Context Management Specification, Component Technology Mapping: ActiveX

Health Level Seven Standard

Context Management Specification
Component Technology Mapping: ActiveX
Version CM-1.0

DOCUMENT ID: HL7SIGVI_5 2 99
REVISION ID: May 24, 1999
FILE NAME: hl7_sigvi_activex_cm_1 0.doc
SUPERCEDES: n/a

Copyright © 1999 by Health Level Seven, Inc.
ALL RIGHTS RESERVED. The reproduction of this material in any
form is strictly forbidden without written permission of the publisher.

Version CM-1.0 Copyright 1999, Health Level Seven 1

Context Management Specification, Component Technology Mapping: ActiveX

Copyright 1999, Health Level Seven Version CM-1.0

Context Management Specification, Component Technology Mapping: ActiveX

Contents
1 INTRODUCTION .. 7
1.1 PN S Y =4 [0 N T TN 7
1.2 (00 V=7 7Y =11 2T 7
1.3 TECHNOLOGY IMAPPING .. .cciiiitttie e ee e ettt s e e e st e et b s e e e s s e ea bt e e e s s e e s bbb s eessses bbb s eesssensbbaansaeaanes 8
2 COMPONENT MODEL MAPPING ... 11
3 INTERFACE REFERENCE MANAGEMENT ... 15
4 DUAL INTERFAGQCES. ... o tetittittittttttttettatessesssasesseseeseessesareee.........—.........e.r.re..........———————————————————. 17
5 WINDOWS REGISTRY SETTINGS ... 19
6 ACTIVEX JAVAWRAPPERS ... 23
7 MICROSOFT'S CRYPTOSB2 APl 25
7.1 SECURE BINDING PROPERTIES.....ctttuiiiiiiiietiiiiieeesiesstiisssessssesssssssssssssssssansssssssssssassesseessssnnnns 25
7.2 CRYPTOGRAPHIC SERVICE PROVIDER......ccttttiiiiiiiiiiettiii e e s st eatbs s s e s s s eatb e s s s s eabbbs s e e s s seasbbanaaes 26
7.3 CREATING DIGITAL SIGNATURES ...tuutiiiiiiietttie e e e s s eeeb s e s s s seaaba s s essssstba s essseeasbbsseesseessbbaanans 26
7.4 SIGN A TURE FORMAT L.ttt e e e e e e e e e e e s et e b b e e e e s e e s bbbt seee s e e s bbb s e e s seeeabbaaasss 26
7.5 PUBLIC K EY FORM AT ¢ttt e e e et e e e e e e e e bbb e e e s s s ee s b b s e eassees bbb e eesseensres 26
7.6 HASH V A LUE FORM AT ettt ettt e e et ab s e e e e s et s bbb e e e e s e e s s b b s eeassee s bbb s eeasseesbbaaaseesseensses 27
7.7 ICEY CONTAINERS ... iiiiiietttet s et esseetbbs s e e e s st ea bbbt s eeesee st b bt esesee s s bbb eeassea s bbb eeassessbbaaaseessenssses 27
7.7.1 REQUITEA CONTATNEESeiiiiie ittt ettt ettt et et e e sbb e e snbeeanbeaabeaan 27
7.7.2 Key Container Naming CONVENTIONcoiuiiiiiaiiie it 28
7.7.3 Key Container Man@gEMENToiuiiiiiie ettt et ste e snbeesnbe e neeaans 28
7.74 KEY CONLAINET SECUFTTY ...ttt e et e et e snbe e nbeeaeeaan 28
8 ERROR HANDLING ... 31
9 CHARACTER SET ..o 35
10 Y L T I I RS I 1AL TR 37
10.1 TYPE LIBRARIES.....ccttttiiiiiiiiittitie it e e s s e eetb s s e e e s s ees bt s e e s s s e e bbb s eeassea bbb s eeessess bbb seesseesbbaaaeaaaes 38
10.2 IAUTHENTICATIONREPOSITORY ...uiiiiittitiiiieeeiiesttiisseessseesbbassesssesstbaaassssssssssssnsseesssssssssnsseesses 39
10.3 L ON T EX T D AT A ettt et e e e e et e e e s e ee bbbt e e e e s ee s bbb e eesss e s bbb s eesssee bbb aeaanes 40
10.4 [CONTEXTIMANAGER ...t iiiiietti e e e et et s e e e s e e et s e e s s s ee bbb s e e essee s bbb e eesse e s bbb s eessseebbbaanseeeaaes 41
10.5 L ON T EX TP A RTICIPANT L.iiiittttee ittt e ettt e e e s e e et bt e e e e s s ee bbb s e eessee s bbb e eess e e s bbb s eessseebbbaansaeaases 42
10.6 IIMPLEMENTATIONINFORMATION L..iiiittttiiiieeeiiestsstsseesssessssssssesssesssssssssesssssssssnsseesssessssnnseeesnes 43
10.7 T = = TN €T A= N TR 44
10.8 | SECUREBINDINGuttuuiiiiiiiettiii i e e e e e eeatb s s e e s s e est b s s eesssee bbbt eeessee s bbb e sesseesabbaa s eesssessbbaansaeaases 45
10.9 | SECURE C ONTEX T AT A ittt ittt e et et e e e e et e bbb et e e e s e e s bbb e e eesees bbb s eeessee bbb eeaaaes 46

