desktop

Context
Manager

Application
YY

Application
ZZ

(4) Context manager tells the other applications that a new
patient context has been proposed. The context manager
surveys the applications to determine whether each can
apply the new context.
(7) Context manager tells each application to apply new
context, or that the transaction has been cancelled.

(5) Each application indicates
whether or not it can apply the new
context.

(2) Application authenticates the user and
tells context manager the user’s logon
name; authentication data is not passed
on to the context manager.
(6) If one or more of the applications
cannot or prefers not to apply the new
context, the user is asked to decided
whether to continue, or cancel.

Patient
Mapping
Agent
(Optional)

(3) Context manager tells patient
mapping agent that context change is
occurring; mapping agent supplies the
context manager with other identifers by
which the patient is known.

(8) Each application applies the new
context if instructed to do so by the
context manager. Each application
gets the new patient context from the
context manager.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 45

7.6 Context Change Transactions
 Once it is a participant within a common context system, the context manager will inform the

application of context data changes through the application’s ContextParticipant interface. This data
can be changed by any of the participants in the common context system. A participant executes a
context change transaction to affect a context change. The transaction is coordinated by the context
manager and involves the instigator of the transaction as well as the other participants.

 The ContextManager interface is for beginning and ending a context change transaction. The
ContextData interface is used for setting the new context data.

 When a context change transaction is started, the context manager creates a transaction-specific
version of the context data. This version of the context data is initially empty and does not contain any
name-value pair items. This is to prevent data from the current context from becoming mixed with the
data for the new context. Items are added to the transaction-specific context data during the course of
the transaction.

 This version of the context data is updated during the course of the transaction and is intended to only
be visible to the application that instigated the transaction. All other applications continue to view the
context data as it was when most recently published. The published context data is replaced with the
context data set during the course of the transaction when the transaction completes successfully.

 Prior to the first context change transaction, the published set of context data items is empty. Items are
added during the course of subsequent transactions.

 While the context manager serves as a holder for the current context data, its semantic understanding
of the meaning of this data is intended to be minimal. Further, the specific items that constitute the
context data are not assumed to be hardwired into the context manager implementation. This enables
new context items to be defined over time without requiring changes to context manager
implementations. This includes context items that represent identifier data as well as corroboration
data.

 Only one context change transaction is allowed at a time. Once it has started a change transaction, the
instigator of the transaction is free to update the context data via the context manager’s ContextData
interface.

7.7 Transactional Consistency
 In order to ensure that changes to this set of items are self-consistent, a participant must explicitly

begin and end a context data change transaction. All of the context change operations that are
performed within the scope of the transaction are treated as a single logical unit of work. When the
transaction completes, either all of the changes are published, or none of them are. Other participants
that access the ContextData interface to read the context data values will see the values as they were

 Context Management Specification, Technology and Subject-Independent Component Architecture

 46 Copyright 1999, Health Level Seven Version CM-1.0

prior to the transaction. Only the instigator of the transaction will see the values as they are during the
course of the transaction. This prevents other participants from accidentally seeing inconsistent values.

 This capability relies upon the proper use of context coupons, which are random unique identifiers that
are assigned each time a change transaction begins. The context manager provides the instigator of a
transaction with the context coupon when it is started. All other participants can only obtain from the
context manager the coupon for the most recently committed transaction. A coupon is also provided as
a parameter to most of the methods defined for the ContextData interface, thereby enabling the
manager to determine whether it should respond in terms of the transaction-in-progress or the most
recently committed transaction.

 When the instigator of the context changes is done, it informs the context manager that the changes
have been completed. A context manager may unilaterally decide to terminate a transaction and undo
the changes if an application fails to indicate that it is done with its changes in a timely manner. (The
manager decides how long “timely” is. How this value is determined is an implementation decision.)

7.8 Context Change Notification Process
 When the instigator completes the context changes, the context manager initiates a two-step change

notification process wherein it determines whether to publish the shared context data changes. This
process is inspired by the two-phase commit protocol used in many database systems to ensure
transaction consistency. For the purposes of managing a common clinical context, the protocol has
been simplified.

 In the first step of the process, the context manager surveys the applications. Each application is
informed that there are a candidate set of context data changes and is asked to indicate whether it can
accept these changes. At this point, applications are provided with the context coupon value for this
change transaction. This enables the applications to access the context data changes in order to
consider specific data values as part of their decision about whether to accept the changes. This is
accomplished via the context manager’s ContextData interface. It is possible for a participant to obtain
just the values that have changed.

 The context manager gathers the results of the survey and provides them to the application that
instigated the context change. Depending upon the survey responses the application may be free to go
ahead and publish the changes, or it may need to solicit guidance from the user about how to proceed.
This guidance is required when there is at least one surveyed application that:

• is unable to apply the context change because it is blocked (e.g., it is a single threaded
application that has a modal dialog open); these applications are referred to as “busy”

• might loose work performed by the user if it applies the context changes (e.g., the user was in
the process of entering data that would not be applicable in the new context); these applications
are referred to as having “conditionally accepted” the context changes.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 47

 For each application in one of these states, the user is provided with a description that identifies the
application and explains its situation.

 When user guidance is required, the following choices are offered:

• Cancel - the context change is canceled; the context changes are not published.

• Break Link - the context changes are applied just to the application with which the user
initiated the context changes. This application essentially breaks away from the common
context system until the user explicitly instructs the application to rejoin the system. The
application that has broken away displays a distinct visual cue indicating that its context may
be different from the other applications (e.g., it might display a warning message in a
prominent location)1.

• Apply - the context data changes are applied to all of the applications, including those that
indicated that they might loose work performed by the user; this choice is allowed only when
there are no busy applications.

 It is the responsibility of any application that enables the user to instigate a context change to present,
when necessary, a dialog that obtains the user’s guidance as described above. The appearance of the
dialog and the commands that the user can choose from are specified in each of the HL7 context
management technology-specific user interface specification documents. This will ensure a consistent
and familiar set of interactions for users across CMA-conformant applications.

 The ability for any one application to require the user’s direct involvement in mediating context
changes provides an important efficiency and safety feature.

 The efficiency feature addresses the fact changing the context may cause an application to loose work
performed by the user. This work may be in the form of data entered but not yet saved by the user, or
may be in the form of an expensive computation (such as a lengthy database retrieval) that would need
to be re-performed in light of a context change. Allowing the user to decide how to proceed in these
circumstances minimizes the likelihood that the user will unintentionally loose work.

 The safety feature addresses the fact that it may not always be possible to force an application to
accept changes to the context data. Specifically, this is the case for blocked, or busy, applications.

 If context changes were automatically applied piecemeal to just the applications that could respond,
applications could become out of synchrony with regard to their clinical context, without the user being
aware of the situation. For example, the user might assume that after a context change, all of the
applications are displaying data for the same patient when in fact they are displaying data for different

 1 A specific visual cue will be recommended within each of the HL7 context management technology-specific
user interface specification documents.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 48 Copyright 1999, Health Level Seven Version CM-1.0

patients. The approach described above avoids this problem. This is because the only time that an
application can become out of synchrony with regard to the clinical context used by the other
applications is when the user has explicitly instructed it to break away.

 In the second step of the two-step change notification process, the applications in the common context
system are informed about whether or not the context changes are to be applied. If all of the surveyed
applications indicate that they accept the changes, then the changes are applied and are reflected as the
new context state. If the user indicated that the changes should be canceled, then the changes are
discarded.

 Once a participant has been informed that the context data has changed, it is free to inspect the data to
obtain the new values if it has not already done so (again, using the context manager’s ContextData
interface). The participants can also assume that all of the other participants are applying the same
context data.

 In either case, the context change transaction completes when all of the applications have been
informed of the outcome of the survey. If the context manager is unable to inform an application of the
survey outcome, it will keep trying periodically, unless the manager determines that the application has
terminated. The periodic attempt to notify a non-responsive application does not prevent the transaction
from completing, nor will it prevent a new transaction from being started.

7.9 Leaving a Common Context System
 When an application terminates, it explicitly leaves the common context system by informing the

context manager via it ContextManager interface. At this time, the context manager shall dispose of
any application interface references that it possesses, and the application shall dispose of any context
manager interface references that it possesses.

 A diagram of the overall common context system model is presented in Figure 13, followed by
component interaction diagrams that represent typical common context data update transactions.

7.10 Behavioral Details

7.10.1 Application Behavior When it Cannot Cancel Context Changes
 It is possible that an application that instigated a context change transaction cannot easily implement

the capability to cancel the transaction. In this case, it is acceptable for the application to not offer
canceling the transaction as an option to the user. The details of how this appears to the user are
specified in each of the HL7 context management technology-specific user interface specification
documents.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 49

7.10.2 Application Behavior When it Does Not Understand Context Identifiers
 It is possible that an application is unable to interpret any of the context identifier items that were set

when the current context was established by another application. For example, the selected patient
might not be a patient known to the application.

 An application that is unable to interpret any of the identifiers shall still participate in the context
change transaction. This situation is not a basis for the application to prevent the transaction from
proceeding. Specifically, the application shall not use the surveying process to reject the context
change.

 However, at the completion of the transaction, the application shall clearly indicate to the user that it is
unable to apply the current context. The application shall not show any patient data. The details of how
this indication appears to the user are specified in each of the HL7 context management technology-
specific user interface specification documents.

7.10.3 Application Behavior with Regard to an Empty Context
 The context is empty when a context system is first initialized. (See Section 5.6.6, Representing an

Empty Context Subject). When this is the case, all of the applications in the context system shall
clearly indicate to the user that there is no current context. The details of how this indication appears to
the user are specified in technology-specific.

 An application shall never explicitly set the context to empty. The context manager shall raise an
exception whenever an application attempts to perform a context change transaction in which the new
context is empty. The transaction is cancelled by the context manager, and the surveying of the
participant applications does not occur.

7.10.4 Surveying Details
 During the context change survey, the context manager informs each of the applications in the common

context system (except for the application that instigated the changes) that there are pending context
data changes. When an application is surveyed, it shall create a visual cue that indicates it is about to
change its clinical context before responding to the survey2. It shall not change its context yet. The
context-changes-pending indication shall only be removed once the context manager has informed the
surveyed application about how to proceed.

 Under normal circumstances, the application will eventually be notified by the context manager about
whether or not the context changes should be applied. However, if the context manager is unable to
inform the application about how to proceed (e.g., because the application blocked after responding to

 2 A specific visual cue recommended within each of the HL7 context management technology-specific user
interface specification documents.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 50 Copyright 1999, Health Level Seven Version CM-1.0

the survey but before being notified that the context changes have been accepted), the user will at least
be able to determine that the application may not be in synchrony with the other applications. This is
because the application is presumably still displaying a visual cue that indicates it might change its
clinical context. The fact that this cue is still being displayed after the context has changed clues the
user that there is a problem with the application.

 An application can explicitly respond to a context change notification survey by indicating one of the
following:

• Accept: It is willing to accept the context data changes and to change its internal state
accordingly if the changes are published.

• Accept-Conditional: It is in the midst of a task that might cause work to be lost if the user
does not complete the task; if the changes are published it is willing to terminate the task,
accept the context data changes and change its internal state accordingly.

 If the changes are subsequently published, an application can defer changing its internal state until
some time in the future (for example, when it regains the focus for user-inputs). However, it must offer
a visual cue that indicates it not in synchrony with the new context, for example, it might blank out its
data display or minimize itself.3

 An application that cannot interpret the context data (e.g., does not know who the patient is) should
accept the changes. However, the application should clearly indicate to the user (e.g., by displaying a
message) that it cannot apply the current context data.

 The context manager infers an implicit response from an application under the following conditions:

• Terminated: the context manager has determined that the application has terminated without
first informing the context manager

• Busy: the context manager has determined that the application is still running but is unable to
answer the survey (e.g., the application is single-threaded and has a modal dialog open)

 It is not possible for a surveyed application to explicitly reject, and therefore prevent, a context change.

 The context manager gathers the survey responses and returns them to the application that was used to
instigate the context change transaction. Applications that have responded with accept-conditional are
expected to also provide a succinct but informative description of the consequences to the user of
applying the context changes. The context manager then prepends the name of the application

 3 A specific visual cue is recommended within each of the HL7 context management technology-specific user
interface specification documents.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 51

(provided by the application when it joined the common context system) to the description. This
description is shown to the user by the instigating application.

 The context manager also provides the instigating application with a succinct but informative
description about any applications that are busy. This description includes the name of the application.
This information is provided by the context manager on behalf of these applications, as they are unable
to do so for themselves. This description is also shown to the user by the instigating application.

 Applications that have terminated do not affect the survey process. The context manager considers
such applications to no longer be part of the common context system. Any information that the
manager is maintaining about terminated applications is discarded.

 Applications that have suspended their participation in the context are not involved in the survey
process.

 Applications that have joined the system but indicated that they do not want to participate in surveys
are not involved in the survey. However, they are informed along with the other participants whenever
the decision to accept the changes is published. (They are not informed about decisions to cancel
changes, as this information would be irrelevant.)

7.11 Common Clinical Context Use Model
 The Common Clinical Context Use Model (Figure 13) illustrates a system with four actors (Authorized

User, Healthcare Application, Context Manager, and a System’s Administrator) applying forces on
three use cases. The use cases are Lifecycle of Common Context, Context Selection Change, and
Abnormal Termination of Common Context.

Lifecycle of Common Context

Context Selection Change

Abnormal Termination of Common Context

 Authorized User

System Administrator
Healthcare Application

Common Clinical Context System

Context Manager

 Figure 13: Common Clinical Context Use Model

 Context Management Specification, Technology and Subject-Independent Component Architecture

 52 Copyright 1999, Health Level Seven Version CM-1.0

 The common clinical context system is presented by providing a diagram of each use case followed by
interaction diagrams illustrating different behavioral flows of the associated use case. Each use case
has an associated description, which is provided below. Further, for brevity the specific interfaces
names (ContextManager, ContextParticipant, and ContextData) are not used; their abbreviations are
used instead (CM, CP, and CD). Also, the word “interface” is abbreviated to “iface”. The diagram
notes (illustrated as a sheet of paper with corner folded over) are from a software developer’s
perspective, not the user of the application.

7.11.1 Lifecycle of Common Context
 A common context does not initially exist. An application must establish the common context. The

common context ceases to exist when there are no longer any applications participating in the common
context. Figure 14, Interaction Diagram 1, and Interaction Diagram 2 illustrate this use case.

Healthcare
Application

Context Manager

Common Context Lifecycle

Establishes/ends
common context

Coordinates

Authorized
 User

Chooses Patient

 Figure 14: Common Context Lifecycle Use Case

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 53

 Context Management Specification, Technology and Subject-Independent Component Architecture

 54 Copyright 1999, Health Level Seven Version CM-1.0

Single participant,
therefore, no survey
is required.

User Application AAA ContextManager

CM::JoinCommonContext(CP iface of AAA, surveyYes)

I choose "Jane Doe"

CM::StartContextChanges

context coupon

CD::SetItemValues

CM::EndContextChanges

survey results empty

Transaction
Begins

CM::PublishChangesDecision("accept")

Possibly more
transactions.

Transaction
Complete

Exit program

CM:LeaveCommonContext

Did last participant
leave?

Yes

Exit

MostRecentContext coupon=0
No items in the context.

MostRecentContext coupon has a unique value.
Items with values now in the context.

"Jane Doe"

 Interaction Diagram 1: Common Context Lifecycle

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 55

"Kent Clark"

User Application AAA ContextManager Application BBB

I choose "Sam Smith"

CM::StartContextChanges

CM::JoinCommonContext(CP iface of AAA, surveyYes)

CD::SetItemValues

CM::EndContextChanges

survey results: all applications accept

CM::PublishChangesDecision("accept")

CP::ContextChangesAccepted

CM::JoinCommonContext(CP iface of BBB, surveyYes)

CP::ContextChangesPending

"accept"

CM::JoinCommonContext(CP iface of CCC, surveyYes)

CM::SuspendParticipation

CM::ResumeParticipation

CM::EndContextChanges
CP::ContextChangesPending

"accept"

survey results: all applications accept

CM::PublishChangesDecision("accept")

CP::ContextChangesAccepted

CP::ContextChangesAccepted

While suspended participation,
Application CCC is neither
surveyed or notified of context
changes.

I choose "Kent Clark"
CM::StartContextChanges

CP::ContextChangesPending

"accept"

CM::SetItemValues

"Sam Smith"

 Interaction Diagram 2: Suspending/Resuming Context Participation

 Context Management Specification, Technology and Subject-Independent Component Architecture

 56 Copyright 1999, Health Level Seven Version CM-1.0

7.11.2 Context Selection Change Use Case
 The Context Selection Change use case assumes a patient context has been established. The user is currently

focused on one application, while several other healthcare applications may be executing on the same host
machine. The user chooses to change the selected patient from “Jane Doe” to “Sam Smith”.

 Figure 15 illustrates this use case. There are several possible instances of this use case which are provided in
Interaction Diagram 3 through Interaction Diagram 10.

Context Selection Change

Healthcare
Application

Authorized
 User

Participates InChooses Patient

Context Manager

Coordinates

 Figure 15: Context Selection Change Use Case

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 57

Possibly
concurrent
queries.

User Application AAA ContextManager Application BBB

I choose "Sam Smith"

CM::StartContextChanges

CM::JoinCommonContext(CP iface of AAA, surveyYes)

CM::JoinCommonContext(CP iface of BBB, surveyYes)

CM::JoinCommonContext(CP iface of CCC, surveyYes)

CD::GetItemValues

CD::GetItemValues

CD::SetItemValues

CM::EndContextChanges
CP::ContextChangesPending

"accept"

CP::ContextChangesPending

"accept"

survey results: all applications accept

CM::PublishChangesDecision("accept")

CP::ContextChangesAccepted

CP::ContextChangesAccepted

"Sam Smith"

Possibly
concurrent
notifications.

Possibly
concurrent
surveys.

 Interaction Diagram 3: All applications accept the changes

 Context Management Specification, Technology and Subject-Independent Component Architecture

 58 Copyright 1999, Health Level Seven Version CM-1.0

CM::StartContextChanges

User Application AAA ContextManager Application BBB

I choose
CM::StartContextChanges

CM::JoinCommonContext(CP iface to AAA, surveyYes)

CD::SetItemValues

CM::EndContextChanges

survey results:
Application CCC

conditionally accepted
with this consequence.

CM::PublishChangesDecision("cancel")

CM::JoinCommonContext(CP iface to BBB, surveyYes)

CP::ContextChangesCanceled

CM::JoinCommonContext(CP iface to CCC, surveyYes)

CP::ContextChangesCanceled

"Are you sure you want
to change?"

cancel

User is told that
Application CCC might
lose work in progress.
User is provided with
a description of
consequences of a
context change at this
time.

CP::ContextChangesPending

"accept"

CP::ContextChangesPending

"conditionally accept" and consequences

Completes work in progress

I choose "Sam Smith"

Sequence of context
changes re-initiated.

New Transaction Begins

 Interaction Diagram 4: An application conditionally accepts the changes; user decides to cancel changes

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 59

CM::EndContextChanges

User Application AAA ContextManager Application BBB

User is told that
Application CCC
did not respond to
pending changes
survey.

Sequence of context
changes re-initiated.

I choose "Sam Smith"

I choose "Sam Smith"

CM::StartContextChanges

CM::JoinCommonContext(CP iface to AAA, surveyYes)

CD::SetItemValues

survey results: Application CCC not responding

"Application CCC not responding."

cancel selection change

CM::PublishChangesDecision("cancel")

CM::StartContextChanges

CM::JoinCommonContext(CP iface to BBB, surveyYes)

CP::ContextChangesCanceled

CP::ContextChangesPending

"accept"

CM::JoinCommonContext(CP iface to CCC, surveyYes)

CP::ContextChangesPending

User waits or
makes
adjustments so
Application CCC
can handle
selection change.

New Transaction Begins

 Interaction Diagram 5: An application does not respond to survey

 Context Management Specification, Technology and Subject-Independent Component Architecture

 60 Copyright 1999, Health Level Seven Version CM-1.0

User Application AAA ContextManager Application BBB

I choose "Sam Smith"

CM::StartContextChanges

CM::JoinCommonContext(CP iface to AAA, surveyYes)

CD::SetItemValues

CM::EndContextChanges

survey results: all application accept

"Sam Smith"

CM::PublishChangesDecision("accept")

CM::JoinCommonContext(CP iface to BBB, surveyYes)

CP::ContextChangesAccepted

CP::ContextChangesPending

"accept"

CM::JoinCommonContext(CP iface to CCC, surveyYes)

CP::ContextChangesPending

"accept"

CP::ContextChangesAccepted

Context Manager
responsible for
attempting to notify
until a new
transaction begins.

Same interaction would
occur if pending changes
were canceled.

 Interaction Diagram 6: An application does not respond to change notification

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 61

User Application AAA ContextManager Application BBB

I choose "Sam Smith"

CM::StartContextChanges

CM::JoinCommonContext(CP iface to AAA, surveyYes)

CD::SetItemValues

CM::EndContextChanges

survey results: Application CCC not responding

"Application CCC not responding"

CM::PublishChangesDecision("cancel")

CM::JoinCommonContext(CP iface to BBB, surveyYes)

CP::ContextChangesCanceled

CP::ContextChangesPending

"accept"

CM::JoinCommonContext(CP iface to CCC, surveyYes)

CP::ContextChangesPending

Transaction Complete

"accept"

CP::ContextChangesCanceled

cancel selection change

 Interaction Diagram 7: An application responds after context change transaction has completed

 Context Management Specification, Technology and Subject-Independent Component Architecture

 62 Copyright 1999, Health Level Seven Version CM-1.0

CD::GetItemValues

User Application AAA ContextManager Application BBB

I choose "Sam Smith"

CM::StartContextChanges

CM::JoinCommonContext(CP iface of AAA, surveyYes)

CD::SetItemValues

CM::EndContextChanges

CP::ContextChangesAccepted

CM::JoinCommonContext(CP iface of BBB, surveyYes)

CD::GetItemValues

CM::JoinCommonContext(CP iface of CCC, surveyNo)

survey results: all applications accept

CP::ContextChangesPending

"accept"

CM::PublishChangesDecision("accept")

CP::ContextChangesAccepted

Application
CCC not
surveyed.

"Sam Smith"

 Interaction Diagram 8: A non-surveyed application participates in context change

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 63

User Application AAA ContextManager Application BBB

User is told that
Application CCC
might lose work in
progress. User is
provided with a
description of
consequences of
context change.

I choose "Sam Smith" CM::StartContextChanges

CM::JoinCommonContext(CP iface to AAA, surveyYes)

CD::SetItemValues

CM::EndContextChanges

survey results: Application
CCC conditionally accepted

with this reason.
"Are you sure you want to

change?"

accept selection change

CM::PublishChangesDecision("accept")

CM::JoinCommonContext(CP iface to BBB, surveyYes)

CP::ContextChangesAccepted

CP::ContextChangesPending

"accept"

CM::JoinCommonContext(CP iface to CCC, surveyYes)

CP::ContextChangesAccepted

CP::ContextChangesPending

"conditionally accept" and consequences

 Interaction Diagram 9: An application conditionally accepts the changes; user decides to accept consequences of change

 Context Management Specification, Technology and Subject-Independent Component Architecture

 64 Copyright 1999, Health Level Seven Version CM-1.0

User Application AAA ContextManager Application BBB

User is told that
Application CCC
might lose work in
progress. User is
provided with a
description of
consequences of a
context change at
this time.

I choose "Sam Smith"
CM::StartContextChanges

CM::JoinCommonContext(CP iface to AAA, surveyYes)

CD::SetItemValues

CM::EndContextChanges

survey results: Application
CCC conditionally accepted

with this reason.
"Are you sure you want to

change?"

Break link
CM::PublishChangesDecision("cancel")

CM::JoinCommonContext(CP iface to BBB, surveyYes)

CP::ContextChangesCanceled

CP::ContextChangesPending

"accept"

CM::JoinCommonContext(CP iface to CCC, surveyYes)

CP::ContextChangesCanceled

CP::ContextChangesPending

"conditionally accept" and consequence

CM::SuspendParticipation

Selected patient is "Sam Smith" Selected patient is previously chosen patient.

 Interaction Diagram 10: An application conditionally accepts the changes; user breaks link with common context

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 65

7.11.3 Abnormal Termination of Common Context Use Case
 The Abnormal Termination of Common Context Use Case involves a system administrator forcing the

termination of the context manager through some action. The common context participants are notified of the
termination of the common context.

 Figure 16 illustrates the abnormal termination use case while Interaction Diagram 11 captures an instance of
this case.

System
Administrator

Healthcare
Application

Abnormal Termination of Common
Context

aborts common
context

Is Notified of

Context Manager

Coordinates

 Figure 16: Abnormal Termination of Common Context Use Case

 Context Management Specification, Technology and Subject-Independent Component Architecture

 66 Copyright 1999, Health Level Seven Version CM-1.0

CM::JoinCommonContext(CP iface of AAA, surveyYes)

User Application AAA ContextManager

Possibly
several
transactions.

CM::JoinCommonContext(CP iface of BBB, surveyYes)

Some event
causes/tells to

exit

CP::CommonContextTerminated

CP::CommonContextTerminated

 Interaction Diagram 11: Abnormal Termination of Common Context

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 67

7.12 Stat Admissions
 A stat admission occurs when an application needs to enable the user to record information

about a patient even if an identifier for the patient is not known. In this case, the application
should indicate to the user that it is breaking its participation in the patient context, and then
break its participation upon user confirmation. This is because it is not possible for the
application to identify the patient, which is needed in order to change the common context. The
only reasonable recourse is for the application to break its participation in the common context.

7.13 Optimizations
 There are several optimizations that have been designed into the specification. These

optimizations are reflected in the interface specifications described in Chapter 11:

• An application can indicate that it never wants to participate in the survey conducted
by the context manager when the context data changes. The context manager will
assume that such applications always accept the changes. Read-only data displays
represent a class of applications for which this capability is useful.

• An application can selectively suspend its participation in the surveying process
without actually leaving the common context. This enables an application to either
perform computational tasks without being interrupted by context changes. This also
enables an application to minimize its use of computational resources if it is in a state
(e.g., minimized) in which responding to context changes provides no benefit to the
user. The application can subsequently resume its participation in the common
context.

• An application can obtain just the context data values that were altered by the most
recent change transaction. This capability will become increasingly useful as
additional common context data items are defined.

• Multiple common context items can be accessed by an application in a single
invocation of a context manager method. This optimizes performance by reducing the
number of calls an application needs to make to access context items.

• When an application is notified about a context change, it is also provided with the
context coupon value that it needs in order to access the context data. This simplifies
the design of applications because they do not necessarily need to keep track of context
coupon values.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 68 Copyright 1999, Health Level Seven Version CM-1.0

• Context managers can be implemented to conduct the change survey and the
subsequent change notifications in a concurrent manner, thereby decreasing the
amount of time it takes to complete these computations.

 Additional optimizations, such as enabling applications to indicate their interest in only being
notified when specific context data items change are candidates for future enhancements.

7.14 The Simplest Application
 The responsibilities that an application must implement in order to behave properly as a

participant in a common context system depends upon the application’s functionality.
Applications that need to participate in the context change survey must implement
straightforward but non-trivial behaviors. However, for many applications it will suffice to
implement a very small set of behaviors. Specifically, the simplest participants are those that
do not participate in the survey, do not set the context data, and only want to be informed when
context changes have been accepted. These applications only need to do the following:

1. Join the common context system via the context manager’s ContextManager interface.

2. Implement the ContextParticipant method that enables the application to be informed
about accepted context changes.

3. Access the context data via the context manager’s ContextData interface.

4. Leave the common context system upon termination, via the context manager’s
ContextManager interface.

 As Interaction Diagram 12 illustrates below, this amounts to implementing one method for
ContextParticipant. (The others can be stubbed with trivial default behaviors.) It also requires
using two ContextManager methods: one to join and one to leave a common context system.
Finally, it requires using one ContextData method to access the context data. The application
does not necessarily need to keep track of the value of the context change coupon, as the
context manager each time a change occurs provides the correct coupon value to the notified
application. The result is that simple applications are not penalized for being co-participants
with applications that have more sophisticated needs.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 69

User Application AAA ContextManager

I choose "Sam Smith"

CM::StartContextChanges

CM::JoinCommonContext(CP iface to AAA, surveyYes)

CD::SetItemValues

CM::EndContextChanges

survey results: all applications accept

CM::PublishChangesDecision("accept")

CM::JoinCommonContext(CP iface to BBB, surveyNo)

CP::ContextChangesAccepted

CM::LeaveCommonContext

"Sam Smith"

CD::GetItemValues

item values

 Interaction Diagram 12: Simplest Application

 Context Management Specification, Technology and Subject-Independent Component Architecture

 70 Copyright 1999, Health Level Seven Version CM-1.0

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 71

8 Mapping Agents

 A mapping agent in a common context system provides a means to automatically supply
multiple synonymous identifiers for the same real-world entity or concept even when only one
identifier is known to the application used to instigate a context change. This mapping is
performed in a manner that is transparent to the user and to the applications in the context
system.

 For example, multiple medical record numbers within a healthcare enterprise might identify a
patient. However, each application might only be able to denote a particular patient via just
one of these identifiers. When the user selects a patient using such an application, the
application sets the new patient context using the patient identifier it knows. The context
manager automatically delegates the task of mapping the provided identifier to additional
identifiers to a mapping agent. A master patient index system might serve as the basis for
implementing a mapping agent capable of mapping patient identifiers.

 Mapping agents are not necessarily needed in order to realize a useful and correctly
functioning common context system. Specifically, mapping agents are not needed when each
real-world entity or concept has a single identifier that is already known to all of the
applications in the common context system. For example, there are healthcare enterprises that
have a uniform way to identify their patients.

 The specification contained in this chapter is for a Patient Link mapping agent. However, other
kinds of mapping agents are envisioned for other types of common clinical context data.
Therefore, an attempt has been made to specify the mapping agent in a way that will enable
forward compatibility with future CMA capabilities, such as additional context subjects.

8.1 Assumptions and Assertions
 It is not an objective of the CMA to define how mapping agents should work or to prescribe or

assume a particular mapping agent implementation. Instead, a mapping agent is treated as an
abstraction. Interfaces are defined that enable mapping agents to be connected to context
managers for the purpose of aiding in the mapping of context identifiers between multiple
identifier spaces.

 Additional assumptions and assertions include:

• When present, the mapping agent is the authority within a common context system on
the mapping between context identifiers.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 72 Copyright 1999, Health Level Seven Version CM-1.0

• A mapping agent does not allow an identifier to map to more than one real-world
entity or concept (e.g., a patient mapping agent does not allow a patient identifier to
map to more than one patient).

• There is at most one mapping agent per context subject per clinical desktop. (Behind
the “scenes” mapping agents may work together, or may be implemented using a single
common service. However, this is not visible to the context manager or the context
participants.)

• A context manager does not know about the mapping agent implementation; a context
manager only “sees” a mapping agent through its CCOW interface.

• Context participant applications do not “know” about the mapping agent (or even if
there is one); the mapping agent does not “know” about context participant
applications.

• The mapping agent may reside on a computer that is remote from the computer (s)
upon which the context manager(s) they serve reside; however, these computers must
be connected by a LAN or WAN whose performance is LAN-equivalent.

• Mapping agents are an optional component of a CMA context management system.

8.2 Interfaces
 The following interfaces are defined for and implemented by mapping agents:

• MappingAgent (MA) - used by a context manager to inform a mapping agent that the
clinical context has changes pending and that the mapping agent should perform its
context data mapping responsibilities

• ImplementationInformation (II) - used by a context manager to obtain details about
who implemented the mapping agent, when it was installed, etc., for the purpose of
creating detailed error reports

 In addition, mapping agents to set/get context data items uses the context manager
ContextData interface.

 The mapping agent interfaces are modeled and illustrated in Figure 11: Patient Link
Component Architecture.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 73

8.3 Theory of Operation
 Assume, first, that one or more context participants have already joined the same common

context and that they are connected to the context manager. Further, assume that the context
manager already has an interface reference to a mapping agent’s MappingAgent interface.
How these references are obtained is described in Section 8.3.1, Initializing a Context System
When a Mapping Agent is Present.

 Given these conditions, a context participant instigates a context change transaction via the
context manager’s ContextManager interface, sets the new context data via context manager’s
ContextData interface, and then indicates it is done setting the data via the context manager’s
ContextManager interface.

 At this point, before the other context participants are surveyed, the manager informs the
mapping agent that the context data has changes pending, via the mapping agent’s
MappingAgent interface (which is similar to an application’s ContextParticipant interface).
The mapping agent blocks the context manager’s method return until the mapping agent has
completed its mapping tasks. The proposed context data items that are available to the
mapping agent are exactly as the instigating participant set them.

 The mapping agent reads the proposed context data via the context manager’s ContextData
interface, and may set one or more additional context data identifier or corroborating items via
this same interface. The objective is for the mapping agent to enhance the proposed context by
providing additional identifier or corroborating data in a manner that is transparent to the
application that instigated the transaction.

 Applications (including the instigating application) are not allowed to set context item values
after the instigating application has completed its changes. However, the context manager
allows the mapping agents to make changes because it knows it is a mapping agent that is
setting the item values. How the context manager knows that its is a mapping agent will be
described later.

 Once the mapping agent has completed its mapping tasks, the context manager surveys the
context participants and processing of the context change transaction is performed as usual.
With this approach, all of the synonymous values for an identifier will be set before the other
applications are informed via a context manager-initiated survey that the context has been
changed.

 However, if the instigating application has set multiple values for a context identifier, and the
mapping agent detects an inconsistency among these values, then it informs the context
manager that the context change transaction has been invalidated. This is because the mapping
agent is the authority in a context system when it comes to mappings between identifiers.
Allowing the transaction to proceed could create confusion about the context among the other
context participants.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 74 Copyright 1999, Health Level Seven Version CM-1.0

 The details about the conditions under which a mapping agent can invalidate a context change
transaction are described in 8.3.5 Conditions for Mapping Agent Invalidation of Context
Changes.

 When the mapping agent invalidates a context change transaction, the context manager does
not survey the participating applications. Instead, the context manager informs the instigating
application that the transaction has been invalidated. The instigating application then asks the
user to intervene to decide how to proceed.

 The user can decide (via a dialog presented by the application that was used to instigate the
context change) whether to cancel the context change or to break the instigating application
away from the common context system. In either case, the context change transaction is
terminated and the context changes are discarded. Additional identifiers are not mapped and
the other applications are not surveyed.

 This approach gives the user the option of applying the context changes to just the application
used to instigate the context change while also preventing the other applications from becoming
confused about the context.

 The details of this situation are described in 8.3.6 Treatment of Mapping Agent Invalidation of
Context Changes.

8.3.1 Initializing a Context System When a Mapping Agent is Present
 A mapping agent and the context manager it serves must be connected to each other. There are

two ways in which this can be accomplished. Either the context manager connects to the
mapping agent, or the mapping agent connects to the context manager. The order in which this
connection occurs has significant impact on complexity and computing resource utilization.

 The mapping agent could conceivably locate and connect to a context manager the same way a
context participant does. This requires that the connection be made before the first time a
context participant application sets the context. This is so that the mapping agent can be
instructed by the context manager to perform its mapping tasks.

 A consequence of this approach is that a context manager will execute even if it is not actively
servicing any context participants. Further, the requirement that the connection be made before
the first time a context participant application sets the context introduces initialization-
sequencing complexities.

 In general there is no way to know when the first context participant will connect to a context
manager, so the only prudent recourse would be to launch the context manager and the
mapping agent as part of the boot-up process for the desktop they serve. This would
complicate the installation process for context managers and mapping agents.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 75

 The alternative is for the context manager to connect to the mapping agent. This approach
enables the connection to be deferred until the mapping agent is needed to service a context
participant. However, a means by which context managers can locate the necessary mapping
agent must be established.

 Fortunately, the fact that there is only one mapping agent per context subject per clinical
desktop enables the location process to be easily implemented using the desktop’s technology-
specific desktop interface reference registry. Specifically, a reference to a mapping agent’s
principal interface is entered into the desktop’s interface reference registry. The symbolic name
and/or description of the interface within the registry indicates the context subject that the
mapping agent maps. The context manager obtains this reference and uses it to interrogate the
mapping agent to obtain references to its other interfaces, such as MappingAgent.

 An additional benefit of the manager-connects-with-agent approach is that it is not even
necessary for distinct connect/disconnect methods to be defined. Instead, the context manager
simply informs the mapping agent whenever the context manager has changes pending. The
context manager explicitly provides a reference to it principal interface to the mapping agent.
The mapping agent then interrogates the context manager via its principal interface to obtain a
reference to other context manager agent interfaces, such as the interface ContextData.

 The sequence of events is shown in Interaction Diagram 13: Context Change Transaction with
Mapping Agent.

8.3.2 Terminating a Context System When a Mapping Agent is Present
 To enable the orderly termination of the context system, the context manager shall implicitly or

explicitly dispose of any mapping agent interface references that it possesses prior to
terminating. The mapping agent shall dispose of any context manager interface references that
it possesses when it has completed its mapping actions for a context change transaction. The
means by which these disposals are effected is technology-specific.

 The consequence of these disposals is that at the end of a context change transaction, only
context participant applications will possess context manager interface references. If there are
no participants, then the context manager can properly terminate. (Participants dispose of their
any context manager interface references that they possess prior to terminating. See Section
Error! Reference source not found., Error! Reference source not found..) This also means
that once the context manager terminates, the mapping agent can also properly terminate.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 76 Copyright 1999, Health Level Seven Version CM-1.0

 Interaction Diagram 13: Context Change Transaction with Mapping Agent

8.3.3 Distinguishing Between Mapping Agents and Context Participants
 When a mapping agent is informed that a context change is pending, the context manager

provides it with two coupons. One coupon denotes the context change transaction; the other
denotes the mapping agent. The mapping agent coupon is not the same as any of the coupons
assigned by the context manager to the context participants.

 The mapping agent shall use the coupon that denotes it whenever it sets context data via the
ContextData interface. The context manager uses this coupon to determine that a mapping
agent, and not a context participant, is setting the context data. Only a mapping agent is

 Context manager Context participant Mapping Agent

 ContextManager::JoinCommonContext() ContextManager::JoinCommonContext()

 ContextManager::StartContextChanges()

 ContextData::SetItemValues()

 ContextManager::EndContextChanges()

 MappingAgent::ContextChangesPending(Principal iface to context manager)

 ContextData::GetItemValues()

 ContextData::SetItemValues()

 Return from ContextChangesPending

 Return from EndContextChanges()

 Surveying the other context participants
occurs here

 Mapping agent locates context
manager’s ContextData interface

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 77

allowed to set context data after the instigator of the context change has indicated that it has
completed the context changes.

 It is a context manager implementation decision as to whether the coupon assigned to a
mapping agent is the same or different between context change transactions.

8.3.4 Mapping Agent Updates to Context Data
 A mapping agent only adds data to the context. A mapping agent can add additional context

identifier items. It can also add additional corroborating data items. These updates are
primarily for the benefit of the context participants other than the application that instigated the
context change.

 This is because it cannot be assumed that the instigating application will re-read the context
data once it has completed its context changes. In contrast, the other applications do not read
the new context until they are surveyed, which occurs after the mapping agent has added data
to the context.

 If a mapping agent was allowed to change the values for context items that have been set by
the instigating application, it could be confusing to the user. This is because the user might see
differences between the context data as displayed by the instigating application and as
displayed by the other context participant applications.

 Given this concern, a mapping agent shall not alter the values of any of the context data items
that have already been set by the instigating participant as part of the proposed context. Any
attempt to alter existing context data items by the mapping agent shall result in the context
manager raising an exception.

 A mapping agent shall not delete any of the context data items. Any attempt to delete context
data items by the mapping agent shall result in the context manager raising an exception.

8.3.5 Conditions for Mapping Agent Invalidation of Context Changes
 A context subject is comprised of multiple identifier and corroborating data items, each of

which is represented as name/value pairs (see Section 5.4, Context Data Representation, and
Section 5.6, Context Data Interpretation). It is the responsibility of every application that sets
these items to ensure that they are self-consistent. However, there are a variety of potential
item name and/or item value inconsistencies that a mapping agent must be able to detect.

 Specifically, if an application has set multiple values for a context identifier item, and the
mapping agent determines that these values do not all identify the same real-world entity or
concept (e.g., patient), the mapping agent shall invalidate the context change transaction.

 Specifically, a mapping agent shall invalidate a context change transaction when:

 Context Management Specification, Technology and Subject-Independent Component Architecture

 78 Copyright 1999, Health Level Seven Version CM-1.0

• The instigating application sets more than one value for the same context identifier
item, but the mapping agent determines that at least two of these values identify
different patients.

• The instigating application sets more than one value for the same context identifier
item, but the mapping agent knows that at least one of these values conflicts with a
value known to identify the patient.

 There are situations in which the mapping agent must not invalidate a context change
transaction even though there are apparent context item inconsistencies. A mapping agent must
not flag what it believes to be inconsistencies when in fact the suspect items might represent
reasonable application behaviors.

 The following scenarios illustrate the desired mapping agent behaviors. Assume that there are
two patients, each with identifiers for two sites, and the mapping agent is able to map the
patient identifiers for both sites:

Patients and Their Site-Specific Identifiers

Institution John Doe Jim Smith

St. Elsewhere Hospital 123-456-789Q36 155-213-424Y82

St. Elsewhere Clinic 2888-91922-W928 18291-81293-D812

 The first two scenarios represent inconsistencies that the mapping agent must respond by
invalidating the context change transaction. The last three scenarios represent inconsistencies
that the mapping agent must ignore:

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 79

What the instigating
application does …

Example … What the mapping agent
does …

1 Sets two identifier values,
both with the intent of
denoting John Doe, but the
values erroneously denote
John Doe and Jim Smith.

Item identifies John Doe:

[Patient.Id.MRN.St_Elsewhere_Hospital,
123-456-789Q36]

Item erroneously identifies Jim Smith:

[Patient.Id.MRN.St_Elsewhere_Clinic,
18291-81293-D812]

Invalidates the context change
transaction because the first identifier
value denotes John Doe, while the
second denotes Jim Smith.

Mapping is not performed.

2 Sets more than one identifier
pair, both with the intent of
denoting John Doe. The first
value is John Doe’s hospital
identifier, but the second
value is not John Doe’s clinic
identifier.

Item identifies John Doe:

[Patient.Id.MRN.St_Elsewhere_Hospital,
123-456-789Q36]

Item does not identify John Doe:

[Patient.Id.MRN.St_Elsewhere_Clinic,
0000-00000-0000]

Invalidates the context change
transaction because while the first
identifier value is John Doe’s hospital
identifier, the second value is known not
to be John Doe’s clinic identifier.

Mapping is not performed.

3 Sets only one context
identifier item and the name
of the item is not known to the
mapping agent.

Item name not known to mapping agent:

[Patient.Id.MRN.General_Hospital,
6668-3923-987122]

Ignores this situation and does not
inform the context manager about
inconsistencies.

Mapping is not performed.

4 Sets more than one value for a
context identifier item, and
one or more of the item names
are not known to the mapping
agent.

Item name known to mapping agent:

[Patient.Id.MRN.St_Elsewhere_Hospital,
123-456-789Q36]

Item name not known to mapping agent:

[Patient.Id.MRN.General_Hospital,
6668-3923-987122]

Ignores this situation and does not
inform the context manager about
inconsistencies.

Mapping is performed.

5 Sets the corroborating data to
values that are different (or
incomplete) as compared to
the corroborating data known
to the mapping agent

Application sets corroborating data containing
the identified patient’s name to “Jack Doe”
but mapping agent knows the identified
patient as “John Doe”.

Ignores this situation and does not
inform the context manager about
inconsistencies.

Mapping is performed.

 In summary, detectable inconsistencies between identifier values are the only reason that a
mapping agent should invalidate a transaction. Transactions must not be invalidated when
unknown identifier names are used by an application or because of corroborating data
inconsistencies.

8.3.6 Treatment of Mapping Agent Invalidation of Context Changes
 Applications that instigate context change transactions and then explicitly set more than one

identifier during a context change transaction shall explicitly handle the situation in which a
mapping agent invalidates a context change transaction. (Applications that set only one
identifier do not need to handle this situation.)

 An instigating application is not provided with a means to distinguish between the invalidation
of a context change transaction and the presence of a busy application. These are clearly

 Context Management Specification, Technology and Subject-Independent Component Architecture

 80 Copyright 1999, Health Level Seven Version CM-1.0

different situations, but are to be handled by an instigating application in the same way. The
application shall present a dialog that clearly indicates that a problem has been encountered
while attempting to change the common context.

 The dialog shall include a description of the problem that was encountered. The dialog shall
also enable the user to cancel the context change or to break the link between the instigating
applications and the other applications.

 When the mapping agent has invalidated a transaction it shall not be possible for the user to
force a common context change. If the user decides to break the link between the instigating
application and the other applications, instigating application shall only apply the context
change to itself. This application shall break away from the common context and shall clearly
indicate to the user that it is not participating in the common context.

 If the user cancels the context change, then the instigating application shall indicate this fact to
the context manager. Both the instigating application and the context manager shall discard the
current transaction. The context manager shall not survey the other applications.

 Independent of the reason for which the mapping agent invalidated the transaction, the context
manager shall always provide to the instigating application the same user-friendly description
of the problem that was encountered. This is in order to keep things simple for the user, who is
unlikely to be concerned about the details of what went wrong. This description shall be
included in the dialog by the instigating application.

 The appearance of the dialog and the commands that the user can choose from are specified in
the CCOW document Common Clinical Context User Interface Specification. The wording
for the user-friendly description that is included in the dialog is also specified in the CCOW
document Common Clinical Context User Interface Specification. This will ensure a
consistent and familiar set of interactions for users across CCOW-conformant applications.

 The sequence of events that occur when a mapping agent invalidates a context change
transaction is shown in Interaction Diagram 14: Mapping Agent Invalidates Context Change
Transaction.

8.3.7 Mapping Null-Valued Identifiers
 A mapping agent shall not perform any mapping when the context subject is empty (See

Section 5.6.6, Representing an Empty Context). The net effect is that the context subject
remains empty, and all of the applications see the context as such.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 81

Authorized User Instigating
Application

Context Manager Mapping Agent Participating
Application

CM::JoinCommonContext(surveyYes)

CM::JoinCommonContext(surveyYes)

I chose "Sam Smith"

CM::StartContextChanges()

CD::SetItemValues()

CM::EndContextChanges()

MA::ContextChangesPending()

CD::GetItemValues()

"invalid", "ID conflict detected"

noContinue=TRUE, "MappingAgent: IDs map to two different patients"

Dialog
presented to
user. User
informed of
invalidation of
context change.
Allowed cancel
or break link.

cancel or break link

CM::PublishChangesDecision("cancel")

Discard proposed context

Other participants not
informed of cancellation of
context change because
they were not surveyed.

 Interaction Diagram 14: Mapping Agent Invalidates Context Change Transaction

8.3.8 Initializing Mapping Agents
 Different mapping agent implementations may require different initialization methods. For

example, a mapping agent might need to authenticate the current user in order to enforce
security policies. Other than being automatically launched by a context manager, the additional
steps needed to initialize a mapping agent are implementation issues and are not addressed by

 Context Management Specification, Technology and Subject-Independent Component Architecture

 82 Copyright 1999, Health Level Seven Version CM-1.0

this specification. (Future CCOW specifications may provide standardized ways of initializing
mapping agents, for example as part of a CCOW User Link capability.)