Version CM-1.0 Copyright 1999, Health Level Seven 3

Context Management Specification, Component Technology Mapping: ActiveX

Figures

Figure 1: Organization of HL7 Context Management Specification DOCUMENLS...........cccoereeeiieeiiieniiienennn 9
Figure 2: Automation Interfaces in @ Common CONtEXt SYSEEM.........ceiiiiiiiiieriee et 12
Tables

Table 1: How Interface References Are OBLaINE...........ooeiiiiiiiiiiiie e 13
Table 2: Secure Binding PrOPEITIEScoeiiiiiieieeiie sttt sneas 25
Table 3: Key Container Naming SChEMIE...........uii ittt et sre e saee e b e 29
Table 4: EXCEPLION COUEBS.eieiuieeiieeetee ettt ettt sttt et e et e e e rbe e e sate e sabe e s be e e abee e saeeeanbeesnbeeenees 33

4 Copyright 1999, Health Level Seven Version CM-1.0

Context Management Specification, Component Technology Mapping: ActiveX

Preface

This document was prepared by Robert Seliger, Sentillion, Inc., on behalf of Health Level
Seven's Specia Interest Group for Visua Integration (formerly the Clinical Context Object
Workgroup --- CCOW). Comments about the organization or wording of the document should
be directed to the author (robs@sentillion.com). Comments about technica content should be
directed to ccow@lists.hl7.org.

Version CM-1.0 Copyright 1999, Health Level Seven 5

Context Management Specification, Component Technology Mapping: ActiveX

Copyright 1999, Health Level Seven Version CM-1.0

1

Context Management Specification, Component Technology Mapping: ActiveX

Introduction

This document specifies the details needed to develop Microsoft ActiveX implementations of
applications and components that conform to the HL7 Context Management Architecture
(CMA). Using this specification, the resulting applications and service components will be able
to communicate with each other per the CMA even if they were independently developed.

The scope of this document is limited to the details pertaining to implementing the CMA-
specified application and component interfaces using ActiveX Automation (formerly known as
OLE Automation). This sub-technology within the ActiveX portfolio of technologiesis
supported by awide range of Microsoft and non-Microsoft development tools.

Visua BasicO 4.0 is used as the “lowest common denominator” baseline programming
language for developing context participant applications. The collective capabilities of Visua
BasicO 5.0 (as opposed to 4.0) , Visua C++0 5.0, and Visua J++0O 1.1 (Microsoft’s
implementation of Java) are used as the baseline basdline programming language
implementations for developing CMA components, including the context manager, patient and
user mapping agents, and authentication repository. This specification is aso forwards-
compatible with more recent versions of these tools.

However, any development tool that supports the creation of Automation clients and servers,
and in particular supports the |Querylnterface idiom, should enable the devel opment of
applications and components that conform to this specification.