 It can be the case that different mapping agent implementations will require different explicit or
implicit actions on the part of the user in order to complete their initialization tasks. An
example of an explicit user action is signing-on to the mapping agent via a mapping agent-
supplied dialog. An example of an implicit user action is signing-on to a context participant
application that relays its authentication of the user to the mapping agent; this obviously
implies a relationship with the mapping agent that goes beyond this specification.

8.3.9 Handling Mapping Agent Failures
 A context manager must be able to detect and handle the failure of a mapping agent.

Specifically, a context manager shall behave in a robust manner even if its calls to a mapping
agent’s MappingAgent interface do not return in a timely manner.

 The recourse, after a timeout has occurred, is for the context manager to continue with the
normal processing of the context change transaction. If the mapping agent has indeed failed,
then some of the context participants may not be able to interpret the next context. However,
this fail-soft approach still enables the user to perform useful work until the mapping agent
failure is corrected.

 Finally, even if a mapping agent has failed, a context manager shall continue to try to access
the mapping agent during subsequent transactions on the prospect that the failure has been
corrected. In doing so, the context manager may need to obtain a new interface reference for
the mapping agent (because the old reference may no longer be valid).

 Note that this policy of continually attempting to access a failed mapping agent also applies
even when a context manager is first launched. It may be the case that a mapping agent
becomes available after the context manager has begun executing. (See Section 8.3.8,
Initializing Mapping Agents, for one explanation of why this might happen.) A context
manager that does not locate and initiate a mapping agent when it is launched shall
nevertheless keep trying between and/or during context change transactions. It is an
implementation decision as to how the performance impact of this policy is minimized.

8.4 Mapping Agent Effect on Application Security Policies
 Mapping agents may implement their own security policies in terms of what context data it will

map for a particular user. Mapping agent security policies can differ from the policies of the
participating applications. A mapping agent’s policies might effect what patients a user can, or
cannot, access.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 83

 When the mapping agent’s policy is more restrictive than one or more of the participating
application’s, a mapping agent might elect to not map an identifier because doing so would
violate the security rules known to the mapping agent. When the mapping agent’s policy is less
restrictive than one or more of the participating applications, each application’s own security
policy will be the predominating policy for the current change transaction.

 A mapping agent that elects to not map an identifier because of security concerns shall not
indicate this fact to the user. The user will simply observe that access to the selected patient is
not possible through one or more of the participating applications. These applications do not
know that the identifier for the selected patient has not been mapped because of the mapping
agent’s security policy. Instead, it looks to the applications as though a patient has been
selected but the identifier(s) by which the patient is known to the applications has not been
provided. These applications behave as specified for in 6.5.1 Application Behavior When it
Cannot Cancel Context Changes.

8.5 Identifying Mapping Agent Implementations
 Context managers use a mapping agent’s ImplementationInformation interface to provide

system administrators with a description of the mapping agent implementation it is using. This
information can help system administrators diagnose run-time problems that involve mapping
agents.

 The ImplementationInformation interface shall be supported by all mapping agent
implementations. A context manager shall not interact with a mapping agent that does not
support this interface.

8.6 Performance Costs and Optimizations
 When present, a mapping agent will be involved in every context change transaction. This adds

an overhead to the context change transaction in the form of the added communication between
the context manager and the mapping agent, and for the time it takes for the mapping agent to
validate the identifiers and provide any additional mappings for the identifiers. However, these
costs are viewed as being worth the benefits of the semantic integrity that a mapping agent
brings to a context system.

 In some cases, a mapping agent will be implemented using an underlying application that
provides its own user interface for patient selection. This type of mapping agent is, in effect,
both a mapping agent and a context participant application. In the case in which this
underlying application is used to instigate a context change, performing identifier validations
and mappings is superfluous. It is possible to optimize the mapping agent implementation so
that it does not perform identifier validations and mappings when it knows that it was
essentially itself that instigated a context change.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 84 Copyright 1999, Health Level Seven Version CM-1.0

 However, the only information that is readily available to the mapping agent that could help it
determine this fact is the context change coupon. This coupon is provided by the context
manager to an application when the application starts a context change transaction. This
coupon is also provided by the context manager to the mapping agent via its MappingAgent
interface during each context change transaction.

 It is an implementation decision as to how the portion of an application that implements a
mapping agent obtains the value of the context coupon from the portion of the application that
instigates a context change transaction.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 85

9 User Link Theory of Operation

 Context Management Architecture support for User Link builds upon CMA support for
Patient Link, as described in Chapter 7. Added capabilities enable:

• A user can securely sign-on to any User Link-enabled application on a desktop using
just one logon name and one means of authentication (such as a password) in order to
securely sign-on to all User Link-enabled applications on the desktop.

• The provider institution decides which applications can be trusted to authenticate
users.

• There can be multiple ways to authenticate users, including passwords, biometrics,
etc.

• The Patient Link architectural approach is leveraged (i.e., context manager, context
participants, and mapping agent) to create a single context per desktop. However, the
context is extended to include the user subject in addition to the patient subject

• The Patient Link interfaces ContextManager, ContextParticipant, MappingAgent, and
ImplementationInformation interfaces are used. However, two new security-related
interfaces are defined, SecureContextData (modeled upon the Patient Link
ContextData interface), and SecureBinding.

• In keeping with the CMA philosophy, the User Link approach is conceived for low re-
engineering costs.

 The architecture that supports these capabilities is described next.

9.1 User Link Terms and Assumptions

• User Link-enabled application - an application that implements the CMA User Link
capability.

• Sign-on – the act of identifying oneself to an application, prior to initiating a user
session, in a manner that can be authenticated by the application, typically involving a
secret password or a biometric reading (such as a thumb-print scan).

• Log-off – the termination of a user’s session with an application; it assumed that
logging-off does not require user authentication.

• Empty context – a context is not defined for a particular subject, either because no
context identifier items are present in the context data (as is the case when a context

 Context Management Specification, Technology and Subject-Independent Component Architecture

 86 Copyright 1999, Health Level Seven Version CM-1.0

manager is first initialized) or because the values of all of the identifier items for the
subject that are present in the context data are null (as is the case when an application
explicitly indicates that the context is empty).

9.2 Desktop Assumptions
 The following assumptions are made about the clinical desktop upon which User Link-enabled

applications are deployed:

• The desktops upon which User Link-enabled applications are deployed may reside in
physically unsecured locations.

• While recommended, it may not be the case that appropriate security precautions have
been taken to restrict the types of operating system-level actions, such as installing
new programs, that users can perform on desktops that reside in physically unsecured
locations.

 In summary, the CMA is intended to be no less secure than the User Linked applications would
be were they not User Linked. In general, User Linked applications will be substantially more
secure.

9.3 User Subject
 The context subject of User is defined for User Link. The context data identifier item for this

subject is the user’s logon name. The user’s given name is not used as an identifier.

 This identifier is unlikely to be universally unique. However, it is assumed that a population of
user across which each logon name is unique can be established. Each such population is
referred to as application, as it is typical that each population of users corresponds to a
particular application within an overall healthcare institution.

 Consequently, a single user may be identified using multiple user subject identifier items. Each
item is differentiated by a different application-specific suffix. An application shall be
configurable such that it can be instructed on-site as to which suffix (of suffices) it is to use
when it interacts with the context manager to set or get user context data.

 The format of a user subject identifier item name includes an application-specific suffix. Use
of this suffix, and the values that may be assigned to this suffix, is at the discretion of each
healthcare institution at which a context management system is deployed.

 In addition to identifier items, the user subject also supports corroborating data items. The
actual names, meaning, and data types used to represent the values for both user subject

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 87

identifier items and corroborating data items are defined in the document Health Level-Seven
Standard Context Management Specification, Data Definition: User Subject.

 An example of a user subject identifier item appears below:

 User Subject Identifier

 Example Item Name Format: Example Item Name: Example Item Value:

 User.Id.Logon.application_name User.Id.Logon.3M_Clinical_Workstation robs

9.4 User Authentication Data Is Not Part of the User Context
 The data used to authenticate a user is not included as part of the user context data. This data

is typically a password, but it can be any data that is used to authenticate a user, such as a
biometric sample. Instead, each application is expected to be able to sign-on a user given just
the application-specific logon name for the user.

 This approach substantially reduces security risks because the data used by an application to
authenticate the user remains within the application. If this data were part of the user context,
it would be vulnerable to undesired accesses. However, in order for applications to tune to the
user context, they must trust that the context data is authentic. The means by which this is
accomplished is referred to as the “chain of trust” and is described below.

9.5 User Link Common Context System Description
 Consistent with the CMA, on each desktop there are applications that are user context

participants, and there is a context manager. The applications perform context change
transactions to indicate who the user is.

 However, in contrast to the way in which patient context is communicated in a Patient Link
system, the user context is communicated throughout the common context system in a secure
manner. This is to prevent people from accidentally or maliciously gaining access to
applications that are User Linked.

 The necessary security is achieved by adding capabilities to the CMA that enables the
realization of a “chain of trust” among the User Link-enabled applications and User Link
components. With the chain of trust, User Link-enabled applications and User Link
components work together to ensure that only authorized users are allowed access to a
common context system.

 In the chain of trust, the need to include user authentication data, such as passwords, as part of
the user context, is avoided. Only the user’s identity (i.e., logon name) is communicated among

 Context Management Specification, Technology and Subject-Independent Component Architecture

 88 Copyright 1999, Health Level Seven Version CM-1.0

the User Link-enabled context participants. Specifically, the data used by an application to
authenticate a user who has signed-on via a User Link-enabled application remains private to
the application.

 This not only simplifies the overall solution, but results in a system that is more secure than
would be the case if authentication data were part of the common context, and were therefore
vulnerable to security attacks directed against the context manager or mapping agent.

 The chain of trust is specified in Chapter 10.

9.5.1 User Mapping Agent
 An optional user mapping agent is also part of the common context system, The user mapping

agent maps the logon names for users. The user mapping agent is similar to, but distinct from,
the patient mapping agent (although a single mapping agent implementation could fulfill both
roles).

 Whenever an application sets the user context, the context manager instructs the user mapping
agent (if present) to provide any additional logon names it knows for the user. The application
suffix for each of the mapped identifier items denotes the application for which the mapped
logon name is valid, for example:

 Examples Item Names: Example Item Values:

 User.Id.Logon.3M_Clinical_Workstation

User.Id.Logon.Medicalogic_Logician

User.Id.Logon.HP_CareVue

 robs

rob_seliger

r_seliger

9.5.2 Context Management Interfaces
 The context management interfaces defined for User Link are similar to the ones defined for

Patient Link. A context participant still implements ContextPartcipant (CP). The context
manager still implements ContextManager (CM), but it also implements the following new
interfaces:

• SecureContextData (SD) - Similar to the ContextData interface defined for Patient
Link, this interface is used by applications to securely set/get the values for the items
(logically represented as name-value pairs) that comprise the clinical context.

• SecureBinding (SB) - Used by applications to establish a secure communications
binding with the context manager before using the SecureContextData interface.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 89

• ImplementationInformation (II) – Originally defined for the patient mapping agent, this
interface is added to the context manager so that applications, other components, and
tools, can obtain details about the context manager implementation, including its
revision, when it was installed, etc.

 The interfaces implemented by the user mapping agent are MappingAgent (MA) and
ImplementationInformation (II). These are the same interfaces as defined for the patient
mapping agent.

9.5.3 Authentication Repository
 In order to make it practical to re-engineer existing applications to support the chain of trust,

the CMA authentication repository component is defined. This repository enables applications
to securely store and retrieve application-specific user authentication data. The repository is
used by applications that do not have a built-in means to easily sign-on a user given only a
logon name.

 The authentication repository implements the following interfaces:

• AuthenticationRepository (AR) - Used by applications to securely interact with the
repository to store and retrieve user authentication data.

• SecureBinding (SB) – Used by applications to establish a secure communications
binding with the respository before using the AuthenticationRepository interface. This
is the same interface that the context manager implements.

• ImplementationInformation (II) – Originally defined for the patient mapping agent,
this interface is added to the authentication repository so that applications, other
components, and tools, can obtain details about the authentication repository,
including its revision, when it was installed, etc.

9.5.4 Overall User Link Component Architecture
 The overall User Link architecture is illustrated in Figure 17: User Link Component

Architecture. (A description for how to interpret the notation used in this diagram appears in
the Appendix: Diagramming Conventions.)

 Context Management Specification, Technology and Subject-Independent Component Architecture

 90 Copyright 1999, Health Level Seven Version CM-1.0

CP

Application #N
Implementation

CP

Application #1
Implementation

CM SD

Context Manager
Implementation

Common
Context
Data

Optional User Mapping
Agent Implementation

MA

Optional External
Authentication
Repository
Implementation

AR

II

SB

II

II

Tool, etc.

Tool, etc.

Tool, etc.

SB

 Figure 17: User Link Component Architecture

9.6 User Link Sign-On Process
 The process for performing a context change transaction to set the user context is essentially

the same as defined for Patient Link for setting the patient context:

• An instigating application initiates a context change transaction and sets the user
context within the context manager. This context contains just the identity of the user.
It does not include the data used to authenticate the user.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 91

• The context manager consults the user mapping agent (if present) and it adds data to
the context manager’s user context. This data includes additional logon names by
which the user is known.

• The context manager surveys the other applications, and if the transaction completes,
they obtain pertinent user context data from the context manager.

 The high-level events that transpire when a user signs-on are summarized in Figure 18: User
Link Sign-On Process. This description assumes that a user mapping agent is present. The user
mapping agent is presumed to know the logon names for all users for all applications. (See
Section 9.19, Populating the User Mapping Agent.) The description omits most of the details
pertaining to the surveying of the participant applications by the context manager. This process
is identical to the process defined for Patient Link. (See Chapter 7.)

Application
trusted to
authenticate
users

(1) User signs-
on (e.g., enters
logon name and
password;
swipes security
card, etc.).

Context
Manager

Application
YY

Application
ZZ

(4) Context manager tells
other applications that
there is a new user
context.

(5) Each applications gets user’s
application-specific logon name from
the context manager.

(2) Application authenticates the user
and tells context manager the user’s
logon name; authentication data is not
passed on to the context manager.

Chain of Trust

User
Mapping
Agent
(Optional)

(3) Context manager tells mapping agent
context change is occurring; mapping
agent supplies the context manager with
other logon names for the user as known
to each application.

(6b) An application
optionally consults external
authentication data repository
to get application-
specific authentication data
for the new user and
automaticaly signs-on the
user.

External Authentication
Repository (Optional)

(6a) An application optionally
consults internal authentication
data repository to get application-
specific authentication data for the
new user and automatically signs-
on the user.

Figure 18: User Link Sign-On Process

9.7 Designating Applications for User Authentication
 Any User Link-enabled application can serve as the means by which a user signs-on to all of

the User Link-enabled applications on a desktop. To serve in this capacity, the User Link-
enabled application shall provide a mechanism for establishing and authenticating the user’s
identity.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 92 Copyright 1999, Health Level Seven Version CM-1.0

 The CMA does not specify an application’s user authentication mechanism, visual appearance,
or implementation. The authentication mechanisms can vary among applications. Applications
can be created whose sole purpose is to enable user authentication for desktops comprised of
User Linked applications.

 However, even though any User Link-enabled application has the potential to be used for
signing-on to a desktop of User Linked applications, the provider institution designates the
specific application or applications it trusts for this task. Only the designated applications shall
be allowed by a context manager to complete a context change transaction that involves a
change to the user subject.

 The one exception to this rule is that any application can set the user subject to empty. This is
so that any application can be used to log-off from a desktop of User Linked applications. (See
Section 9.14, Logging-Off and Application Termination.)

 A context manager implementation-specific configuration process is used for indicating the
designated applications for a particular desktop. One, several, or all of the User Link-enabled
applications on a desktop can be designated for this purpose. The designated applications for a
desktop can differ among desktops. It is recommend that a healthcare institution analyze the
use cases for their clinical applications to determine how to best deploy User Link.

 The decision criteria for a provider institution’s choice of whether to designate an application
for authenticating users is based upon whether they trust the application’s security capabilities
as it pertains to user authentication. For example, it might not be a good choice to designate an
application that maintains user passwords in plain text (which can easily be read by
unauthorized users).

9.8 Signing-On to Applications Not Designated for
Authenticating Users

 A User Link-enabled application that has not been designated for authenticating users on a
particular desktop shall not allow the user to sign-on to the application or the desktop. The
user must sign-on to a designated application in order to sign-on to a linked but non-designated
application. The user must break a non-designated application’s link with the common context
in order to sign-on to just the application.

 If the application has not been designated for authenticating users and it is the first to be
launched on the desktop, the user must either launch an application that has been designated
for authenticating users, or the user must break the link of the non-designated application. The
user can then sign-on to just the non-designated application.

 The CMA does specify a means by which an application can determine whether it has been
designated for authenticating users. See Section 11.3.7.1, InitiateBinding. This enables an

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 93

application to determine whether it has been designated before a user attempts to sign-on to the
application. An application can use this information to present or hide its user interface user
sign-on controls accordingly.

9.9 Application Behavior When Launched
 When a User Link-enabled application is launched on a desktop, it should join the common

context system established for the desktop. The application should set its user context to match
the current user context. (If the application is Patient Link-enabled, it should also set its patient
context to match the current patient context.)

9.10 Multiple Context Subjects
 User Link introduces the user as an additional common context subject. This creates the need

to define what happens to the patient context when the user context changes, and what happens
to the user context when the patient context changes. The simplest approach is to not assume
any dependencies between these subjects. (Future context subjects may require dependencies,
but this is beyond the scope of User link.)

 With this assumption, it should be possible for an application to independently set the context
data items for just one subject or for both subjects during the course of a single context change
transaction. At the end of the transaction the application has changed the user context, the
patient context, or both contexts. A context that is not altered by the application remains as it
was prior to the transaction. The details of managing multiple context subjects are described in
the following sections.

9.10.1 The Effect of Multiple Subjects on the Meaning of “Link”
 Even though there are multiple subjects in a common context system (i.e., patient and user),

there is only one link that coordinates the CCOW-compliant applications on a desktop. This
means that when an application is linked, it must “tune” to all of the subjects it is capable of
dealing with:

• An application that is only Patient Link-enabled tunes to just the patient context.

• An application that is only User Link-enabled tunes to just the user context.

• An application that is both Patient Link-enabled and User Link-enabled tunes to both
the patient context and the user context.

 Conversely, when the user breaks an application’s link, then the application is no longer tuned
to any context subject.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 94 Copyright 1999, Health Level Seven Version CM-1.0

 Independent of the number of context subjects it supports, a single visual cue is provided by an
application to indicate whether or not it is linked. The specification for this cue appears in the
CCOW User Interface Specification document.

9.10.2 Context Manager Support for Multiple Context Subjects
 Even though the user and patient subjects are logically independent, there are nevertheless

relationships between these subjects. These relationships require that context manager
implementations have an understanding of multiple subjects and potentially the inter-
relationships between the subjects. Further, some applications may need to be aware that they
are dealing with multiple context subjects. There are two basic ways to address these issues:

• Maintain a context manager per subject.

• Support multiple context subjects within a single context manager.

 The first approach has the advantage that context manager implementations can be specialized
to support a single subject. This would enable a Patient Link context manager from one vendor
to be used with a User Link context manager from another vendor. The disadvantages are that
applications would need to deal with two context managers.

 Further, the context managers would need some way to cooperate in order to coordinate
transactions that affect multiple subjects (such as a user context change). This coordination
would probably require the definition of additional context manager interfaces. This
coordination would also increase the complexity of the failure scenarios because of the
increased opportunity for partial failures (i.e., one context manager fails while the other
context manager continues to function).

 The second approach has the advantage that it enables the complexities of dealing with
multiple subjects to be hidden within the implementation of the context manager. Additional
context manager interfaces are not required, and partial failure scenarios are avoided.

 This approach also has the advantage that applications only need to deal with a single context
manager.

 The second approach has the disadvantage that context manager vendors would need to
support both Patient Link and User Link capabilities within their context managers. However,
it has been the case that complexity is pushed into the context manager whenever it simplifies
the creation of new applications and the reengineering of existing applications. The second
approach is the one that is pursued in this document because, from the perspective of an
application, it is simpler than the first approach.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 95

9.10.3 Effect of Multiple Subjects on Context Change Transaction
 For application flexibility and backwards compatibility, it is highly desirable that:

• An application does not have to know about both the user and patient subjects in order
to set the context pertaining to just one subject.

• Either or both the user and patient subjects can be updated within a single context
change transaction.

 However, these desires raise the question of how to treat context data for a subject that is not
“touched” during a transaction by the instigating application? There are two approaches:

1. At the completion of the transaction, the untouched subject is empty, meaning that it
does not contain any context items.

2. At the completion of the transaction, the untouched subject is unaffected, meaning that
it contains the same items and item values as it did before the transaction.

 The first approach is essentially consistent with the existing behavior defined for Patient Link.
Specifically, the context manager ensures that each context change transaction begins with an
empty context (i.e., no context items). With two subjects, only the subject that is touched
during a transaction will contain items at the completion of the transaction.

 However, a problem arises with this approach. An application that is only Patient Link-enabled
might be co-resident with applications that are Patient Link and User Link-enabled. If the
application that is only Patient Link-enabled changes the patient context, the user context
shared by the other applications will be lost (i.e., it will be empty).

 Applications could be required to know about both subjects and to explicitly copy the subject
that is not to be changed from the current context to the new context. However, this creates a
burden on the application developers. It is also a substantial impediment to backward
compatibility.

 The second approach avoids this problem, but requires changes to the behavior of applications
or to the behavior of the context manager. To ensure backward compatibility, changing the
behavior of applications is ruled out. This eliminates the option of requiring applications to
indicate which context subject or subjects it intends to set. (Further this would require changes
to the context manager’s interfaces.)

 A simpler solution involves a change to the context manager’s behavior that is nevertheless
backwards compatible with applications that are only Patient Link-enabled is described in
Section 9.10.4, Context Manager Treatment of Multi-Subject Context Data.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 96 Copyright 1999, Health Level Seven Version CM-1.0

9.10.4 Context Manager Treatment of Multi-Subject Context Data
 As is currently the case with Patient Link, when a context change transaction is started, the

context manager creates a transaction-specific version of the context data. This version of the
context data is initially empty and does not contain any user subject or patient subject context
items.

 The application that instigated the transaction then establishes the new context by setting
context data item values for the user and/or the patient subjects. The application then informs
the context manager that it has completed its context changes. The context manager shall then
copy the items from the previous context to the new context for any subject that the application
that instigated the transaction did not touch. This shall occur before the context manager
surveys the context participants.

 The net effect is that the instigating application sets context items for whichever subject(s) it
knows about. If a subject was “untouched” by the application, then the items for the subject
are automatically post-filled by the context manager to reflect the values as they were before
the context change transaction.

 For applications that are only Patient Link-enabled, this post-filling behavior emulates the
existing behavior defined for Patient Link. For applications that are User Link as well as
Patient Link-enabled, this behavior enables the user and patient subjects to be managed
independently.

 With these new rules, an application can just set subjects based upon the user’s explicit
gestures, such as selecting a patient, signing-on, or both. As with Patient Link, an application
only needs to set the user (or patient) subject context items that it is capable of setting. For
example, an application may not be able to set all of the corroborating data for a subject.
Similarly, a participant application does not have to deal with all subjects, or show all of the
context data items defined for a subject.

9.10.5 Application Treatment of Multiple Subjects
 An application can change either or both the patient and user subjects in a single context

change transaction. However, it is recommended that an application generally only change one
subject at a time, in direct response to a user command. This enables the user to relate changes
in the common context to application gestures that they have explicitly performed. Cause-and-
effect between a user’s gesture and a change in application state is an important element in
creating systems that are easy for people to use.

9.11 Access Control Lists
 Access control lists (ACL), which determine the privileges and capabilities a particular user

has, are presumed to be maintained by each application. While it is desirable that there be only

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 97

one centrally administered ACL, achieving this is beyond the scope of CCOW. However,
before central or distributed ACL’s can be properly used it is essential that the user be
authenticated. This is precisely the capability the CCOW User Link feature supports.

9.12 Empty Contexts
 With multiple independent subjects, applications need a way to explicitly indicate that the user

context, patient context, or both are empty. The reasons include:

• Enabling applications to change the user context without necessarily carrying over the
existing patient context.

• Enabling applications to log-off users by indicating that there is no user context.

 The capability to explicitly indicate that a context is empty is already defined in Revision 1.1
of the CCOW Architecture Specification, Section 5.6.5, Representing An Empty Context. The
stated rules are extended to apply to User Link. This means that the context can identify both a
user and a patient, just a user, just a patient, or neither.

 When one or both context subjects are empty, all of the applications in the context system shall
clearly indicate to the user that this is the case. The appearance of this indication is specified in
the CCOW User Interface Specification document.

9.13 Changing Users
 With User Link, it is advantageous for applications to support a change-user capability. This

capability enables a new user to sign-on without explicitly requiring that the current user first
log-off. There are two ways in which this can be implemented by an application:

• The application performs a single user context change transaction to establish the new
user as the current user.

• The application performs a two-step process. In the first step, the current user is
logged-off and the user context is set to empty (to indicate that there is no user). In the
second step, the new user is signed-on, and the user context is set to indicate who the
new user is.

 The first approach is recommended because it is the simplest and the most efficient from the
perspective of the context system (e.g., only one context change transaction per user change).
The second approach is acceptable, however the two step process should be invisible to users.

 The gestures needed to change who the user is, and the appearance of the application as it
pertains to this capability, are not specified by the CMA.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 98 Copyright 1999, Health Level Seven Version CM-1.0

9.14 Logging-Off and Application Termination
 User Link provides applications with an easy way to enable users to:

• Terminate a specific User Linked application on the clinical desktop4.

• Log-off from a specific User Linked application on the clinical desktop.

• Log-off from all of the User Linked applications on the clinical desktop.

 There are many possible ways in which these capabilities can be realized in a common context
system. The approach described in Table 1: User Linked-Enabled Application Behavior for
Termination and Log-Off is defined because it is simple for users to understand, yet enables
design flexibility for application developers.

 The basic idea is that each User Link-enabled application optionally supports gestures that
enable the user to terminate the application, log-off from just the application, or log-off from
all of the User Linked applications that are resident on the same desktop.

 4 Terminating all of the applications on a desktop is not supported because there is no way to indicate
this event via a change to the user context subject.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 99

 Table 1: User Linked-Enabled Application Behavior for Termination and Log-Off

 All User Link-enabled applications must behave properly as participants in a context change
transaction, as described in Table 1. All User Link-enabled applications must be able to
properly deal with the context when the user context is empty.

 However, the CMA does not specify the user gestures that are needed to initiate the actions
described in Table 1. The gestures may be different among applications. Further, applications
may chose which action gestures, if any, it will support. For example:

• A particular application might enable a user to terminate it, but might not enable the
user to log-off from it or log-off from all of the User Linked applications on a desktop.

• A particular application might not enable the user to terminate it, log-off from it, or
log-off from all of the User Linked applications on a desktop.

 An application that enables the user to log-off shall clearly indicate that in doing so, the user
will cause the application to break its link with the common context system.

 There are several subtleties involved with the behaviors described in Table 1:

User Action Effect on Application
That User’s Action Is

Directed At

Effect on the Common
Context

Effect on Other User
Linked Applications on

the Desktop
Terminate a specific User
Linked application.

Application leaves the
common context, ceases
execution, and exits

None. None.

Log-off from a specific
User Linked application.

See Interaction Diagram
15: User Logs-Off From
One Application.

Application:
• continues to run,
• logs the user off,
• visually indicates that

it has no user,
• leaves common

context (i.e., breaks
link)

None. None.

Log-off from all of the
User Linked applications
that are resident on the
same desktop.

See Interaction Diagram
16: User Logs-Off From
Desktop.

Application:
• continues to run,
• instigates a context

change transaction to
set the user context to
empty,

• visually indicates that
it has no user,

• continues to be a
context participant.

User subject changed to
empty.

When the context change
is completed, each
application:
• continues to run,
• logs the user off,
• visually indicates that

it has no user,
• continues to be a

context participant.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 100 Copyright 1999, Health Level Seven Version CM-1.0

• Any application can set the user context to empty, including applications that have not
been designated for authenticating users. This enables any application to be used for
logging-off from all of the User Linked applications on a desktop.

• A user might terminate the application(s) designated for authenticating users. The next
user will need to re-launch one of the designated applications before being able to sign-
on to the User Linked desktop.

• It is conceivable that the collective capabilities of a particular set of User Link-enabled
applications on a desktop result in a system that does not provide any way for the user
to log-off from the desktop. A site must be mindful in its choice of applications in
order to prevent this from happening.

 One issue with desktop log-off is the treatment of “busy” applications. Busy applications affect
single sign-on as well as desktop log-off, and is dealt with in Section 9.16, Reauthentication
Time-out

 A reauthentication time-out requires the currently signed-on user to reauthenticate herself
before being allowed to continue using the User Linked applications on a clinical desktop. The
time-out occurs when the user has not interacted with the User Link applications for an
appreciable period of time. The CMA does not specify reauthentication time-out policy or
implementation. It is an application decision as to how and when to initiate a reauthentication
time-out.

 To support this capability, the Desktop subject is defined. This subject contains context items
that applications use to coordinate their visual presence on the clinical desktop. The actual
names, meaning, and data types used to represent the values for desktop subject context data
items are defined in the document Health Level-Seven Standard Context Management
Specification, Data Definition: Desktop Subject.

 Any application can initiate a reauthentication time-out by performing a context change
transaction that sets the appropriate desktop context item to indicate that a reauthentication
time-out has transpired. This shall have the effect of causing all of the other User Linked
applications on the desktop to blank their data displays. The applications shall maintain their
internal state as the user left it prior to the time-out.

 The designated applications on the desktop shall also present their logon screens to enable the
current user to sign-on again. If the current user signs-on again, then the applications resume
as they were. If a different user signs-on, then the applications handle this as they do whenever
there is a change of user.

 Busy Applications.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 101

User Context
Manager

Participating
Application YY

Participating
Application ZZ

User chooses log-off

User logged off
application AA

ONLY

Leave common context

Participating
Application AA

 Interaction Diagram 15: User Logs-Off From One Application

User Context
Manager

Participating
Application YY

Participating
Application ZZ

User logged off from
desktop

User chooses desktop
 log-off

Set user context to empty

User context has changed

User context has changed

empty

empty

Get user context

Get user context

Participating
Application AA

 Interaction Diagram 16: User Logs-Off From Desktop

9.15 Automatic Log-Off
 An automatic log-off logs the current user off of the User Linked applications on a desktop

when the user has not interacted with the applications for an appreciable period of time.

 Any application can initiate an automatic log-off by performing a context change transaction
that sets the user context to empty. This will have the effect of causing all of the other User
Linked applications on the desktop to also log the user off. Once an automatic log-off has
completed, the next user signs-on via one of the designated applications.

 In contrast to a user-initiated log-off, an automatic log-off is initiated automatically by an
application. The CMA does not specify an automatic log-off policy or implementation. It is an
application decision as to how and when to initiate an automatic log-off.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 102 Copyright 1999, Health Level Seven Version CM-1.0

 For example, an application might monitor user interactions with the mouse and keyboard to
determine whether or not the user is actually engaged in using any of the applications on the
desktop. The capability to do this depends upon the application’s implementation and the
underlying desktop technology.

 An application that initiates a context change transaction to affect an automatic log-off must
be prepared to handle the condition in which surveyed applications are busy, or have responded
with a conditional accept of the transaction. In this case the instigating application shall cancel
the context change transaction. It shall not present a dialog to the user, as this could be
disruptive or confusing to the user. The application may elect to initiate an automatic log-off
again in the future.

 It is necessary that the administrator is able to configure the behavior of automatic log-off as it
pertains to a clinical desktop. Otherwise, the administrator has no control over an application
whose policy for initiating an automatic log-off interferes with the users’ work.

 Therefore, any application that initiates an automatic log-off shall provide a means for
controlling this capability. Specifically, it shall be possible to configure that application in
terms of whether the log-off it initiates is desktop-wide (and therefore affects all of the context
participants), or is limited to just the application. If the automatic log-off is limited to just the
application, then the application shall not perform a context change transaction when the
automatic log-off interval transpires. Instead, it shall just log the user off from itself.

9.16 Reauthentication Time-out
 A reauthentication time-out requires the currently signed-on user to reauthenticate herself

before being allowed to continue using the User Linked applications on a clinical desktop. The
time-out occurs when the user has not interacted with the User Link applications for an
appreciable period of time. The CMA does not specify reauthentication time-out policy or
implementation. It is an application decision as to how and when to initiate a reauthentication
time-out.

 To support this capability, the Desktop subject is defined. This subject contains context items
that applications use to coordinate their visual presence on the clinical desktop. The actual
names, meaning, and data types used to represent the values for desktop subject context data
items are defined in the document Health Level-Seven Standard Context Management
Specification, Data Definition: Desktop Subject.

 Any application can initiate a reauthentication time-out by performing a context change
transaction that sets the appropriate desktop context item to indicate that a reauthentication
time-out has transpired. This shall have the effect of causing all of the other User Linked
applications on the desktop to blank their data displays. The applications shall maintain their
internal state as the user left it prior to the time-out.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 103

 The designated applications on the desktop shall also present their logon screens to enable the
current user to sign-on again. If the current user signs-on again, then the applications resume
as they were. If a different user signs-on, then the applications handle this as they do whenever
there is a change of user.

9.17 Busy Applications
 When a context change transaction is conducted, it is possible that an application is unable to

participate because it is busy. For example, a single-threaded application that has a modal
dialog open will not be able to respond until the dialog is closed.

 User Link deals with busy applications the same way as for Patient Link. Specifically, a busy
application effectively prevents a context change transaction from occurring. The only option
for the application that instigated the transaction is to ask the user if they want to break the
link.

 Breaking the link has the potential to compromise user security. With a broken link, multiple
users would effectively be logged on to different applications on the same desktop.

 However, this situation is not substantially different from breaking the Patient Link, which
results in different applications on the same desktop being tuned to different patients. Further,
without the option to break the link, CMA support for some important use cases, such as
“stat” admissions (see Section 7.12, Stat Admissions), would be lost.

9.18 Co-Existence with Applications Not CCOW-Enabled
 User Link-enabled applications will co-exist with applications that are not User Link-enabled.

Users will still need to manually sign-on to and log-off from each of the applications that are
not User Link-enabled.

 Co-existence can create confusion among users, as they might assume that all of the
applications on a desktop are User Link-enabled. Training, plus visual cues documented in the
CCOW User Interface Specification are partial solutions. Ultimately, users will come to learn
which applications are User Link-enabled, and which are not, and will adjust their use of these
applications accordingly.

9.19 Populating the User Mapping Agent
 The user mapping agent is conceptually similar to the patient mapping agent defined for a

Patient Link common context system. For example, both types of mapping agents implement
the same interface specification, MappingAgent. However, the behavior and management of

 Context Management Specification, Technology and Subject-Independent Component Architecture

 104 Copyright 1999, Health Level Seven Version CM-1.0

the user mapping agent is substantially influenced by security considerations. Several of these
considerations are described in this section. The role of the user mapping agent is illustrated in
Figure 19: User Subject Context Data Mapped for Different Applications.

Application
“BBB”

Application
“AAA”

User.Id.Logon.AAA robs
User.Id.Logon.BBB robert_seliger
User.Id.Logon.CCC rseliger

Mapped User Context Data Within Context
Manager:

GetItemValues(… ,
“User.Id.Logon.AAA”, …)

Application
“CCC”

GetItemValues(… ,
“User.Id.Logon.CCC”, …)

GetItemValues(… ,
“User.Id.Logon.BBB”, …)

Three applications, each of which knows the signed-
on user by a different logon name.

 Figure 19: User Subject Context Data Mapped for Different Applications

 In order for the user mapping agent to be able to provide additional logon names for users, it
must be populated with the necessary logon names. However, unlike the patient mapping
agent, for which there exists healthcare standards that can be used to obtain the necessary
patient data (e.g., HL7’s Admission/Discharge/Transfer messages), an equivalent means does
not exist for user data. In the absence of applicable standards, the means by which a user
mapping agent is populated depends upon the user mapping agent implementation.

9.20 Authentication Repository
 The chain of trust has the potential to maximize the overall security of a common context

system because the data used to authenticate a user is never passed between applications and
therefore cannot be easily intercepted or spoofed. However, not passing around this data
creates a problem when there are applications that require user authentication data to perform
a user sign-on. For example, many existing healthcare applications require the user’s password
to establish sessions with their underlying databases.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 105

 The common context system therefore includes a user authentication data repository as an
additional context management component. This repository enables applications to securely
maintain application-specific user authentication data. The repository is used by applications
that do not have a built-in means to easily sign-on a user given only a logon name. The
repository may be implemented as a distributed or centralized service.

 For example, some applications obtain the user’s password from the user and then hand it off
to an underlying database. The database does the actual authentication. The security
capabilities of the database prevent these applications from retrieving user passwords.
Therefore, it is not possible for these applications to sign-on a user knowing only the user’s
logon name. For these applications, an external means of maintaining user logon names and
associated authentication data is required.

 The authentication repository provides a way of doing this that is minimally invasive to the
application. The repository is not used for authenticating users. Rather, it enables existing
applications that need user authentication data to sign-on the user to have a means for
obtaining this data when participating in a User Link common context system.

 The User Link user authentication data repository provides the capability to securely store the
data that an application uses to authenticate its users. The application can use a user’s logon
name to retrieve the user’s authentication data from the repository. The application can then
use the authentication data to establish a user session with a database or other underlying
application services.

 In keeping with the spirit of the CMA, the interfaces to the authentication repository, but not
its implementation, are defined. These interfaces enable an application to securely retrieve a
user’s authentication data and to update this data when necessary (for example, if the
application periodically requires that users change their passwords).

9.20.1 Repository Implementation Considerations
 The repository can be implemented as a central or distributed service that services multiple

applications. However, the repository shall always appear as a private service to each
application. This means that an application should never be aware that there are other
applications using the repository.

 The user authentication data stored in the repository on behalf of an application shall be
encrypted by the application prior to being communicated to the repository. The encryption
technique that is used is determined by the application. The authentication data shall remain
encrypted within the repository, as the repository never has the need to interpret or use this
data.

 The interface AuthenticationRepository enables an application to put tuples comprised of a
logon name and a corresponding bit stream (representing the user’s authentication data) into

 Context Management Specification, Technology and Subject-Independent Component Architecture

 106 Copyright 1999, Health Level Seven Version CM-1.0

the repository. This interface also enables an application to retrieve a user’s authentication
data using the user’s logon name.

 The means by which the repository maintains its data must be secure and shall guard against
security attacks. However, the security mechanisms that are employed to achieve these
objectives are an authentication repository implementation decision.

9.20.2 Populating the Repository
 The authentication repository needs to be populated with the authentication data for each user

for each application that it services. One way to do this is to create a batch process that loads
the necessary data. However, in many cases the necessary data is inaccessible. For example,
most database management systems do not provide a means for accessing the user passwords
that they store.

 A simpler alternative is to incrementally populate the repository. This can be accomplished by
involving each of the applications that use the repository in the process of populating the
repository, as follows:

• When the context manager informs the application that the user context has changed,
the application obtains the logon name for the new user from the context manager.

• The application then accesses the repository to securely retrieve the user’s
authentication data. The user’s logon name is supplied as the search parameter.

• If the repository cannot find the user logon name, which will be the case if the
repository has not yet been populated with data for the user, then it informs the
application that the logon is not known.

• The application then prompts the user to enter his/her authentication data by whatever
means the application normally uses (e.g., a password dialog box).

• The application attempts to sign-on the user using whatever underlying mechanism
(e.g., database) it normally uses to do this.

• If the user is successfully signed on, then the application updates the authentication
repository with the user’s authentication data, using the user’s logon as the update key.
The application shall encrypt the user’s authentication data prior to putting the data in
the repository.

 This scheme is relatively easy to implement for almost any application. It is essential, though,
that the repository and its interfaces are secure, as detailed in Chapter 11.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 107

10 Chain of Trust

 This chapter defines the behaviors, algorithms, policies, and protocols that User Link-enabled
applications and components must adhere to in order to properly realize the chain of trust.

10.1 User Context Change Transactions and the Chain of Trust
 The major difference between a context change transaction that involves the user context and a

transaction that only involves the patient context is support in the former for the chain of trust.
Additional application and component behaviors are defined to prevent the chain of trust from
being violated.

 Two types of defenses that are required:

• The applications and components that participate in the chain of trust must be able to
authenticate each other’s identity. The objective is to prevent rogue applications or
components from impersonating a real application or component as a means to
manipulate the user context. Such manipulations could result in an unauthorized user
gaining access to the User Link-enabled applications.

• The applications and components that participate in the chain of trust must be able to
validate the integrity of user context data that they communicate to each other. The
objective is to prevent a rogue program from modifying the data as it is passed
between applications and components as a means to manipulate the user context. Such
manipulations could result in an unauthorized user gaining access to the User Link-
enabled applications.

 Techniques for creating the chain of trust using passcodes, message authentication codes, and
digital signatures are described next.

10.2 Creating the Chain of Trust
 There are three general sources of mechanisms for creating the chain of trust:

• Mechanisms incorporated into existing commercially available object infrastructures,
such as those based upon CORBA or COM.

• Mechanisms based upon existing commercially available secure communications
infrastructures, such as the Secure Socket Layer service (SSL) or the Secure Hyper-
Text Transfer Protocol (S-HTTP).

 Context Management Specification, Technology and Subject-Independent Component Architecture

 108 Copyright 1999, Health Level Seven Version CM-1.0

• Mechanisms based upon existing widely available security building blocks, such as
public key / private key encryption.

 These alternatives are discussed next.

10.2.1 Object Infrastructures
 It is conceivable that the chain of trust could be realized using the security mechanisms built

into commercially available object infrastructures such as those based upon CORBA or COM.
Unfortunately, these infrastructures currently employ security models that are fundamentally
different from what is needed for User Link:

• Security for these infrastructures is based upon keeping track of who the user is and
their respective access privileges.

• To do this requires that the user has signed-on to the underlying operating system.

• However, signing on at the operating system level takes too much time. This is the
very problem that User Link is trying to solve.

 For example, security in Microsoft’s COM-based infrastructure is based upon tracking who
the user is and what their permissions are. This means that when security is enabled for a
COM interface, a COM server accepts or rejects a COM client’s access attempts based upon
the privileges of the user on whose behalf the COM client is working. This does not work for
User Link because a COM server (specifically, the context manager) needs to accept or reject
accesses based upon which application is the COM client. The user is not relevant in this case.

 It may be possible to establish a stylized approach for adapting object infrastructure security
mechanisms to realize the chain of trust. However, this could make it particularly difficult to
define a technology-neutral specification for the chain of trust. This result could result in
different User Link architectures for different technologies. This is counter to the overall CMA
objective of technology-neutrality.

10.2.2 Secure Communications Protocols
 User Link-enabled applications and the various CMA components could communicate using a

secure communications protocols, such as the Secure Sockets Layer (SSL) service. SSL
enables secure (i.e., encrypted) transmission of data between a client and a server. It also
enables a client to authenticate a server (and a server to authenticate a client).

 SSL uses the RSA public key encryption system for authentication and for data integrity and
confidentiality. Of interest for the chain of trust is the SSL capability for clients and servers to
authenticate each other. An SSL server uses its private key to create a digital signature. Public
keys are issued to prospective clients. The public key is used by the client to authenticate the

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 109

server by decoding the server’s signature. Only a signature that has been encoded using the
server’s private key can be (easily) decoded via the server’s public key.

 For example, in the chain of trust, an SSL connection would be established between an
application that has been designated for authenticating users and the context manager. In this
scenario, the application is an SSL server, while the context manager is an SSL client.

 SSL and its secure communications counterparts, such as S-HTTP, provide off-the-shelf
mechanisms for implementing the chain of trust. However, this technology has not been
integrated with popular object infrastructures, such as those based upon COM or CORBA.

 While secure communication services could provide a means for the implementing the chain of
trust, the practical implications of using multiple communications technologies within the User
Link architecture are a cause for concern. For example, it could become overly complicated to
have some of the communications be via COM or CORBA interfaces, while other
communications used SSL or S-HTTP.

 Further, the chain of trust generally does not require confidentiality. For example, the User
Link architecture does not require that sensitive data, such as a user’s password, be
communicated between applications. Secure communication channels are overkill and are not a
good fit for User Link.

10.2.3 Security Building Blocks
 The security building blocks that are available on most popular operating systems can form the

basis for realizing the chain of trust. The two building block of particular interest are:

• Digital signatures.

• Secure (or one-way) hashing.

 Digital signatures, which cannot be easily forged, are typically used by people as a means to
authenticate each others’ identity whenever they communicate electronically. However, a
digital signature also enables an application or component to identify itself in a way that can be
authenticated whenever it communicates with another application or component.

 Digital signatures are formed using public key / private key encryption techniques. While these
techniques enable encryption, they also enable the formulation of digital signatures. An
application or component formulates its digital signature using its private key and sends the
signature along with the data that it wants to share. The recipient of a signed message applies
the sender’s public key to the signature to authenticate the sender and to verify the integrity of
the data that was sent.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 110 Copyright 1999, Health Level Seven Version CM-1.0

 There are several public key / private key algorithms and related standards. Commercial
implementations of many of these algorithms are available in a variety of technologies. RSA is
an example of an algorithm that has been widely implemented.

 A secure hash function is used for producing a unique numeric surrogate from an arbitrary
data stream. It is improbable that two different data streams will yield the same hash value. A
secure hash function is an essential part of the infrastructure needed to support the use of
digital signatures.

 Specifically, a secure hash function enables the efficient computation of a digital signature. A
secure has function also plays a role in enabling public keys to be reliably distributed. It is
essential that the holder of a public key is able to determine who (or what) the key belongs to.
Otherwise an impostor could present its own public key while claiming to be someone or
something that it is not. The holder of the public key would mistake subsequent
communications as coming from a valid source when in fact it came from an impostor.

 There are several secure hashing algorithms and related standards. Commercial
implementations of many of these algorithms are available in a variety of technologies. MD5 is
an example of an algorithm that has been widely implemented.

 Taken together, digital signatures and secure hashing could be used in the chain of trust as the
means for User Link-enabled applications and User Link components to authenticate each
others’ identity each time they communicate. This capability is fundamental to the
establishment and maintenance of the chain of trust.

 To accomplish this, a digital signature would be explicitly included as a method parameter for
each CMA-specified interface that required this level of security. The use of digital signatures
enables the specification of a system that has the desired User Link semantics and that can be
readily implemented using existing security standards and technology.

 Creating a system that employs digital signatures for applications and components is simpler
than creating a signature-based system for people. This is because the population of
applications and User Link components that require signatures is small compared to the
number of users of the system. Further, the population of applications and User Link
components does not change near as often as the user population. The result is that the work
required to create and maintain the chain of trust is substantially less than would be the case if
user signatures were required.

 Another advantage of digital signatures is that they can be used to ensure the integrity of any
data communicated during interactions among and between User Link components and User
Link-enabled applications. The recipient of the data can use the signature to determine if the
data has been tampered with between the time it was sent and the time it was received.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 111

 Method-based digital signatures fit well with the component-based Context Management
Architecture. For example, realizing the chain of trust in this manner enables a technology-
neutral specification for the chain of trust. This is because the approach can exploit
capabilities common to public key / private key implementations that are commercially
available in multiple technologies. Further, the ways in which digital signatures are used can be
arranged to achieve the desired security behaviors needed for User Link.