1.1 Assumptions

It is assumed that the reader is familiar with Microsoft’s ActiveX technology and with the
Microsoft’s underlying Component Object Model (COM).

1.2 Compatability

This specification is compatible with the following host operating systems:
Windows NT Workstation 4.0 service pack 3, or later
Windows 95 OSR2 or later

This specification is compatible with at least the following programming language
implementations:

Visual C++ 5.0 or later

Version CM-1.0 Copyright 1999, Health Level Seven 7

Context Management Specification, Component Technology Mapping: ActiveX

Visua Basic 4.0 or later

Visua JH+ 1.1 or later with Microsoft’s Java SDK 3.1 or later and Microsoft’ s Java
Virtual Machine 5.00.3161 or later

The specification is likely to be compatible with other implementations of these languages, as
well as with other programming languages.

1.3 Technology Mapping

The HL7 Context Management Architecture specification is technology-neutral. This means
that while an underlying component system is assumed, a specific system is not identified
within the architecture. It is the purpose of this document, and its companions for other
component technologies, to map the CMA to a specific target technology. For Automation, the
technol ogy-specific details specified in this document include (but are not limited to):

multiple interfaces

interface reference management

dua interface requirements

registry settings

ActiveX Javawrappers for ActiveX components
error handling

implementable interface definitions

It is beyond the scope of this document to provide al of the details that are needed in order to
fully implement conformant CMA applications and components. The necessary additional
details are covered in a series of companion specification documents, starting most notably
with the Health Level Seven Context Management Specification, Technology- And Subject-
Independent Component Architecture, CM-1.0.

Asillustrated in Figure 1, these documents are organized to facilitate the process of defining
additiona link subjects and to accelerate the process of realizing the CMA using any one of a
variety of technologies.

8 Copyright 1999, Health Level Seven Version CM-1.0

Context Management Specification, Component Technology Mapping: ActiveX

Technology Neutral Context
Management Architecture
Specification

Technology Specific

' Component Mapping
Specification
Technology-Neutral
Subject Data Definition ACtl VeX

Specifications

Technlogy 2

Subject A Q @«

Subject B Technology 3

Subject C
Technlogy X %
Technology Specific User Technology Y %

Interface Specifications
Technlogy Z

Figure 1: Organization of HL7 Context Management Specification Documents

The context management subjects and technologies that are of interest are determined by the
HL7 constituency:

Thereis an HL7 context management data definition specification document for each
of the standard link subjects. Each document defines the data elements that comprise a
link subject. Concurrent with the publication of this document, the following
documents have been devel oped:

Health Level-Seven Standard Context Management Specification Data Definition:
Patient Subject, Verson CM-1.0

Health Level-Seven Standard Context Management Specification,
Data Definition: User Subject, Version CM-1.0

There isan HL7 context management user interface specification document for each of
the user interface technologies with which CM A-enabled applications can be
implemented. Each document reflects the user interface requirements established in
this document in terms of a technology-specific look-and-feel. Concurrent with the
publication of this document, the following document has been devel oped:

Health Level-Seven Standard Context Management Specification
User Interface: Microsoft Windows OS, Version CM-1.0

Version CM-1.0 Copyright 1999, Health Level Seven 9

Context Management Specification, Component Technology Mapping: ActiveX

Finaly, thereis an HL7 context management component technology mapping specification
document for each of the component technologies. Each document provides the technol ogy-
specific details needed to implement CMA-compliant applications and the associated CMA
components, as specified in this document. This document serves the role of specifying the
details for a CMA implementation using Microsoft’s ActiveX technology.

10 Copyright 1999, Health Level Seven Version CM-1.0

Context Management Specification, Component Technology Mapping: ActiveX

2 Component Model Mapping

Each interface defined in the CMA specification is implemented as an ActiveX automation
interface. All of the components defined in the CMA specification, including context
participant applications, are clients as well as servers. In the parlance of ActiveX, they are all
Automation clients and servers because they implement and use Automation interfaces.