 The trade-off is that more effort is required to architect the chain of trust than would be the
case if a standard “off-the-shelf” component-based solution was available. This trade-off is
viewed as acceptable. Therefore the approach pursued in the CMA is to use method-based
digital signatures as the basis for the chain of trust.

10.2.4 Security Attacks On the Chain Of Trust
 The primary challenge for realizing the chain of trust is minimizing the likelihood that an

intruder is able to violate the chain of trust in order to obtain access to a User Link-enabled
application. This violation could occur if a rogue program was able to set the user context to
represent a user who either has not been authenticated, or who is different from the user who
has been authenticated.

 The chain of trust based upon the security building blocks described in Section 10.2.3,
Security Building Blocks, defends against the security attacks described in the table below, all
of which are directed at manipulating the user context. Refer to Figure 18: User Link Sign-On
Process for the specific trust relationships:

 Context Management Specification, Technology and Subject-Independent Component Architecture

 112 Copyright 1999, Health Level Seven Version CM-1.0

 Table 2: Chain of Trust Attacks and Defenses

 The chain of trust does not necessarily need to defend against every type of attack, including
attacks to gain access to the user’s logon name (i.e., Step #4). A user’s logon name is easy to
guess or obtain, and in the absence of user authentication data (e.g., a password) a logon name
does not provide a means for gaining access to a system.

Attack Defense

Attempt to impersonate an application in order to set
the user context (Step #2).

An application presents its signature to the context
manager in order to set the user context. The context
manager uses the signature to authenticate the
application to ensure that has been designated for
authenticating users.

Attempt to impersonate the context manager so that
the user context that the user mapping agents sees,
and therefore maps, is bogus (Step #3).

The context manager presents its signature to the
mapping agent when the mapping agent gets the user
context data from the context manager. The mapping
agent uses the signature to authenticate the context
manager.

Attempt to impersonate the user mapping agent as a
means to set bogus user logon names within the user
context (Step #3).

The mapping agent presents its signature to the
context manager when it sets user context data. The
context manager uses the signature to authenticate the
mapping agent.

Attempt to impersonate the context manager so that
the user context that a participant application sees is
bogus (Step #5).

The context manager presents its signature to the
participant application when the application gets the
user context data from the context manager. The
application uses the signature to authenticate the
context manager.

Attempts to impersonate the authentication repository
as a means to obtain user authentication data from an
application (Step #6b).

The application encrypts the user authentication data
using the authentication repository’s public key before
providing the data to the repository. Only the real
authentication repository can decrypt this data.
Further, the application pre-encrypts the data using an
application-specific encryption scheme. The data
remains encrypted even when stored inside the
repository.

Attempt to impersonate an application as a means to
obtain user authentication data from the
authentication repository (Step #6b).

An application must present its signature to the
authentication repository when it gets user
authentication data from the repository. The
repository uses the signature to authenticate the
application. Further, the application encrypts the
authentication data before storing it in the repository.
Only the application that encrypted the data can
subsequently decrypt it.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 113

 The chain of trust also does not defend against applications that do a poor job of authenticating
users (i.e., Step #1). Provider institutions must ensure that the applications they designate for
authenticating users meet their security needs.

 Other types of attacks that are not defended by the chain of trust can result in a denial of
service, which may cause a common context system to function improperly. For example, a
rogue program might continually invoke context manager methods, causing the context
manager’s performance to degrade while it services these invocations.

 These programs do not breech security in terms of enabling unauthorized access to User Link-
enabled applications, but they do result in inconveniences for users of the system. In general it
is extremely hard, and can be quite costly, to defend against denial of service attacks.

 The most effective preventatives for denial of service attacks begin with physical security, in
which a malicious user is denied access to any of the computers within a system. Without
access to the system, a malicious user will have a much harder time installing rogue programs.
Physical security is strongly encouraged, but it is beyond the scope of the CMA to specify the
necessary measures.

 Additional potential limitations of the chain of trust are described in Section 10.2.5, Chain of
Trust Implementation Limitations.

10.2.5 Chain of Trust Implementation Limitations
 A secure implementation of the chain of trust requires that the User Link components (i.e.,

context manager, applications, mapping agent, authentication repository) all have a robust way
of authenticating each other’s identity. Providing this capability requires the use of underlying
operating systems primitives, including file access privileges and memory protection
mechanisms.

 Not all operating systems implement these security primitives to the same degree of robustness.
The approach for implementing the chain of trust described below is therefore fundamentally
limited by the capabilities (or lack thereof) of the underlying operating system upon which a
User Link system is deployed.

 In particular, Windows NT and most Unix-based operating systems provide the necessary
primitives. User Link systems deployed on these operating systems will offer robust security
capabilities. In contrast, Windows 95 and Windows 98 lacks many of the necessary primitives.
User Link systems deployed on this operating system will offer security capabilities that are
more robust that native Windows 95/98, but which are still susceptible to security violations.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 114 Copyright 1999, Health Level Seven Version CM-1.0

10.3 Digital Signatures and CMA Components
 Digital signatures created using a public key / private key encryption system are incorporated

into the component interfaces defined for User Link-enabled applications and components. In
the chain of trust these signatures (and corresponding keys) are not associated with a user, but
rather with an application or component. The signatures and keys for a particular application
are the same independent of who the user is.

 Several of the methods defined for the existing context manager interfaces already require that
applications identify themselves, but in a non-secure manner (e.g.,
ContextData::SetItemValues). The participant coupon, which is a 32-bit randomly generated
integer, is assigned by the context manager to an application when it joins a common context
system (via ContextManager::JoinCommonContext). This coupon is subsequently used by the
application to identify itself when it calls a context manager method that requires application
identification.

 The methods requiring applications to identify themselves do so in order to enforce the correct
behavior of a common context system. For example, only the application that instigated a
context change transaction can set the context data. Similarly, only the instigating application
can end the transaction in progress.

 An elaboration of this approach is to use digital signatures as a means for applications to
identify themselves in a manner that can be authenticated. It is relatively straightforward to use
digital signatures in addition to coupons whenever it is necessary to authenticate an application
or component.

 Based on this approach, new CMA interfaces are defined that enable the establishment of the
necessary signature-based security relationships among and between applications and context
management components. New interfaces that subsequently enforce these security relationships
as applications and components interact during the course of a context change transaction are
also defined.

10.3.1 Public Key / Private Key Encryption as a Means for Generating Signatures
 Providing applications with digital signatures requires that each application or component that

is to be trusted is assigned a public key and private key based upon an algorithm such as RSA.
The private key is used to create a digital signature. The corresponding public key is used to
verify the signature.

 For example, an application supplies its participant coupon and its signature to the context
manager whenever it performs a context manager method that requires the context manager to
authenticate the identity of the application and validate the integrity of the data sent by the
application.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 115

 A digital signature is formed by applying a secure hash function (alternatively known as a one-
way hash function) to the data that is to be transmitted. The resulting hash value is referred to
as the message digest, as it is a numeric surrogate for the plain-text message. It is
computationally improbable that two message will produce the same hash value5.

 The message digest is then encrypted by the sender using its private key6. The digest can only
be decrypted using the sender’s public key. In other words, any party holding the sender’s
public key can authenticate that the message came from the sender and that the data sent was
received in tact7.

 The encrypted hash value enables the sender of the data to ensure that the receiver of the data
can authenticate the sender’s identity. The receiver uses the same secure hash function as the
sender to perform its own computation of a hash value using the data it received. Note that the
data was not encrypted. Just the hash value computed from the data was encrypted.

 The receiver compares the hash value it computed with the value it decrypted. The encrypted
hash value can only be successfully decrypted using the public key that matches the sender’s
private key. If the hash values match, then the data was sender’s identity has been confirmed,
and the integrity of the data has been validated.

 If the hash values do not match, then either the data was tampered with between the time it was
sent and was received, or the sender is not who it claims to be.

 The algorithm for creating the hash value must be compatible with the public key / private key
scheme that is employed. For example, if RSA is the public key / private key scheme that is
used, then an RSA-supported hashing algorithm (e.g., MD5, SHA-1) must be employed to
create the hash value. When the signature is computed in this manner, authenticity and data
integrity can be verified.

 The specific secure hash algorithm and the public key / private key scheme that is employed is
technology-specific. Each of the HL7 Context Management Technology Mapping
Specifications indicates the secure hash algorithm public key / private key scheme that is
needed for a particular technology-specific implementation.

 5 When a secure hash function is used, it is also computationally infeasible to invert the computed
hash value. Specifically, given the secure hash function f and input value x, f(x) is relatively easy to
compute. However, even knowing f it is infeasible to compute x given f(x).

 6 The signing of a message digest rather than of the plain-text message is a performance expediency.
A digest is typically several bytes in size, whereas the message represented by a digest can be of
arbitrary size. It is generally faster to encrypt the digest rather than the entire message.

 7 This is the inverse of the process used to send a secret message, in which the sender encrypts data
with the intended recipient’s public key. Only the holder of the private key can decrypt the data.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 116 Copyright 1999, Health Level Seven Version CM-1.0

 The overall process for signing a message is illustrated Figure 20: Signing A Message.

Secure Hash

Secure Hash

Value

Encrypt Value

Value

COMPARE

By private key By public key

ReceiverSender
Original message

Signed message

Value
Decrypt

Copyright ©Jung Joo-won, 1996, http:// simac .kaist.ac.kr/~jwjung/seminar/ ssl-ca-inst/slides.en

 Figure 20: Signing A Message

10.3.2 Incorporation of Signatures into the Context Management Architecture
 Digital signatures are incorporated in the Context Management Architecture to enable

authentication between User Link-enabled applications and User Link components. For
example, digital signatures enable the context manager to authenticate the identity of any
application that performs a context manager method. The context manager can also ensure the
integrity of the parameter values that it received from the application.

 The context manager accomplishes this by computing a hash value from the input parameters
it receives from the application. To obtain the application-computed hash value from the
signature the context manager must use the same public key / private key scheme as the
application. The context manager must also use the same hash algorithm as the application.

 The context manager compares the hash value it computes to the hash value it has obtained by
decrypting the application’s digital signature. If the two hash values match, than the method
invocation is authentic and data integrity is ensured.

 Otherwise, there has been a breech of security: either the method was invoked by an impostor
for the application, and/or the parameter values provided by the application were tampered
with after they were sent but before they were received by the context manager. The context
manager rejects the method invocation.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 117

 To be more specific, for the context manager method SecureContextData::SetItemValues, the
hash value would be computed using the value of the participant application’s coupon (i.e.,
input parameter participantCoupon), current context change transaction coupon8 (i.e., input
parameter contextCoupon), the names of the items whose values are to be set (i.e., input
parameter itemNames), and the values for these items (i.e., input parameter itemValues).

 The use of a hash in forming a signature is illustrated Figure 21: Forming Signature Using
Method Parameters.

SetItemValues(
 participantCoupon = 1762829,
 itemNames = [“User.id.logon.3M_Clinical_Workstation”],
 itemValues = [“robs”]
 ContextCoupon = 998834,
 Signature = 0110101000100010011…0011
)

Authenticating
Application XXX

Context Manager

SD

Private key for XXX

Public key for XXX

Context manager uses XXX’s public key to decrypt the
hash value encrypted in the signature. The context
manager uses the same algorithm as XXX to compute a
has value from the parameter values provided in the call
to SetItemValues. The context manager compares to two
hash values. If they match, the call is valid.

XXX’s signature is the result of XXX using its private key
to encrypt a has value computed using the parameter values
it provides in the call to SetItemValues … all of the
applications and the context manager use the same public
key/private key scheme for generating signatures. They must
also use the same hash algorithm.

 Figure 21: Forming Signature Using Method Parameters

 8 This coupon denotes the current context change transaction, not the application. Each context
change coupon is unique over the execution lifetime of a particular context manager.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 118 Copyright 1999, Health Level Seven Version CM-1.0

10.3.3 Computing a Digital Signature
 Secure hash algorithms use a character string as the representation of the data value upon

which a hash value is to be computed. Therefore, parameter values that are to be protected
from tampering during a method invocation must be converted to character strings. These
strings must then be concatenated to form a single string. It is the concatenated string that is
used to compute the hash value.

 The rules for concatenation are as follows. These rules take into account the fact that the
mapping of CMA interfaces to specific technologies may alter the order in which method
parameters are declared and/or may require additional technology-specific parameters. The
rules ensure that the process for creating signatures is invariant across technologies:

• The architectural specification for each method that is to be signed will define which
method parameters must be protected from tampering, and are therefore to be used in
formulating the signature.

• The architectural specification for each method that is to be signed will define the
order in which the string representations of the parameters are to be concatenated.

• The string representation of an array parameter starts with the first element in the
array and ends with the last element in the array.

• A parameter or array element whose value is null or empty is omitted from the string.

• An array that does not contain any elements (i.e., the array length is zero) is omitted
from the string.

• Delimiters are not required because there is no need to parse the string.

 For example, the concatenated string that might be produced based upon the example in Figure
21: Forming Signature Using Method Parameters would look like:

 1762829User.id.logon.3M_Clinical_Workstationrobs998834

 In another example, where the value of the context item “logon” is null, the concatenated string
would look like:

 1762829User.id.logon.3M_Clinical_Workstation998834

 In a final example, where the context items are:

• User.id.logon.3M_Clinical_Workstation = “robs”

• User.co.GivenName = “Robert Seliger”

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 119

 The concatenated string would look like:

 1762829User.id.logon.3M_Clinical_WorkstationUser.co.GivenNamerobsR
obert Seliger998834

 The rules for representing various data types as character strings are specified in Section
11.2.8, Representing Basic Data Types as Strings.

 Finally, once the hash value has been computed, encrypting the hash value with the sender’s
private key generates the digital signature.

10.3.4 Public Key Distribution
 Public key distribution is the process by which an entity, such as the context manager, makes it

public key available to the other entities, such as an application, that need to use the key. This
process must ensure that a receiving entity can reliably establish the identity of the entity that
created the key. If this is not accomplished than it is possible for a rogue entity to impersonate
a valid entity by representing the valid entity’s public key as its own.

 In contrast, private keys are not distributed, but remain the secret of the owner of the
corresponding public key. A discussion about protecting private keys appears in Section
10.3.4.3, Protecting Private Keys.

 There are a variety of ways that keys can be distributed, including via a certificate authority.
However, the approach chosen for the CMA minimizes the amount of infrastructure that is
required to create a User Link solution, yet is upwards compatible with more elaborate
approaches.

 Specifically, public keys are exchanged as part of a dynamic process that occurs each time a
User Link-enabled application9 or user Link component is launched. This approach enables a
high-degree of security while minimizing the effort and cost to develop and deploy User Link
solutions.

 A two-step binding process is used to dynamically distribute an application’s public key. The
process depends upon the use of secret passcodes that are assigned to user Link-enabled
applications (specifically, applications that are capable of being designated for authenticating
users) and User Link components. An application or component uses its passcode to prove its
identity when it presents its public key. A passcode is a complex, arbitrary alphanumeric
string.

 9 Not all applications need a public key. Applications that need public keys are those that are
designated for authenticating users, and those that use the authentication repository.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 120 Copyright 1999, Health Level Seven Version CM-1.0

 A passcode is not actually transmitted when a secure binding is established. Instead, a secure
hash function is used to produce a message authentication code. A message authentication
code is a secure hash value produced from a data stream that consists of data that is openly
communicated between two parties, and “secret” data that they both know but do not openly
communicate. In the CMA, a passcode serves as the shared secret.

 The binding process involves a “bindee” and a “binder.” In order to bind, a bindee must have a
passcode. Both the bindee and the binder must have knowledge of the passcode. The means for
providing the bindee and binder with a passcode are not specified in the CMA. However,
requirements and guidelines are described in Section 10.3.4.1, Passcode Generation
Requirements.

 The following table describes the relationships between User Link-enabled applications and
User Link components in terms of the secure binding process:

 Bindee Binder

 Context Participant Application Context Manager

 Context Participant Application Authentication Repository

 Mapping Agent Context Manager

 The bindee initiates the binding process with the binder. The bindee assumes it knows the
identity of the binder, but will prove the binder’s identity as part of the binding process.
Similarly, the binder will establish the identity of the bindee as part of the binding process.

 The following interactions then occur:

1. The bindee symbolically identifies itself to the binder. The binder uses this information
to locate the binder’s copy of the bindee’s passcode. The passcode is not transmitted
by the bindee.

2. The binder sends back its public key, and a message authentication code. This code is
a secure hash value computed from a data stream formulated from the binder’s public
key and the binder’s copy of the bindee’s passcode.

3. The bindee uses the public key it has received and its copy of its passcode to formulate
a data stream from which it also computes a secure hash value. (The hash algorithm it
uses must be the same as the one that the binder used.) The bindee compares the
resulting hash value to the message authentication code. If the two match, then the

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 121

binder is who it claims to be and the public key received by the bindee indeed belongs
to the binder.

4. The bindee again identifies itself to the binder and sends its public key, along with a
new message authentication code. This code is a secure hash value computed from a
data stream formulated from the bindee’s public key and the bindee’s copy of its
passcode.

5. The binder uses the public key it has received and its copy of the bindee’s passcode to
formulate a data stream from which it also computes a secure hash value. (The hash
algorithm it uses must be the same as the one that the bindee used.) The binder
compares the resulting hash value to the message authentication code. If the two
match, then the bindee is who it claims to be and the public key received by the binder
indeed belongs to the bindee.

 An application requires a passcode for binding with the context manager. This passcode is a
secret known only to the application and the context manager.

 An application also requires a passcode for binding with the authentication repository. This
passcode is a secret known only to the application and the authentication repository. An
application that binds to both the context manager and the authentication repository shall use
different passcodes for each binding.

10.3.4.1 Passcode Generation Requirements
 Passcodes are similar to passwords used by people. However, because passcodes are only used

by computer programs, they can be much longer and complex than passwords typically are.
This makes passcodes extremely hard to guess, even when brute force techniques are
employed.

 An application passcode shall be a character string comprised of no less than one hundred
(128) characters and no greater than two-hundred fifty-six (256) characters. A passcode shall
only be comprised of alphanumeric characters, as well as the underscore (_) and dash (-)
characters. A passcode shall be arbitrary but shall not contain any words or phrases.

 An application’s passcode may be generated such that the same passcode is used for every
instance of the application everywhere. This is the least secure means of generating passcodes,
because a security breech affects every instance of the application.

 An application’s passcode may be generated such that the same passcode is used for every
instance of the application at a particular site. This is a moderately secure means of generating
passcodes, because a security breech is at least limited to a particular site.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 122 Copyright 1999, Health Level Seven Version CM-1.0

 An application’s passcode may be generated such that a unique passcode is used for each
desktop upon which the application is used. This is the most secure means of generating
passcodes because a security breech is limited to a single desktop. This is the recommended
approach.

10.3.4.2 Protecting Passcodes
 Passcodes must remain secret. There are numerous ways in which this can be achieved. The

specific approach is left as an implementation decision for applications and the various context
management components.

 However, the following approach is recommended for applications. The assumption is that any
application that is used to authenticate users probably uses a server to maintain user account
and authorization information. The application might be organized using a client/server
architecture, or a web server architecture.

 The principle challenge is how to create an application such that the portion of the application
that serves as a context participant has a secure means to store and retrieve its passcode. In the
case of client/server systems, an approach could be to store the passcode on each clinical
desktop upon which the client has been loaded. In web systems, an approach could be to
transmit the passcode from the web server to the desktop. Both of these approaches introduce
substantial security risks that would require great effort to defend against.

 An alternative is for an application to store its passcode in a server, where it can be more
readily protected (including literally placed under lock and key). This could be the
application’s database server, or it could be a separate server whose specific role is to securely
maintain passcodes.

 The server would never actually transmit the passcode. Rather, it would be responsible for
verifying message authentication codes received by the application. It would also be
responsible for computing the application’s message authentication code.

 In this approach, the server must be able to authenticate the identity of the application. The
server must also be sure that the data it send and receive from the application is not tampered
with while it is in transit. This implies that the application must have the means for
establishing a trusted relationship with the server in a manner somewhat a kin to the
relationship the application establishes with the context manager or authentication repository.

 There are many ways in which the necessary relationship can be implemented. However,
because this relationship does not involve interoperation between applications, and because the
optimal approach depends heavily upon the architecture and design of the application, a single
approach is not specified. Instead, the approach for the server-based maintenance of an
application’s passcode if left as an application design exercise.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 123

10.3.4.3 Protecting Private Keys
 The key distribution process described in Section 10.3.4, Public Key Distribution, does not

prescribe when keys are created. However, once created, a private key must remain the secret
of its owner for as long as it is in use.

 It is possible to statically create a public key / private key pair for an application or
component. However, this approach requires the use of a persistent store within which the
public key / private key pair are housed when the application or component is not executing. If
such a store were used, it would need to be defended against security attacks. This can be
accomplished, but at the cost of adding complexity to applications or components.

 The recommended alternative approach is for an application or component to dynamically
create its key pair when launched. This enables the keys to be kept in memory, and avoids the
complexity of using a persistent store. While it is conceivable that an in-memory private key
could be accessed by an intruder, most contemporary operating systems enable a process to
prevent other processes from reading its memory.

10.3.5 System Configuration Requirements
 The system configuration capabilities are necessary in order to deploy a User Link system are

summarized as follows:

• A means for establishing for the context manager the symbolic names of the
applications that have been designated for authenticating users. It shall be possible to
establish these names on a per-desktop basis. It shall not be possible for anyone but a
system administrator to modify the names known to a context manager.

• A means for obtaining the application name and corresponding passcode for each
application that has been designated for authenticating users so for the purpose of
providing this information to the context manager. This process shall be performed
such that the passcode remains a secret known only to the application, the context
manager, and perhaps the system administrator who conveys the information from the
application to the context manager.

• A means for obtaining the application name and corresponding passcode for each
application that uses the authentication repository for the purpose of providing this
information to the authentication repository. This process shall be performed such that
the secret passcode remains a secret known only to the application, the authentication
repository, and perhaps the system administrator who conveys the information from
the application to the authentication repository.

• A means for obtaining the passcode for the user mapping agent for the purpose of
providing this information to the context manager. This process shall be performed
such that the secret passcode remains a secret known only to the user mapping agent,

 Context Management Specification, Technology and Subject-Independent Component Architecture

 124 Copyright 1999, Health Level Seven Version CM-1.0

the context manager, and perhaps the system administrator who conveys the
information from the user mapping agent to the context manager.

 There are numerous ways in which these capabilities can be implemented. The specific
approach is left as an implementation decision for applications and the various context
management components.

10.4 Trust Relationships
 This section specifies application and component behaviors for realizing the chain of trust.

10.4.1 Trust Between Applications and Context Manager
 A User Link-enabled application shall obtain a reference to the context manager’s principal

interface from the interface reference registry. The application shall interrogate this interface to
obtain a reference to the context manager’s SecureBinding interface.

 A User Link-enabled application shall establish a secure binding, per Section 10.3.4, Public
Key Distribution, with the context manager after it has joined the common context system but
before it instigates any user context change transactions. This ensures that the application:

• is communicating with the real context manager,

• has obtained the real context manager’s public key,

• has provided the context manager with its public key.

 A User Link-enabled application shall create a digital signature to sign the context manager
methods it invokes in order to set context data that includes user subject context items. This
enables the context manager to authenticate the application, and to ensure the integrity of the
communicated context data items.

 The context manager shall create a digital signature to sign returns values it communicates to
an application whenever these values include user subject context items. This enables the
application to authenticate the context manager, and to ensure the integrity of the
communicated context data items.

 All other interactions between applications and the context manger do not need to follow these
rules.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 125

10.4.2 Trust Between Context Manager and User Mapping Agent
 The user mapping agent shall obtain a reference to the context manager’s principal interface

from the interface reference registry. The user mapping agent shall interrogate this interface to
obtain a reference to the context manager’s SecureBinding interface.

 The user mapping agent shall establish a secure binding, per Section 10.3.4, Public Key
Distribution, with the context manager after it has joined the common context system but
before it maps any user context data. This ensures that the user mapping:

• is communicating with the real context manager,

• has obtained the real context manager’s public key,

• has provided the context manager with its public key.

 The user mapping agent shall create a digital signature to sign the context manager methods it
invokes in order to set context data that includes user subject context items. This enables the
context manager to authenticate the user mapping agent, and to ensure the integrity of the
communicated context data items.

 The context manager shall create a digital signature to sign return values it communicates to
the user mapping agent whenever these values includes user subject context items. This enables
the user mapping agent to authenticate the context manager, and to ensure the integrity of the
communicated context data items.

 All other interactions between the context manager and the user mapping agent do not need to
follow these rules.

10.4.3 Trust Between Applications and Authentication Repository
 A User Link-enabled application shall obtain a reference to the authentication repository’s

principal interface from the secure registry. The application shall interrogate this interface to
obtain a reference to the authentication repository’s SecureBinding interface.

 A User Link-enabled application shall establish a secure binding, per Section 10.3.4, Public
Key Distribution, with the authentication repository after it has joined the common context
system but before it instigates any user context change transactions. This ensures that the
application:

• is communicating with the real authentication repository,

• has obtained the real authentication repository’s public key,

• has provided the authentication repository with its public key.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 126 Copyright 1999, Health Level Seven Version CM-1.0

 A User Link-enabled application shall create a digital signature to sign the authentication
repository methods it invokes in order to set user authentication data. This data shall also be
encrypted by a means chosen by the application, and then encrypted again upon
communication using the authentication repository’s public key. The repository shall decrypt
the data using its private key only when it needs to service a valid application request to
retrieve the data. The repository shall never decrypt the data from its application-specific
encrypted form.

 This enables the authentication repository to authenticate the application, to ensure the
integrity of the communicated authentication data, to keep the authentication data confidential
when it is communicated, and to defend against intrusions into the repository to obtain user
authentication data.

 The authentication repository shall create a digital signature to sign user authentication data it
communicates to an application. User authentication data that is communicated back to an
application shall remain encrypted as it was when provided by the application. This data shall
be encrypted again upon communication using the application’s public key.

 This enables the application to authenticate the authentication repository, to keep the
authentication data confidential when it is communicated, and to ensure the integrity of the
communicated user authentication data.

 All other interactions between applications and the authentication repository do not need to
follow these rules.

10.5 Chain of Trust Interactions
 The detailed interactions for several use cases involving in the chain of trust are illustrated

below. A description for how to interpret the notation used in these diagrams appears in
Appendix I. The following additional notation is used:

• The character “|” indicates the concatenation of two strings, for example, “qrs|xyz” to
form “qrsxyz”.

• XXSignature(a|b|c) indicates the digital signature for XX. The signature is formed by
applying a one-way hash function to the parameter values a, b, and c, and then
encrypting the resulting hash value using XX’s private key.

• XXPublicKey(abcd) indicates that the data “abcd” is encrypted using the public key
for XX.

• XXEncrypt(abcd) indicates that the data “abcd” is encrypted using an encryption
scheme chosen by XX.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 127

• Hash(abcd) indicates a value produced by applying a one-way hash function to the
data “abcd” .

• The abbreviation ZZ represents application ZZ, CM represents the context manager,
AR represents the authentication repository, and MA represents the user mapping
agent.

Repository has no
user data for “robs” so
Application ZZ
queries user for his
authentication data.
Application ZZ then
populates
repository with
encrypted
user authentication
data.

Participating
Application ZZ

 Authentication
Repository

InitiateBinding(ZZConnectionCoupon)

publicKey= ARPublicKey
mac = Hash(ARPublicKey|ZZPasscode)

SetAuthenticationData(ZZConnectionCoupon, "robs", "password", ARPublicKey(ZZEncrypt(robs_password)),
 ZZSignature((Hash(ZZConnectionCoupon|robs|password|ARPublicKey(ZZEncrypt(robs_password))))

GetAuthenticationData(ZZConnectionCoupon, "robs", "", ZZSignature(Hash(ZZConnectionCoupon|robs)))

Logon “robs” not found!

FinalizeBinding(ZZConnectionCoupon, ZZPublicKey, Hash(ZZPublicKey|ZZPasscode))

 Interaction Diagram 17: Populating Authentication Repository with User Authentication Data

 Context Management Specification, Technology and Subject-Independent Component Architecture

 128 Copyright 1999, Health Level Seven Version CM-1.0

User logged-on

User Application AA
trusted to

Context
Manager

User Link
Mapping Agent

Participating
Application YY

Participating
Application ZZ

User
enters"robs" and

password

User authenticated

StartContextChanges()

SetItemValues(98765,<"user.id.logon.3M_Clinical_Workstation">, <"robs">, 45678, AASignature(Hash(98765|user.id.logon.3M_Clinical_Workstation|robs|45678)))

EndContextChanges()

ContextChangesPending()

ContextChangesPending()

PublishChangesDecision()

ContextChangesAccepted()

GetItemValues("User.*", 45678)

GetItemValues("User.*", 45678)

Chain of Trust: Participating applications trust user was authenticated by a trusted application

Is this one of the designated
user authenication

applications?

Yes, do the set.

SetItemValues(90092, <"user.id.logon.HP_CareVue">, <"Rob_Seliger">, 45678, MASignature(Hash(90092|user.id.logon|Rob_Seliger|45678)))

Is this the
authentic user

mapping agent?

Yes, do the SetItemValues.

contextcoupon=45678

User has
access to

application.

GetItemValues("User.*")

ContextChangesPending()

ContextChangesAccepted()

itemValues = <“robs”>,
signature = CMSignature(Hash(45678|robs))

itemValues = <”robs”><”Rob_Seliger”>
signature = CMSignature(Hash(robs|Rob_Seliger|45678))

itemValues = <”robs”><”Rob_Seliger”>
signature = CMSignature(Hash(robs|Rob_Seliger|45678))

 Interaction Diagram 18: User Link Context Change Transaction

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 129

11 Interface Definitions

 It is assumed that an underlying technology infrastructure that supports distributed objects is
used to implement a common context system, although a specific technology is not assumed.
However, the capabilities of Microsoft’s COM-based Automation technology are considered as
a baseline. This implies that the architecture must work well within the constraints of
Microsoft Automation, including issues that pertain to performance and supported data types.

 An abstract set of CMA component interface definitions is described below. These interfaces
are defined using a precise and concise interface definition language (IDL) created for
specifying the CMA. This IDL is not meant to be a comprehensive interface specification
language. Only the capabilities that are required for specifying CMA component interfaces are
included in the IDL.

 A CMA-specific IDL is used because existing interface specification languages have direct or
indirect ties to specific technologies. For example, OMG’s IDL implies that the interfaces are
implemented using CORBA-based technology. Microsoft’s MIDL requires that the interfaces
are implemented using COM/DCOM technology. The use of these specification languages
confuses and possibly compromises the technology-neutrality of the CMA specification.

 Experience has shown that the interface constructs represented in IDL defined below can be
easily mapped to interfaces that can be implemented using a specific technology such as
ActiveX, CORBA, Java, or HTTP. The mapping for each specific technology appears in a
separate Context Management specification document.

11.1 Interface Definition Language
 The interface definition language (IDL) used in this document enables specifying the following

facts about a component interface:

• The interface’s symbolic name.

• The set of component properties and methods that can be accessed via the interface.

• The name and data type of each property, and optional restrictions (e.g., read-only).

• The names and data types for each method’s input and outputs.

• The names and data content for each method’s exceptions.

 The IDL also defines a set of simple data types and the capability to represent sequences of
these types.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 130 Copyright 1999, Health Level Seven Version CM-1.0

 In the following sections, IDL reserved words are shown in bold font. Identifiers are shown in
italics. An identifier is an alphanumeric string that starts with an alphabetic character.

11.1.1 Interface Definition Body
 The body of an interface definition creates a lexical scope distinct from all other interface

definitions. The body of an interface is specified as:

 interface interfacename { ... }

 Interfacename is the symbolic name of the interface. The curly brackets delimit the scope of

the interface’s body.

 The body of an interface begins with the declaration of any exceptions that can be raised by
methods defined for the interface. The details of declaring exceptions are discussed later.

 The properties that can be accessed through the interface are listed next. A property is a data
value that can be read or set via the interface:

 datatype propertyname

 Datatype is the data type for the property. The type is one of the simple types defined below,

as denoted by the appropriate IDL reserved word.

 Propertyname is the symbolic name of the property. A property’s name must be distinct as
compared to the names of other properties, methods, and exceptions defined within the same
lexical scope.

 Properties can also be sequences. Sequences are described below.

 Properties can be restricted to read-only:

 readonly datatype propertyname

 The value of a read-only property can be read, but not set, via the interface.

 Finally, the methods are listed:

 methodname inputs (...) outputs (....) exceptions (...)

 Methodname is the symbolic name of the method. A method’s name must be distinct as

compared to the names of other properties, methods, and exceptions defined within the same
lexical scope.

 The method’s inputs, outputs, and exceptions follow the method’s name. If a method does not
have any inputs, outputs, or exceptions, then only white space should appear between the
appropriate set of parentheses.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 131

 Each input and output is defined as:

 datatype name

 Datatype is the data type for the input or output. The type is one of the simple types defined

below, as denoted by the appropriate IDL reserved word. In an actual interface definition, the
appropriate IDL reserved word is used to indicate the type. Inputs and outputs can also be
sequences. Sequences are described below.

 Name is the symbolic name of the input or output. The name of inputs for a method must be
distinct for the method. The name of each output for a method must be distinct for the method.

 Multiple inputs and outputs are separated by a comma.

 Exceptions are listed only by their name. Multiple exceptions are separated by a comma.

11.1.2 Simple Data Types
 The following simple data types are supported. The reserved words used to indicate each type

are shown:

 byte Eight uninterpreted bits

 short 16-bit signed integer

 long 32-bit signed integer

 float 32-bit floating point number

 double 64-bit floating point number

 boolean Indicates true, or false

 string A string of characters

 date A specific year/month/day/time, with a precision of one second, and including
the time zone

 type An enumeration that denotes each of these data types (except type) as well as
the special types null (valid value not known) and empty (data type not known)

 variant A tagged union of all of these data types (including type and variant)

 The concrete representations of these data types are not defined. They depend upon the
interface implementation technology.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 132 Copyright 1999, Health Level Seven Version CM-1.0

11.1.3 Exception Declaration
 An exception declaration introduces an exception that can be raised by one or more of the

methods defined for the interface within whose lexical scope the exception declaration appears.
Each exception declaration indicates the exception name and an optional set of data values.
The name denotes the exception and the data values provide additional run-time information
about the reason for the exception.

 An exception declaration is specified as:

 exception name { ... }

 Name is the symbolic name of the exception. An exception’s name must be distinct as

compared to the names of other properties, methods, and exceptions defined within the same
lexical scope.

 Exception data values are specified as:

 datatype name ;

 Datatype is the data type for the exception value. The type is one of the simple types defined

above, as denoted by the appropriate IDL reserved word. In an actual interface definition, the
appropriate IDL reserved word is used to indicate the type. Exception values can also be
sequences. Sequences are described below.

 Name is the symbolic name of the exception value. The name of each value for an exception
must be distinct for the exception.

11.1.4 Sequences
 A sequence is a single-dimensional vector of sequential data values. Each data value is denoted

by an index whose type is long. The values for these indices are sequential. The value of the
first index is not specified; this value depends upon the interface implementation technology.

 A sequence with no restrictions on the quantity of values it can contain is specified as:

 datatype[]name

 Datatype is the data type of the values in the sequence. The type is one of the simple types

defined above, as denoted by the appropriate IDL reserved word. Name is the name of the
property, input or output, or exception data value.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 133

 A sequence with restrictions on the quantity of values it can contain is specified as:

 datatype[quantity] name

 Quantity is a numeric value that indicates the maximum quantity of values that the sequence

can contain. A sequence may contain less than this quantity. The means by which the quantity
of values in a sequence is determined depends upon the interface implementation technology.

11.1.5 Interface References
 An interface reference enables access to a specific interface to a specific instance of a

component that implements the interface. The interface reference data type represents an
interface reference. The type of a property, method input, method output, and exception data
value can be an interface reference:

 interfacename name

 Interfacename is the name of the interface that the reference represents. Name is the name of

the property, input or output, or exception data value.

11.1.6 Principal Interface
 The reserved word Principal is the interface name for a component’s principal interface. The

role of a component’s principal interface is discussed in Section 6.1, Component and
Interface Concepts. The type of a property, method input, method output, and exception data
value can be an interface reference to a principal interface:

 Principal name

 Name is the name of the property, input or output, or exception data value.

11.1.7 Qualifying Names
 In the IDL there is never a case in which the names of properties, methods, and exceptions

defined in one lexical scope are referenced in another lexical scope. However, when
documenting the interfaces it can be useful to indicate the scope within which a particular
property, method, or exception name has been defined.

 The convention for doing so is to formulate a qualified name comprised of the name of the
interface within whose scope the property, method, or exception of interest was defined,
followed by a pair of colons (::) followed by the name of the property, method, or exception,
for example:

 ContextManager::JoinCommonContext

 denotes the method JoinCommonContext as defined for the interface ContextManager.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 134 Copyright 1999, Health Level Seven Version CM-1.0

11.2 Interface Implementation Issues
 This section describes requirements that all CMA interface implementations must respect.

11.2.1 NotImplemented Exception
 In the event that a method is not implemented, the exception NotImplemented shall be raised.

This exception can be raised, for example, when a method has been deprecated and is no longer
implemented by a CMA component.

11.2.2 Coupon Representation
 A participant coupon is a an arbitrary 32-bit number, represented as the CMA IDL data type

long, that is assigned by a common context manager to easily identify each application that
joins a common context system. An application is assigned a participant coupon when it joins a
common context system. It subsequently uses the coupon to identify itself when performing
methods on the context manager.

 A context coupon is an arbitrary 32-bit number that is assigned by a common context manager
to each set of self-consistent changes to the common context data. In other words, if the
common context contains the patient’s name and the patient’s medical record number, then
each time these values are changed together, a new coupon is assigned.

 Participant coupons and context coupons are guaranteed to have unique values for the duration
of a common context session (i.e., from the time the first application joins to the time the last
application leaves). The distinguished value of 0 is never assigned as a valid coupon value.

11.2.3 Format for Application Names
 Several interfaces require that an application provide a CMA IDL string that contains a

symbolic name for the application. This string is generally used to distinguish one application
from another.

 This string shall only be comprised of alphanumeric characters, as well as the underscore (_)
character.

 Additionally, an application that is capable of allowing multiple instances of itself to execute
on the same desktop shall append to the end of its symbolic name the number-score character
(#) followed by a string that distinguishes one instance of the application from another.

 The composition of the appended string is not specified, as long as no two running instances of
the application running on a particular desktop use the same appended string at the same time.
The appended string shall only be comprised of alphanumeric characters, as well as the
underscore (_) character.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 135

 An example of this convention is:

 3M_Clinical_Workstation#0
 3M_Clinical_Workstation#1
 3M_Clinical_Workstation#2

 Application names formed as such shall be interpreted as representing the same logical
application (e.g., 3M_Clinical_Workstation) while also representing distinct running instances
of the application (i.e., three instances of 3M_Clinical_Workstation).

11.2.4 Extraneous Context Items
 Context participants shall robustly deal with the situation in which context data items that they

do not recognize are nevertheless part of the common context. This might occur, for example,
in a system comprised of context participants that have been implemented using different
versions of the CMA data definition specifications. A participant implemented using an earlier
version of these specifications might not recognize context items defined in subsequent versions
of the specifications. Context participants shall simply ignore context data items whose names
they do not recognize.

 Similarly, context managers shall allow any context data item for any CMA-defined subject to
be part of the context, as long as the name for the item is properly formatted.

11.2.5 Forcing the Termination of a Context Change Transaction
 The context manager may need to force the termination of a context change transaction when it

appears that the instigator of the transaction has failed before completing the transaction.
Specifically, it is recommended that any context manager method that can result in the
ContextManager::TransactionInProgress exception being thrown should first explicitly confirm
that the transaction instigator is still alive.

 Most context manager implementations will employ a timer to monitor the activity of a
transaction instigator. If the instigator does not perform the necessary operations on the context
manager’s interfaces in a timely manner, it can be inferred that the instigator has failed. The
method ContextParticipant::Ping is defined to enable the context manager to probe a context
participant to determine its liveliness. The context manager may additionally confirm the
liveliness of a context participant using technology-specific mechanisms.

 The duration of these timers, and the use of confirmation techniques, are implementation-
dependent.

 The context manager shall clean-up after the failure of the instigator by performing the
following actions:

1. The coupon assigned by the manager for the transaction is invalidated.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 136 Copyright 1999, Health Level Seven Version CM-1.0

2. The transaction-specific version of the context data are discarded.

3. The coupon and context data associated with the most recently committed transaction
are unaffected.

4. The context manager’s internal state is set to indicate that there is no longer a
transaction in progress.

 Additional actions depend upon when the context manager determines that the instigator has
failed, as described in the table below.

Instigator fails … Leaving systems in the
following state …

Context manager cleans-up
by …

before ending the transaction (see
ContextManager::EndContext
Changes)

a context change transaction is
in progress, although surveying
has not yet been performed

performing the actions
described above

after ending the transaction but
before publishing its decision to
accept or cancel the changes (see
ContextManager::Publish
ChangesDecision)

a context change is in progress
and the surveyed participants
are waiting for the survey
decision

publishing the fact that the
context changes have been
canceled and then performing
the actions described above

11.2.6 Character-Encoded Binary Data
 Several of the CMA component interfaces use CMA IDL string parameters that contain

character-encoded binary data. The following representation of character-encoded binary data
shall be applied for all such parameters10.

 Each byte of data shall be represented by two printable characters. The four high bits of the
byte (i.e., the high octet) shall be represented by the left character. The four low bits of the
byte (i.e., the low octet) shall be represented by the right character.

 An array of bytes shall be represented by character-encodings such that the left most character-
encoded byte in the string represents the data byte at lowest array index. The encoding follows

 10 Base64 encoding was not selected as a character-encoding scheme for binary data, as the added
compression offered by the scheme is of minimal advantage for the CMA, wherein only relatively
small quantities of binary data are transmitted.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 137

sequentially, such that the right most character-encoded byte in the string represents the data
byte at the highest array index.

 Each four bits of data (i.e., an octet) is represented by an ASCII character as follows:

 Data
(Octet)

 Character

 0000 0
 0001 1
 0010 2
 0011 3
 0100 4
 0101 5
 0110 6
 0111 7
 1000 8
 1001 9
 1010 A or a
 1011 B or b
 1100 C or c
 1101 D or d
 1110 E or e
 1111 F or f

 Binary data that is character-encoded as a string shall not include white space or any other
characters other than the ones shown in the table above. The character-encoded string is not
case sensitive. An example of binary data character-encoded per these conventions is:

 Binary Data: 00000001 11101001 11000111 1000010

 Character-Encoded String: 01E9C782

11.2.7 Representing Message Authentication Codes, Signatures and Public Keys
 Message authentication codes, digital signatures, public keys are used as input or output

parameters for several of the methods defined for CMA component interfaces. The CMA IDL
data type for each of these parameters is string. Each string contains character-encoded
binary data, encoded per Section 11.2.6, Character-Encoded Binary Data.

 The binary data that is encoded is technology-specific. Each of the HL7 Context Management
Technology Mapping Specifications indicates the binary data types needed for a particular
technology-specific implementation. It is necessary that both the sender and receiver of a
message authentication code, digital signature, or public key agree upon the format of the

 Context Management Specification, Technology and Subject-Independent Component Architecture

 138 Copyright 1999, Health Level Seven Version CM-1.0

underlying binary data type, and the algorithms used to create the data. The method
SecureBinding::InitiateBinding, defined in 11.3.7.1, enables this agreement to be established.

11.2.8 Representing Basic Data Types as Strings
 Several of the CMA component interfaces use input or output parameters whose values are

computed from the string representations of data values of various types. For example, digital
signatures are computed from a one-way hash value, which is, in turn, computed from a string
formed by concatenating a list of data values, each of which is represented as a string.

 The following data types shall be represented as strings using the formats described. The
ASCII character set shall be used for the encodings:

 Type String Representation Comments

 boolean 0, if false
1, if true

 short dddd, where d is a numeric character
representing a decimal digit and the
number of characters depends upon
the value of the number.

 Leading minus sign (-dddd) if
number is negative. No plus
sign if positive.

 long Same as for short.

 date mm/dd/yy hh:mm:ss

 string As is. Case is preserved.

 float dddd.dddd, where d is a numeric
character representing a decimal
digit. The number of digits before
the decimal point depends on the
magnitude of the number, and the
number of digits after the decimal
point depends on the precision.

 Leading minus sign
(-dddd.dddd) if number is
negative. No plus sign if
positive.

 double Same as float, except that there can
be more digits.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 139

 byte bb, where b is a hexadecimal digit.
The byte is represented as unsigned.

 Lower case for alphabetic
characters that represent hex
digits (i.e., a, b, c, d, e, f).

 Context Management Specification, Technology and Subject-Independent Component Architecture

 140 Copyright 1999, Health Level Seven Version CM-1.0

11.3 Interfaces
 This section specifies the methods for each of the CMA interfaces.

11.3.1 AuthenticationRepository (AR)

 interface AuthenticationRepository {
 exception AuthenticationFailed { string reason; }
 exception UnknownApplication {}
 exception UnknownConnection {}
 exception LogonNotFound { string logonName; }
 exception UnknownDataFormat { string dataFormat; }

 Connect
 inputs(string applicationName)
 outputs(long connectionCoupon)
 raises()

 Disconnect
 inputs(long connectionCoupon)
 outputs()
 raises(UnknownConnection)

 SetAuthenticationData
 inputs(long connectionCoupon, string logonName, string dataFormat,
 string userData, string appSignature)
 outputs()
 raises(UnknownConnection, AuthenticationFailed)

 DeleteAuthenticationData
 inputs(long connectionCoupon, string logonName, string dataFormat,
 string appSignature)
 outputs()
 raises(UnknownConnection, AuthenticationFailed, LogonNotFound,
 UnknownDataFormat)

 GetAuthenticationData
 inputs(long connectionCoupon, string logonName, string dataFormat,
 string appSignature)
 outputs(string userData, string repositorySignature)
 raises(UnknownConnection, AuthenticationFailed, LogonNotFound,
 UnknownDataFormat)
 }

11.3.1.1 Connect
 This method enables an application to establish a connection with the authentication

repository. An application must have a connection before it can set or get user authentication
data.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 141

 The value of the input applicationName is a succinct string that contains the application’s
symbolic name. The output connectionCoupon is the value of a connection coupon that the
application can subsequently use to denote itself when performing other authentication
repository methods.

 The exception UnknownApplication is raised if the input applicationName does not represent
an application currently known to the authentication repository.

11.3.1.2 Disconnect
 This method enables an application to disconnect from the authentication repository. An

application shall disconnect before it terminates. The value of the input connectionCoupon
denotes the application.

 The exception UnknownConnection is raised if the input connectionCoupon does not denote an
application currently connected to the authentication repository.

11.3.1.3 SetAuthenticationData
 This method enables an application to store authentication data for a particular user’s logon

name within the authentication repository. This method also enables an application to update
authentication data for a particular user’s logon name that it has already stored in the
repository.

 The value of the input connectionCoupon denotes the application, the value of the input
logonName is a user’s logon name, the value of the input userData is the application-specific
data used to authenticate the user, and the value of the input appSignature is the application’s
digital signature. This signature enables the authentication repository to authenticate that the
request to set the authentication data came from the application denoted by the value of
connectionCoupon, and that the values of connectionCoupon, logonName, dataFormat, and
userData, were not tampered with between the time they were sent and were received.

 Concatenating the string representations of the following inputs in the order listed shall form
the data from which a message digest is computed by the application:

• connectionCoupon

• logonName

• dataFormat

• userData

 An application shall compute its digital signature by encrypting the message digest with its
private key.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 142 Copyright 1999, Health Level Seven Version CM-1.0

 The value of the input dataFormat is an application-defined string that is used when an
application needs to maintain multiple forms of authentication data for a user (e.g., password,
thumbprint image, etc.). If only one form of authentication data is needed, this string can be
empty. Multiple calls of SetAuthenticationData are required to set different forms of
authentication data for a particular user. The value of dataFormat for each call should indicate
the form of authentication data to be stored.

 The value of the input userData contains user authentication data that has been encrypted by
the application using an encryption technique chosen by the application. This data is character-
encoded per Section 11.2.6, Character-Encoded Binary Data. The structure of the encoded
binary data is application-dependent and is not specified.

 The exception UnknownConnection is raised if the input coupon does not denote an application
that is currently connected to the repository.

 The exception AuthenticationFailed is raised if the process of authentication determines that
the signature is not the signature for the application denoted by the input connectionCoupon or
that the input parameter’s values have been tampered with.

11.3.1.4 DeleteAuthenticationData
 This method enables an application to delete from the authentication repository the

authentication data that it previously stored for a particular logon name. Both the logon name
and the associated authentication data are deleted.

 The value of the input connectionCoupon denotes the application and the value of the input
logonName is the logon name to be deleted.

 The value of the input dataFormat is an application-defined string that is used when an
application maintains multiple forms of authentication data for a user (e.g., password,
thumbprint image, etc.) within the repository. If this string is empty, then all of the forms of
authentication data stored for the user are deleted. If this string is not empty, then just the
denoted form of authentication data is deleted.

 The value of the input appSignature is the application’s digital signature.

 Concatenating the string representations of the following inputs in the order listed shall form
the data from which a message digest is computed by the application:

 connectionCoupon

 logonName

 dataFormat

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 143

 An application shall compute its digital signature by encrypting the message digest with its
private key.

 This signature enables the authentication repository to authenticate that the request to delete
the authentication data came from the application denoted by the value of connectionCoupon,
and that the values of coupon, logonName, and dataFormat were not tampered with between
the time they were sent and were received.

 The exception UnknownConnection is raised if the input connectionCoupon does not denote an
application that is currently connected to the repository.

 The exception AuthenticationFailed is raised if the process of authentication determines that
the signature is not the signature for the application denoted by the input connectionCoupon or
that the input parameter values have been tampered with.

 The exception LogonNotFound is raised if user authentication data corresponding to the logon
name denoted by the input logonName does not reside in the repository.

 The exception UnknownDataFormat is raised if the form of authentication data denoted by the
input dataFormat is not found in the repository.

11.3.1.5 GetAuthenticationData
 This method enables an application to retrieve from the authentication repository the

authentication data previously stored for a particular user’s logon name. The value of the input
connectionCoupondenotes the application, the value of the input logonName is a user’s logon
name, and the value of the input appSignature is the application’s digital signature.

 This signature enables the authentication repository to authenticate that the request to get the
authentication data came from the application denoted by the value of connectionCoupon, and
that the values of coupon, logonName, and dataFormat were not tampered with between the
time they were sent and were received.

 Concatenating the string representations of the following inputs in the order listed shall form
the data from which a message digest is computed by the application:

• connectionCoupon

• logonName

• dataFormat

 An application shall compute its digital signature by encrypting the message digest with its
private key.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 144 Copyright 1999, Health Level Seven Version CM-1.0

 The value of the input dataFormat is an application-defined string that is used when an
application needs to maintain multiple forms of authentication data for a user (e.g., password,
thumb-print image, etc.). If only one form of data is used, this string can be empty. Multiple
calls of GetAuthenticationData are required to get different forms of authentication data for a
particular user. The value of dataFormat for each call should indicate the form of
authentication data to be retrieved.

 The value of the output userData is the application-specific data used to authenticate the user.
The output userData remains encrypted, as it was when it was stored by the application using
SetAuthenticationData.

 The output userData shall be used as the data from which a message digest is computed by the
application. The authentication repository shall compute its digital signature by encrypting the
message digest with its private key.

 This signature enables the application to authenticate that the authentication data returned by
this method came from the authentication repository and that the value of userData was not
tampered with between the time it was sent and was received.

 The exception UnknownConnection is raised if the input connectionCoupon does not denote an
application that is currently connected to the repository.

 The exception AuthenticationFailed is raised if the process of authentication determines that
the signature is not the signature for the application denoted by the input connectionCoupon or
that the input parameter values have been tampered with.

 The exception LogonNotFound is raised if user authentication data corresponding to the logon
name denoted by the input logonName does not reside in the repository.

 The exception UnknownDataFormat is raised if the form of authentication data denoted by the
input dataFormat is not found in the repository.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 145

11.3.2 ContextData (CD)

 interface ContextData {
 exception UnknownParticipant { long participantCoupon; }
 exception UnknownItemName { string itemName; }
 exception BadItemNameFormat { string itemName; string reason }
 exception BadItemType { string itemName; type actual;
 type expected; }
 exception BadItemValue { string itemName; variant itemValue;
 string reason; }
 exception NameValueCountMismatch {long numNames; long numValues }
 exception ChangesNotPossible {}
 exception ChangesNotAllowed {}
 exception InvalidContextCoupon {}

 GetItemNames
 inputs(long contextCoupon)
 outputs(string[] names)
 raises(InvalidContextCoupon)

 DeleteItems
 inputs(long participantCoupon, string[] itemNames,
 long contextCoupon)
 outputs()
 raises(NotInTransaction, UnknownParticipant, InvalidContextCoupon,
 BadItemNameFormat, UnknownItemName, ChangesNotPossible,
 ChangesNotAllowed)

 SetItemValues
 inputs(long participantCoupon, string[] itemNames,
 variant[] itemValues, long contextCoupon)
 outputs()
 raises(NotInTransaction, UnknownParticipant, InvalidContextCoupon,
 NameValueCountMismatch, BadItemNameFormat, BadItemType,
 BadItemValue, ChangesNotPossible, ChangesNotAllowed)

 GetItemValues
 inputs(string[] itemNames, boolean onlyChanges, long contextCoupon)
 outputs(variant[] itemValues)
 raises(InvalidContextCoupon, BadItemNameFormat, UnknownItemName)
 }

11.3.2.1 GetItemNames
 This method enables a participant in a common context system to obtain the names of the

common context items.

 This method can be performed outside the scope of a context change transaction. In this case,
the value of the input contextCoupon must denote the most recently committed transaction.
The output itemNames is a sequence containing the item names that represent the state of the
common context as it was when the most recently committed transaction was completed.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 146 Copyright 1999, Health Level Seven Version CM-1.0

 This method can also be performed within the scope a context change transaction that is
currently in progress. In this case, the input contextCoupon must denote the current
transaction. The output itemNames contains the item names that represent the state of the
common context as it has been established so far by the transaction. The output itemNames is
empty (i.e. zero elements) until a participant explicitly sets item values via the
ContextData::SetItemValues method within the scope of the transaction.

 The exception InvalidContextCoupon is raised if the input contextCoupon does not denote the
most recently committed transaction or the transaction currently in progress.

11.3.2.2 DeleteItems
 Note: This method has been deemed extraneous and is being deprecated. In a future version

of this specification context managers may chose to not implement this method even though it
remains part of the ContextData interface definition.

 This method enables an application in a common context system to remove an item from the
set of common context items. The application or mapping agent denotes itself with its
participant coupon as the value of the input participantCoupon. The value of the input
contextCoupon must denote the current context change transaction, as obtained by the
instigator of the transaction when it performed the ContextManager::StartContextChanges
method.

 The exception NotInTransaction is raised if there is no change transaction currently in
progress.

 The exception UnknownParticipant is raised if the input participantCoupon does not denote an
application or mapping agent that is currently a participant in the common context system.

 The exception InvalidContextCoupon is raised if the context coupon parameter does not denote
the transaction currently in progress.

 The exception BadItemNameFormat is raised if the format of an item named for deletion does
not conform with the specification for the item in the relevant HL7 Context Management Data
Definition Specification.

 The exception UnknownItemName is raised if one or more of the items named for deletion is
not the name of an item in the context as it stands under the current transaction.

 The exception ChangesNotPossible is raised if the ContextData::DeleteItems method is
invoked after the ContextManager::EndContextChanges method has already been invoked for
the transaction currently in progress.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 147

 The exception ChangesNotAllowed is raised by ContextData::DeleteItems if a mapping agent
attempts to delete context items.

11.3.2.3 SetItemValues
 This method enables an application or mapping agent in a common context system to set the

value of one or more common context items. The application or mapping agent denotes itself
with its participant coupon as the value of the input participantCoupon. The names of the
context items to be set are contained in the input sequence itemNames. The values for each of
these items are contained in the input sequence itemValues. The ith element in itemValues is the
value for the item named by the ith element in itemNames.

 If an item named in itemNames is not currently an item in the common context, it will be
added. The data type for a newly added item is the same as the data type of the element in
itemValues that contains the item’s value.

 This method can only be performed within the scope of a context change transaction. The
value of the input contextCoupon must denote the current transaction.

 The exception NotInTransaction is raised if there is no change transaction currently in
progress.

 The exception UnknownParticipant is raised if the input participantCoupon does not denote an
application or mapping agent that is currently a participant in the common context system.

 The exception InvalidContextCoupon is raised if the input contextCoupon does not denote the
transaction currently in progress.

 The exception NameValueCountMismatch is raised if the number of items in the input
nitemNames does not match the number of items in the input itemValues.

 The exception BadItemNameFormat is raised if the format of an item named for deletion does
not conform with the specification for the item in the relevant HL7 Context Management Data
Definition Specification.

 The exception BadItemType is raised if the data type for one or more of the items whose value
is to be set is not the same as the expected data type.

 The exception BadItemValue is raised if the data value for one or more of the items whose
value is to be set is determined to be unacceptable. This exception is used by context manager
implementations that enforce semantic constraints on the common context. Not all context
manager implementations will do this.

 The exception ChangesNotPossible is raised if the ContextData::SetItemValues method is
invoked by an application after the ContextManager::EndContextChanges method has already

 Context Management Specification, Technology and Subject-Independent Component Architecture

 148 Copyright 1999, Health Level Seven Version CM-1.0

been invoked for the transaction currently in progress. (This exception is not raised if a
mapping agent invokes ContextData::SetItemValues after ContextManager.)

 The exception ChangesNotAllowed is raised if a mapping agent attempts to set a value for a
context item for which a value has already been set by the application that instigated the
context change transaction.

11.3.2.4 GetItemValues
 This method enables a participant in a common context system to obtain the value of one or

more context items. The items of interest are indicated in the input sequence itemNames. These
names can be fully-qualified item names, which means that the all of the fields for an item’s
name are explicitly specified (e.g., "Patient.Id.MRN.St_Elsewhere_Hospital").

 Alternatively, a wild card represented by an asterisk (*) can be used in place of a specific
string for any of the item name fields except for the subject field (which is lexically the first
field on the left). The wild card enables a participant to obtain one or more items without
having to specify complete item names.

 If a wild card is used, it must appear in only the last field specified in the item name string
(which is lexically the last field on the right). Additional field names and/or wild cards must
not appear after a wild card (i.e., lexically to the right of the wild card). Examples of properly
formatted items names include:

 “Patient.*” matches all of the identifier and corroborating items for the patient subject

 “Patient.Id.*” matches all of the patient identifier items

 “Patient.Id.MRN.*” matches all of the patient identifiers that are site-specific medical
record numbers

 Conversely, “Patient.Id.*.*” and “Patient.Id.*.St_Elsewhere_Hospital” are examples of
improperly formatted item names.

 The sequence output itemValues contains the values of all of the items whose names match the
set of names specified in the input itemNames. A specific item’s value will be included at most
once in itemValues, even if its name matches more than one of the names specified in
itemNames. For example, even if itemNames includes the names:

 “Patient.Id.MRN.St_Elsewhere_Hospital”

 and:

 “Patient.Id.*”

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 149

 the value for the item named “Patient.Id.MRN.St_Elsewhere_Hospital” will be included only
once in itemValues.

 The elements in the sequence itemValues alternate between the complete name of an item
(represented as a string) and the corresponding item value (represented by the appropriate data
type). For example, if several context data items are returned, then the first element in the list
is the name of the first item, the second element in the list is the value of the first item, the third
element in the list is the name of the second item, the fourth element in the list is the value of
the second item, and so on.

 This method can be performed outside the scope of a context change transaction. In this case,
the value of the input contextCoupon must denote the most recently committed transaction.
The item values that are returned represent the state of the common context as it existed when
the most recently committed transaction was completed. By setting the value of the input
onlyChanges to indicate true a participant can assert that it only wants the values of the
context items that were changed by the committed transaction as compared to the context prior
to the transaction.

 This method can also be performed within the scope a context change transaction. In this case,
the context coupon parameter must denote the current transaction. The item values that are
returned represent the state of the common context as it has been established by the transaction
(which may still be in progress). By setting the value of the input onlyChanges to indicate true
a participant can assert that it only wants the values of the context items that have been
changed so far by the current transaction.

 The exception InvalidContextCoupon is raised if the input contextCoupon does not denote the
most recently committed transaction or the transaction currently in progress.

 The exception BadItemNameFormat is raised if the format of an item named for deletion does
not conform with the specification for the item in the relevant HL7 Context Management Data
Definition Specification.

 The exception UnknownItemName is raised if one or more of the items named is not the name
of an item in the context as it stands under the current transaction.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 150 Copyright 1999, Health Level Seven Version CM-1.0

11.3.3 ContextManager (CM)

 interface ContextManager {
 exception UnknownParticipant { long participantCoupon; }
 exception TransactionInProgress { string instigatorName; }
 exception NotInTransaction {}
 exception InvalidTransaction { string reason; }
 exception TooManyParticipants { long howMany; }
 exception ChangesNotEnded {}
 exception AcceptNotPossible {}
 exception UndoNotPossible {}
 exception InvalidContextCoupon {}

 readonly long MostRecentContextCoupon

 JoinCommonContext
 inputs(ContextParticipant contextParticipant,
 string applicationName, boolean survey, boolean wait)
 outputs(long participantCoupon)
 raises(TooManyParticipants, TransactionInProgress)

 LeaveCommonContext
 inputs(long participantCoupon)
 outputs()
 raises(UnknownParticipant)

 StartContextChanges
 inputs(long participantCoupon)
 outputs(long contextCoupon)

 raises(UnknownParticipant, TransactionInProgress,
 InvalidTransaction)

 EndContextChanges
 inputs(long contextCoupon)
 outputs(boolean noContinue, string[] responses)

 raises(InvalidContextCoupon, NotInTransaction,
 InvalidTransaction)

 UndoContextChanges
 inputs(long contextCoupon)
 outputs()
 raises(InvalidContextCoupon, NotInTransaction, UndoNotPossible)

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 151

 PublishChangesDecision
 inputs(long contextCoupon, string decision)
 outputs()
 raises(NotInTransaction, InvalidContextCoupon, ChangesNotEnded,
 AcceptNotPossible)

 SuspendParticipation
 inputs(long participantCoupon)
 outputs()
 raises(UnknownParticipant)

 ResumeParticipation
 inputs(long participantCoupon, boolean wait)
 outputs()
 raises(UnknownParticipant, TransactionInProgress)
 }

11.3.3.1 MostRecentContextCoupon
 This read-only property contains the value of the context coupon that represents the most

recently committed changes to the common context data. Even if there is a change transaction
in progress, this property’s value represents the previously committed transaction. If no
transactions have been committed, the value of this property is 0.

11.3.3.2 JoinCommonContext
 This method enables an application to join a common context system. The application must

provide a reference to its ContextParticipant interface as the value of the input
contextParticipant. The value of the input applicationName is a succinct string that can be
used to easily and clearly identify the application to the user. The application can also indicate
whether it wants to participate in context change surveys (the value of the input survey
indicates true), or that it just wants to be informed when a context change has been accepted
(the value of the input survey indicates false).

 An application can only join a common context system between context change transactions. If
no transaction is in progress, the application is able to immediately join the context change
system.

 If a transaction is in progress and the value of the input wait indicates true, this method will
block until the transaction completes. It is recommended that an application that is willing to
wait also display a message to the user indicating that it is attempting to join a common
context system. If a transaction is in progress and the value of the input wait indicates false,
this method immediately raises the exception TransactionInProgress.

 The output participantCoupon is the value of the participant coupon that the application can
subsequently use to denote itself when performing other ContextManager methods.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 152 Copyright 1999, Health Level Seven Version CM-1.0

 The exception TooManyParticipants is raised if the context manager is unable to accommodate
an additional common context participant.

11.3.3.3 LeaveCommonContext
 This method enables an application that is a participant in a common context system to leave

the system. The application denotes itself using its participant coupon as the value of the input
participantCoupon. Once this method returns, the application is free to terminate.

 In order to avoid a deadlock condition, this method does not block. If this method was allowed
to block, it would be possible for an application to block while the context manager was
attempting to perform a method on the application’s ContextParticipant interface. For single-
threaded applications, this could cause a deadlock.

 Consequently, if a context change transaction is in progress when this method is called, the
application may still be notified about the context change even though it has left the common
context. The application is free to ignore this notification or may not even be capable of
responding. The context manager will robustly handle the failure of an application to respond.

 The exception UnknownParticipant is raised if the input participantCoupon does not denote an
application that is currently a participant in the common context system.

11.3.3.4 StartContextChanges
 This method enables an application to indicate that it wants to start changing the common

context. The application denotes itself with its participant coupon as the value of the input
participantCoupon. A context change transaction is initiated. Actual changes to the context
data are conducted via the ContextData interface. The output contextCoupon is the value of
the context coupon that has been assigned by the context manager to denote the change
transaction.

 The context manager will automatically terminate context change transaction if it does not
detect activity on its ContextData interface or if the ContextManager::EndContextChanges
method is not performed in a timely manner. The amount of time that the manager will wait
before terminating the transaction depends upon the manager’s implementation.

 The exception UnknownParticipant is raised if the input participantCoupon does not denote an
application that is currently a participant in the common context system.

 The exception TransactionInProgress is raised if a context change transaction is already in
progress.

 The exception InvalidTransaction is raised if a suspended application calls this method.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 153

11.3.3.5 EndContextChanges
 This method enables the application that instigated a context change transaction to indicate that

it has completed its changes to the common context. The value of the input contextCoupon
denotes the transaction currently in progress. This method initiates the two-step change
notification process and returns after the first phase of the notification process is conducted by
the context manager. During the first phase, the applications in the common context system are
surveyed to determine their ability or willingness to apply the context changes. The
ContextParticipant::ContextChangesPending method is performed on each application in the
survey.

 The output responses is a sequence of strings that is used to convey the results of the survey to
the application that instigated a context change transaction.

 If all of the applications surveyed indicate that they are willing to accept the context changes,
then the output sequence responses is empty (i.e. zero elements) and the output noContinue is
false. The sequence is empty because there is no useful information to be conveyed about the
applications that have accepted, other than the fact that they all accepted. The method
ContextManager::PublishChangesDecision with the decision accept shall be subsequently
performed by the instigating application to communicate to the other applications the decision
to accept the context changes and to complete the transaction.

 If there are surveyed applications that either are unable to provide a response to the survey
(e.g., because they are “busy”), or that want to inform the user that work-in-progress might be
lost if the context is changed, then the return value contains a string for each such application.
The application that invoked this method is expected to display the strings to the user and to
obtain guidance about how to proceed.

 The output noContinue indicates true if the mapping agent invalidated the transaction, or at
least one of the surveyed applications is “busy”. It is not possible for the user to continue to
apply the context change transaction if the value of noContinue is true. The only option the
user has is to cancel the change or to disconnect the instigating application from the common
context system. For either user decision, the method
ContextManager::PublishChangesDecision with the decision cancel shall be performed by the
instigating application.

 If the mapping agent has not invalidated the transaction and there are no busy applications
(i.e., noContinue is false), but there are applications that have conditionally accepted the
context changes, the user can instruct the instigating application to apply the context changes
anyway, cancel the changes, or to disconnect from the common context system.

 The method ContextManager::PublishChangesDecision with the decision accept shall be
subsequently performed by the instigating application to complete the transaction if the user
decides to apply the context changes.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 154 Copyright 1999, Health Level Seven Version CM-1.0

 The method ContextManager::PublishChangesDecision with the decision cancel shall be
subsequently performed by the instigating application to complete the transaction if the user
decides to cancel the context changes or to disconnect the instigating application from the
common context system.

 The exception InvalidContextCoupon is raised if the input contextCoupon does not denote the
transaction currently in progress.

 The exception NotInTransaction is raised if there is no change transaction currently in
progress.

 The exception InvalidTransaction is raised if the context data changes do not include at least
one item that is an identifier (e.g., context data cannot be comprised of just corroborating
data). This exception is also raised if the context data changes include one or more identifier
items but the values specified for all of these items is empty.

11.3.3.6 UndoContextChanges
 This method enables an application to discard any context data changes that it has already

made. The context coupon parameter denotes the transaction currently in progress. The
current transaction is brought to a close and the context coupon is no longer valid.

 The exception InvalidContextCoupon is raised if the input contextCoupon does not denote the
transaction currently in progress.

 The exception NotInTransaction is raised if there is no change transaction currently in
progress.

 The exception UndoNotPossible is raised if the method ContextManager::UndoContext-
Changes is attempted after the ContextManager::EndContextChanges method has been
performed during the course of the current transaction.

11.3.3.7 PublishChangesDecision
 This method enables the application that instigated a context change transaction to inform the

other applications in a context system about whether the changes are to be applied or have
been canceled. The value of the input contextCoupon denotes the transaction currently in
progress.

 The decision to accept the changes shall be published when the context changes are to be
applied. The only times that context changes cannot be applied are when there were
applications for which it was not possible to obtain a survey response (e.g., these applications
were “busy”) or when a mapping agent invalidates the transaction.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 155

 The decision to cancel the changes shall be published when the context changes are to be
discarded.

 If the decision is to accept the changes, the value of the value of the output decision parameter
is “accept”. If the decision is to cancel the changes, the value of the output decision is
“cancel”.

 Once the decision has been published, the change transaction is complete.

 The exception InvalidContextCoupon is raised if the input contextCoupon does not denote the
transaction currently in progress.

 The exception NotInTransaction is raised if there is no change transaction currently in
progress.

 The exception ChangesNotEnded is raised if the method EndContextChanges has not yet been
performed during the course of the current transaction.

 The exception AcceptNotPossible is raised if the decision to be published is accept but there
were applications for which it was not possible to obtain a survey response (e.g., these
applications were blocked). The decision accept in this case is erroneous. This exception
defends against this case should it arise due to an application programming error.

11.3.3.8 SuspendParticipation
 This method enables an application to indicate that it wants to suspend its active participation

in a common context system while remaining registered as a participant. The application
denotes itself with its participant coupon as the value of the input participantCoupon. It
should be apparent to the user that the application is not displaying context-sensitive data, for
example, the application might be minimized so that no data display can be seen.

 Suspending participation is not the same as leaving the common context. Instead, this method
provides an optimization for applications that temporarily do not want to track context
changes. This enables an application to perform computational tasks without being interrupted
by context changes.

 This method also enables an application to minimize its use of computational resources if it is
in a state (e.g., minimized) in which responding to context changes provides no benefit to the
user. The application can subsequently resume its participation in the common context via the
ContextManager::ResumeParticipation method. The application will not be surveyed, nor will
it be informed of changes to the common context until the application invokes the
ContextManager::ResumeParticipation method.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 156 Copyright 1999, Health Level Seven Version CM-1.0

 In order to avoid a deadlock condition, this method does not block. If this method was allowed
to block, it would be possible for an application to block while the context manager was
attempting to perform a method on the application’s ContextParticipant interface. For single-
threaded applications, this could cause a deadlock.

 Consequently, if a context change transaction is in progress when this method is called, the
application may still be notified about the context change. The application is free to ignore this
notification or may not even be capable of responding. The context manager will robustly
handle the failure of an application to respond.

 This method has no effect if the application has already suspended its participation.

 A suspended application cannot instigate a context change transaction.

 Context manager implementations are encouraged to periodically confirm that suspended
context participants are still running. This is to avoid the situation in which context manager
continues to allocate internal resources to a suspended participant that subsequently fails
without first informing the context manager that it is leaving the common context system.

 This method is an alternative to leaving the common context system. Context managers can be
implemented to support a maximum number of participants. If an application leaves a context
system, it risks not being able to rejoin. In contrast, by suspending its participation, this
possibility is avoided.

 The exception UnknownParticipant is raised if the input participantCoupon does not denote an
application that is currently a participant in the common context system.

11.3.3.9 ResumeParticipation
 This method enables an application to indicate that it wants to resume active participation in a

common context system. The application denotes itself with its participant coupon as the value
of the input participantCoupon. Upon resuming, an application must automatically ensure that
it has established synchrony with the current context.

 The application denotes itself with its participant coupon. This method has no effect if the
application did not previously invoke the ContextManager::SuspendParticipation.

 An application can only resume its participation a common context system between context
change transactions. If no transaction is in progress, the application is able to immediately
resume participation in the context change system.

 If a transaction is in progress and the value of the input wait indicates true, this method will
block until the transaction completes. It is recommended that an application that is willing to
wait also display a message to the user indicating that it is attempting to resume participation

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 157

in a common context system. If a transaction is in progress and the value of the input wait
indicates false, this method immediately raises the exception TransactionInProgress.

 The exception UnknownParticipant is raised if the input participantCoupon does not denote an
application that is currently a participant in the common context system.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 158 Copyright 1999, Health Level Seven Version CM-1.0

11.3.4 ContextParticipant (CP)

 interface ContextParticipant {
 ContextChangesPending
 inputs(long contextCoupon)
 outputs(string decision, string reason)
 raises()

 ContextChangesAccepted
 inputs(long contextCoupon)
 outputs()
 raises()

 ContextChangesCanceled
 inputs(long contextCoupon)
 outputs()
 raises()

 CommonContextTerminated
 inputs()
 outputs()
 raises()

 Ping
 inputs()
 outputs()
 raises()
 }

11.3.4.1 ContextChangesPending
 This method informs a participant in a common context system that a change to the common

context data is pending. The value of the input contextCoupon denotes the transaction within
which the context changes occurred. The participant shall respond with an indication of how it
wants to deal with the change:

• Accept the change

• Conditionally accept the change (e.g., because it is in the middle of a task that would
cause significant user work to be lost if a context change was allowed)

 An application that accepts the changes is willing to apply the new context data if subsequently
instructed to do so (by the ContextParticipant::ContextChangesAccepted or
ContextParticipant::ContextChangesCanceled methods).

 An application that conditionally accepts the changes is also willing to apply the changes, but
only after informing the user that the application might loose work that the user is in the midst
of performing. The output reason shall contain a succinct but informative description of the
work that might be lost. (The description should not identify the application as this information

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 159

is provided by the application when it joins the common context system.) The application
through which the user instigated the context changes is responsible for informing the user of
the situation and obtaining the user’s decision about how to proceed.

 An application that cannot interpret the context data (e.g., does not know who the patient is)
should accept the changes. However, the application should clearly indicate to the user (e.g.,
by displaying a message) that it cannot apply the current context data.

 If the response is to accept the changes, the value of the output decision is “accept”. If the
decision is to conditionally accept the changes, the value of the output decision
“accept_conditional”.

 If a participant does not respond in a timely manner, it will be interpreted by the context
manager as being busy. The amount of time that the manager will wait before determining that
an application is busy depends upon the manager’s implementation. This method is not
performed upon the application that instigated the context changes. Instead, the application is
blocked by the manager when it performs ContextManager::EndContextChanges.

11.3.4.2 ContextChangesAccepted
 This method informs a participant in a common context system that the result of the most

recent context change survey was to accept the changes and that the common context data has
indeed been changed. The participant can access the context data via the context manager’s
ContextData interface to obtain the changes. The value of the input contextCoupon denotes the
transaction within which the context changes occurred. This coupon is needed in order to
access the context data.

 If it is not possible to perform this method on an application because it is busy, the context
manager will periodically keep trying until it has successfully performed the method, or until a
new context change transaction is initiated. The intervals at which the context manager tries to
retry this method is implementation-dependant.

11.3.4.3 ContextChangesCanceled
 This method informs a participant in a common context system that a context change

transaction has been canceled. The value of the input contextCoupon denotes the transaction
that has been canceled.

 If it is not possible to perform this method on an application because it is busy, the context
manager will periodically keep trying until it has successfully performed the method, or until a
new context change transaction is initiated. The intervals at which the context manager tries to
retry this method is implementation-dependant.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 160 Copyright 1999, Health Level Seven Version CM-1.0

11.3.4.4 CommonContextTerminated
 This method informs a participant in a common context system that the system is being

terminated. The participant will not be subsequently informed about context changes, nor will
it be able to perform common context changes. If the system is re-established, the participant
must explicitly rejoin the system before performing the ContextManager::JoinCommon-
Context method.

11.3.4.5 Ping
 This method provides a means for a context manager to determine whether or not a participant

in a common context system is still running. This method shall be implemented by all
participants to return immediately. The context manager can then perform this method to probe
a participant when its existence is in question.

 In performing this method, the context manager will be able to indirectly exercise the
underlying communications infrastructure. The infrastructure will either indicate that the
method was successfully performed, that the method failed because the participant no longer
exists, or that the method failed but it cannot be determined whether or not the participant
exists. In this last case, the manager shall assume that the participant still exists.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 161

11.3.5 ImplementationInformation (II)

 interface ImplementationInformation {
 readonly string ComponentName
 readonly string RevMajorNum
 readonly string RevMinorNum
 readonly string PartNumber
 readonly string Manufacturer
 readonly string TargetOS
 readonly string TargetOSRev
 readonly string WhenInstalled
 }

11.3.5.1 ComponentName
 This read-only property is the name of the component, specifically, “Patient Link Mapping

Agent”.

11.3.5.2 RevMajorNum
 This read-only property is the major number for the software revision for the component, as

assigned by its manufacturer. For example, in the full revision number Z.32, ‘Z’ is the major
number and might indicate a particular functional release of the software.

11.3.5.3 RevMinorNum
 This read-only property is the minor number of the software revision for the component, as

assigned by its manufacturer. For example, in the full revision number Z.32, ‘32’ is the minor
number and might indicate a particular build of the software.

11.3.5.4 PartNumber
 This read-only property is the part number that the component’s manufacturer assigned to the

component.

11.3.5.5 Manufacturer
 This read-only property is the name of the organization that developed the component.

11.3.5.6 TargetOS
 This read-only property is the name of the operating system on which the component is able to

execute.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 162 Copyright 1999, Health Level Seven Version CM-1.0

11.3.5.7 TargetOsRev
 This read-only property is the revision of the operating system named in target operating

system on which the component is able to execute.

11.3.5.8 WhenInstalled
 This read-only property is the date and time at which the component was installed on its host.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 163

11.3.6 MappingAgent (MA)

 interface MappingAgent {
 ContextChangesPending
 inputs(long mappingAgentCoupon, Principal contextMgr,
 long contextCoupon)
 outputs(string decision, string reason)
 raises()

 Ping
 inputs()
 outputs()
 raises()
 }

11.3.6.1 ContextChangesPending
 This method informs a mapping agent in a common context system that a change to the

common context data is pending. The value of the input contextCoupon denotes the transaction
within which the context changes occurred. The value of the input mappingAgentCoupon
denotes the mapping agent for the duration of the current change transaction. The value of the
input contextMgr is an interface reference to the context manager’s principal interface. This is
so that the mapping agent can easily obtain the context manager interface(s) it needs.

 The agent shall respond with an indication of how it wants to deal with the context change:

• The changes are valid

• The changes are invalid

 If the changes are valid, then the value of the output decision should be “valid”. If the changes
are invalid, then the value of the output decision should be “invalid”. The changes should only
be declared invalid if the set of identifiers in the proposed context data do not all represent the
same patient. If the changes are invalid, then the value of the output reason will contain a
succinct but detailed string describing why the changes were invalid. Otherwise the value of
reason is null.

11.3.6.2 Ping
 This method provides a means for a context manager to determine whether or not a mapping

agent in a common context system is still running. This method shall be implemented by all
agents to return immediately. The context manager can then perform this method to probe a
mapping agent when the agent’s existence is in doubt.

 In performing this method, the context manager will be able to indirectly exercise the
underlying communications infrastructure. The infrastructure will either indicate that the

 Context Management Specification, Technology and Subject-Independent Component Architecture

 164 Copyright 1999, Health Level Seven Version CM-1.0

method was successfully performed, that the method failed because the agent no longer exists,
or that the method failed but it cannot be determined whether or not the agent exists. In this last
case, the manager shall assume that the agent still exists.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 165

11.3.7 SecureBinding (SB)

 interface SecureBinding {
 exception UnknownBindee {}
 exception UnknownPropertyName { string propertyName; }
 exception BadPropertyType { string propertyName; type actual;

type expected; }
 exception BadPropertyValue { string propertyName;
 variant itemValue; string reason; }
 exception NameValueCountMismatch {long numNames; long numValues }
 exception ImproperKeyFormat { string reason; }
 exception ImproperMACFormat { string reason; }
 exception BindingRejected { string reason; }
 exception AuthenticationFailed { string reason; }

 InitiateBinding
 inputs(long participantCoupon, string[] propertyNames,
 variant[] propertyValues)
 outputs(string mac, string binderPublicKey)
 raises(UnknownBindee, NameValueCountMismatch,
 UnknownPropertyName, BadPropertyType, BadPropertyValue,
 BindingRejected)

 FinalizeBinding
 inputs(long long participantCoupon, string bindeePublicKey,
 string mac)
 outputs()
 raises(UnknownBindee, ImproperKeyFormat, ImproperMACFormat,
 AuthenticationFailed)
 }

11.3.7.1 InitiateBinding
 This method enables a context management component (“bindee”) to initiate the process of

establishing a secure binding with another context management component (“binder”). This
method shall be performed only after the bindee has been provided by the binder with a coupon
to denote itself. The value of the input bindeeCoupon is this coupon. The value of
bindeeCoupon depends upon the role bindee and binder, as described on the following page.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 166 Copyright 1999, Health Level Seven Version CM-1.0

 Bindee Binder Value of bindeeCoupon

 Context
Participant
Application

 Context
Manager

 Participant coupon, obtained by the participant
from the context manager via
ContextManager::JoinCommonContext.

 Context
Participant
Application

 Authentication
Repository

 Connection coupon, obtained by the participant
from the authentication repository via
AuthenticationRepository::Connect.

 Mapping
Agent

 Context
Manager

 Mapping agent coupon, obtained from the context
manager when it most recently performed
MappingAgent::ContextChangesPending upon the
mapping agent.

 As part of the process of establishing a secure binding, it is necessary for the bindee and the
binder to agree upon the properties of the underlying security algorithms that they will use in
subsequent secure interactions. These properties may include the public key / private key
scheme, the number of bits used to represent a key, and the type of one-way hash algorithm
that is to be used to generate message digests and message authentication codes. The specific
properties that must be agreed upon, and the allowed set of values for these properties, are
defined in the each of the HL7 context management technology-specific component mapping
specification documents.

 The value of the input sequence propertyNames contains the names of the secure binding-
related properties for which the bindee wishes to establish agreement. The values for each of
these properties are contained in the input sequence propertyValues. The ith element in
propertyValues is the value for the property named by the ith element in propertyNames. The
data type for a property is the same as the data type of the element in propertyValues that
contains the property’s value.

 The output mac is the message authentication code. This code shall be used by the bindee to
prove the identity of the binder, and to ensure that the value of binderPublicKey has not been
tampered with. The value of the output binderPublicKey is the binder’s public key, and shall
be used by the bindee in all subsequent secure interactions that involve the binder.

 The value of binderPublicKey is character-encoded binary data formed by the binder when it
computes its public key / private key pair.

 The value of mac is character-encoded binary data formed by the binder’s computation of a
one-way hash value. This hash value is computed using an input string formed by
concatenating the bindee’s passcode to the end of the character-encoded binary string

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 167

containing the binder’s public key. This passcode is a secret known only to the bindee and the
binder. Upon receipt of the output mac and binderPublicKey, the bindee independently creates
the same string as the binder and performs the same hash computation. If the resulting hash
value matches the value of mac, then the binder shall be considered authentic and the value of
binderPublicKey shall be considered valid.

 The algorithms used to compute mac and binderPublicKey are technology-specific. The format
of these outputs are also technology specific.

 The exception UnknownBindee is raised if the input bindeeCoupon does not denote a context
management component currently known to the binder.

 The exception NameValueCountMismatch is raised if the number of items in the input
propertyNames does not match the number of items in the input propertyValues.

 The exception BadPropertyType is raised if the data type for one or more of the properties
whose value is to be set is not the same as the expected data type.

 The exception BadPropertyValue is raised if the data value for one or more of the properties
whose value is to be set is determined to be unacceptable or incompatible.

 The exception BindingRejected is raised if the bindee is not authorized to establish a binding
with the binder. When this exception is raised by the context manager, it means that the context
participant application has not been designated for authenticating users. When this exception is
raised by the authentication repository, it means that the repository has not been configured to
serve the application.

11.3.7.2 FinalizeBinding
 This method enables bindee to finalize the process of establishing a secure binding with a

context management component. This method shall be performed by a bindee only after it has
successfully performed the method InitiateBinding upon a binder. The bindee denotes itself
using the same value for the input bindeeCoupon that it used when it performed the method
InitiateBinding upon the binder.

 The input bindeePublicKey is the bindee’s public key, and shall be used by the binder in all
subsequent secure interactions that involve the bindee. The value of binderPublicKey is
character-encoded binary data formed by the bindee when it computes its public key / private
key pair.

 The input mac is the message authentication code. This code shall be used by the binder to
prove the identity of the bindee, and to ensure that the value of bindeePublicKey has not been
tampered with.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 168 Copyright 1999, Health Level Seven Version CM-1.0

 The value of mac is character-encoded binary data formed by the bindee’s computation of a
one-way hash value. This hash value is computed using an input string formed by
concatenating the bindee’s passcode to the end of the character-encoded binary string
containing the bindee’s public key. This passcode is a secret known only to the bindee and the
binder. Upon receipt of the inputs mac and bindeePublicKey, the binder independently creates
the same string as the bindee and performs the same hash computation. If the resulting hash
value matches the value of mac, then the bindee shall be considered authentic and the value of
bindeePublicKey shall be considered valid.

 The algorithms used to compute mac and bindeePublicKey are technology-specific. The
format of these inputs are also technology specific.

 The exception UnknownBinding is raised if the input bindingCoupon does not denote an
bindee currently known to the binder.

 The exception ImproperKeyFormat is raised if the input publicKey is not properly formatted.

 The exception ImproperMACFormat is raised if the input mac is not properly formatted.

 The exception BindingDenied is raised if the input mac does not establish the identity of the
bindee and/or the integrity of the input bindeePublicKey.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 169

11.3.8 SecureContextData (SD)

 interface SecureContextData {
 exception UnknownItemName { string itemName; }
 exception BadItemNameFormat { string itemName; string reason }
 exception BadItemType { string itemName; type actual;
 type expected; }
 exception BadItemValue { string itemName; variant itemValue;
 string reason; }
 exception NameValueCountMismatch {long numNames; long numValues }
 exception ChangesNotPossible {}
 exception SignatureRequired {}
 exception AuthenticationFailed { string reason; }

 GetItemNames
 inputs(long contextCoupon)
 outputs(string[] itemNames)
 raises(InvalidContextCoupon)

 SetItemValues
 inputs(long participantCoupon, string[] itemNames,

 variant[] itemValues, long contextCoupon, string appSignature)
 outputs()

 raises(NotInTransaction, InvalidContextCoupon, UnknownParticipant,
NameValueCountMismatch, BadItemNameFormat, BadItemType,

 BadItemValue, ChangesNotPossible, SignatureRequired,
 AuthenticationFailed)

 GetItemValues
 inputs(long participantCoupon, string[] itemNames,

 boolean onlyChanges, long contextCoupon, string appSignature)
 outputs(variant[] itemValues, string managerSignature)
 raises(InvalidContextCoupon, UnknownParticipant,

 BadItemNameFormat, UnknownItemName, SignatureRequired,
 AuthenticationFailed)
 }

11.3.8.1 GetItemNames
 This method is identical to ContextData::GetItemNames.

11.3.8.2 SetItemValues
 This method is similar to ContextData::SetItemValues. The primary difference is that the

context participant’s digital signature shall be provided as the value of the input appSignature
when user subject item values are among the items to be set. This signature enables the context
manager to authenticate that they came from a designated application or from the real user
mapping agent, and that the values were not tampered with between the time they were sent
and were received.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 170 Copyright 1999, Health Level Seven Version CM-1.0

 A signature is not required when the values for the user subject items are null. This enables
any application to set the user context to empty. When a signature is not provided, the value of
the input appSignature shall be an empty string (“”).

 Concatenating the string representations of the following inputs in the order listed shall form
the data from which a message digest is computed by the participant:

• participantCoupon

• itemNames (i.e., All the elements in the order that they appear in the array.)

• itemValues (i.e., All the elements in the order that they appear in the array.)

• contextCoupon

 A participant shall compute its digital signature by encrypting the message digest with its
private key.

 The exception SignatureRequired is raised if the value of appSignature is not a digital
signature and a signature is required in order to perform this method.

 The exception AuthenticationFailed is raised if a digital signature is required and provided, but
the process of authentication determines that: the application that invoked this method did not
previously provide its public key via the interface SecureBinding; that the input appSignature
has been forged; that the input parameter values have been tampered with; that the participant
has not been designated for performing user context changes.

11.3.8.3 GetItemValues
 This method is similar to ContextData::GetItemValues. The primary difference is that the

context manager’s digital signature shall be provided as the value of the output
managerSignature when user subject identifier item values are among the items named for
retrieval. This signature enables the recipient of the item values to authenticate that they came
from the real context manager, and that the values were not tampered with between the time
they were sent and were received.

 Concatenating the string representations of the following inputs in the order listed shall form
the data from which a message digest is computed by the context manager:

• ItemValues (i.e., All the elements in the order that they appear in the array.)

• contextCoupon

 The context manager shall compute its digital signature by encrypting the message digest with
its private key.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 171

 The value of the inputs participantCoupon and appSignature are not currently used and are
defined in anticipation of future uses of this method. In the future, the value of these inputs will
enable the context manager to enforce context data access rights as a function of the context
participant’s identity and the properties of the requested context items, as listed in the input
itemNames. The value of participantCoupon will denote the participant. The value of
appSignature will be the digital signature of the participant.

 Until stated otherwise in a future version of this specification, the value of the input
participantCoupon shall be zero (0). The value of the input appSignature input shall be an
empty string (“”).

 The exception SignatureRequired is raised if the value of appSignature is not a digital
signature and a signature is required to perform this method.

 The exception AuthenticationFailed is raised if a digital signature is required and provided, but
the process of authentication determines that: the application that invoked this method did not
previously provide its public key via the interface SecureBinding; that the input appSignature
has been forged; that the input parameter values have been tampered with; that the participant
is not allowed to access the requested context items.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 172 Copyright 1999, Health Level Seven Version CM-1.0

12 Backwards Compatibility

 The HL7 Context Management Architecture specified in this document if fully compatible with
the CCOW Patient Link 1.1 Architecture Specification. The CMA, is however, a superset of
the CCOW Architecture.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 173

Appendix: Diagramming Conventions

 There are four types of formal diagrams that are used throughout this document to describe the
CCOW architecture:

• A use case diagram depicts the actors (human and/or computer-based) and the roles
that the play when participating in an interesting scenario.

• A use case interaction diagram illustrates the high-level interactions between the actors
that participate in the use case.

• A component architecture diagram depicts components and their interfaces, and
indicates which interfaces each component use for communicating with other
components.

• A component interaction diagram illustrates the series of method invocations that
components perform on each other in order to implement a particular use case.

 The conventions for each of these diagrams are explained below. Many of the conventions
were leveraged from Ivar Jacobson’s text Object-Oriented Software Engineering.= In the
future, these conventions will be evolved to comply with the Unified Modeling Language
specification, which is still being refinedH.

 Use Case Diagram

 The use case diagramming conventions are:

• A stick figure represents an actor, even if the actor is a computer-based entity, such as

an application:

 = Object-Oriented Software Engineering, Ivar Jacobson, Addison-Wesley, 1994.

 H Unified Modeling Language Reference Manual, James Rumbaugh, Grady Booch, Ivar Jacobson,
Addison-Wesley, 1997.

 Healthcare
 Application

 174 Copyright 1999, Health Level Seven Version CM-1.0

• An oval represents a use case. The name of the use case appears next to the oval:

• An arrow directed from an actor to the use case indicates that the actor participates in
the use case. A label near the arrow succinctly describes the actors role in the use case:

 Use Case Interaction Diagrams

 The use case interaction diagramming conventions are:

• The interacting actors are depicted by rectangles labeled with the actor’s name,
arranged in a horizontal row. A vertical dashed bar descends from each of these
rectangles:

• An interaction that is initiated by an actor is represented as an arrow that emanates
from the actor. The arrow terminates on the actor to which the interaction is directed .
Each arrow is labeled with a short description of the interaction it represents:

 Patient Selection Change

 Participates

 Healthcare
 Application

 Patient Selection Change

 User

 Application XXX User

 I choose patient “Sam Smith”

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 175

• A vertical bar indicates the start and end of the actions that an actor performs in
response to an interaction. These actions may include additional interactions:

• An actor can responsd to an interaction. A response is shown as an arrow labeled with
an indication of the response:

• The entire set of interaction arrows is temporally ordered, from left to right, top to
bottom.

 Application XXX User

 I choose patient “Sam Smith”

 Context Manager Application XXX

 I choose patient “Sam Smith”

 The selected patient is now “Sam Smith”

 176 Copyright 1999, Health Level Seven Version CM-1.0

 Component Architecture Diagrams

 The component architecture diagramming conventions are:

• Each component is depicted as a rectangle. The name of the component appears within
the rectangle:

• Each of the interfaces implemented by a component is illustrated as a circle tangent to
the rectangle that depicts the component. Each circle is labeled with the name of the
interface it represents. Two or three letter abbreviations are typically used:

• A directed arrow connects components that communicate with each other. Arrows
emanate from a client component and point to the server components that it uses. Each
arrow terminates on the circle representing the specific server component interface that
is used. An distinct arrow is used for each interface for each server component that a
client component uses:

 Context
Manager

 CM
 Context

Manager

 Context
Manager Application

 CM

 CD

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 177

Component Interaction Diagrams

 The component interaction diagramming conventions are:

• The interacting components are depicted by rectangles labeled with the component’s
name, arranged in a horizontal row. A vertical dashed bar descends from each of these
rectangles:

• A method that is invoked by a component is represented as an arrow that emanates
from the bar and that terminates on the bar for component that services the method.
Each arrow is labeled with the name of the method it represents. Examples of actual
parameter values may be included for clarity:

• A vertical bar indicates the start and end of the processing that a component performs
in response to a method invocation. This processing may itself include method
invocations:

 Context Manager

 Context Manager Application XXX

 PublishChangesDecision(“accept”)

 Context Manager Application XXX

 PublishChangesDecision(“accept”)

 178 Copyright 1999, Health Level Seven Version CM-1.0

• Method return values are indicated when this aids in understanding the use case. A
return value is shown as an arrow labeled with an indication of the return value:

• The entire set of method invocation arrows is temporally ordered, from left to right,
top to bottom.

 Context Manager Application XXX

 ContextChangesPending()

 “accept”