Context participant applications are only currently required to implement a single Automation
interface. However, context managers and mapping agents are required to implement multiple
distinct Automation interfaces.

The COM IUnknown::Querylnterface idiom is used to enable context components to acquire
each others' interface references through interface interrogation. (Note that Visual Basic
implements IUnknown::Querylnterface “under the covers’ viathe Visual Basic assignment
operator.) The COM interface lUnknown serves as a context component’s principa interface.
See the chapter Component Model in the document HL7 Context Management Specification,
Technology- And Subject- Independent Component Architecture, CM-1.0 for a discussion
about interface interrogation and principa interfaces.

In some cases a component obtains a reference to 1Querylnterface for another component from
the Windows registry. This registry serves as the interface reference registry described in the
chapter Component Model in the document HL7 Context Management Specification,
Technology- And Subject- Independent Component Architecture, CM-1.0. In other cases,
components pass interface references to each other as method parameters.

The various Automation interfaces employed in a common context system are shown in Figure
1. The means by which the various CMA compliant applications and components obtain
interface references to each other are described in Table 1.

Version CM-1.0 Copyright 1999, Health Level Seven 11

Context Management Specification, Component Technology Mapping: ActiveX

Application #1
I mplementation

Application #N

|] Implementation
1

¢ ”

Context Manager —

I mplementation
@4— Tool, etc.

Common
Context
Data

MA
l_

Optional Mapping
Agent Implementations 11 Tool, etc.

1

]
|

User Patient

Optional External
Authentication
Repository
Implementation

AR = |AuthenticationRepository I = IImplementationl nformation

CD = IContextData
CM = |ContextManager
CP = IContextParticipant

Automation Interfaces

MA = IMappingAgent
SB = ISecureBinding
SD = |SecureContextData

Figure 2:

12

Automation Interfaces in a Common Context System

Copyright 1999, Health Level Seven Version CM-1.0

Context Management Specification, Component Technology Mapping: ActiveX

Automation Server

Client’s means for obtaining server’s interface reference(s) ...

Automation Means for obtaining reference
Client
Context Manager’s Context A context participant obtains a reference to
| ContextManager and Participant the context manager’s lUnknown interface
| ContextData interfaces. from the Windows registry. The context
participant then performs
IUnknown::Querylnterface on the context
manager to get the desired interface
references.
Context Manager’s Mapping The context manager provides areference to
| ContextData interface. Agent its IlUnknown interface to the mapping agent
when the context manager calls
[MappingA gent::ContextChangesPending.
The mapping agent then performs
IUnknown::Querylnterface on the context
manager to get the desired interface
reference.
Mapping Agent’s Context The context manager obtains a reference to
IMappingAgent and Manager the mapping agent’ s IlUnknown interface
[mplementationl nformation from the Windows registry. The context
interfaces. manager then performs
IUnknown::Querylnterface on the mapping
agent to get the desired interface references.
Context Participant’s Context A context participant provides a reference to
| ContextParticipant Manager its IContextParticipant interface to the
interface. context manager when the context
participant calls
| ContextM anager::JoinCommonContext.
Authentication Repository’s Context A context participant obtains a reference to
| AuthenticationRepository Participant the authentication repository’ s lUnknown

interface from the Windows registry. The
context participant then performs
IUnknown::Querylnterface on the
authentication repository to get the desired
interface references.

Table 1: How Interface References Are Obtained

Version CM-1.0

Copyright 1999, Health Level Seven 13

14

Context Management Specification, Component Technology Mapping: ActiveX

Copyright 1999, Health Level Seven Version CM-1.0

Context Management Specification, Component Technology Mapping: ActiveX

3 Interface Reference Management

In order to “possess’ an interface reference, as described in the chapter Component Model in
the HL7 Context Management Specification, Technology- And Subject- Independent
Component Architecture, CM-1.0 document, COM interface reference counts should be
incremented and decremented in accordance with COM conventions. In general, a component
performs lUnknown::AddRef to “possess’ an interface reference. Conversely, a component
performs lUnknown::Release to “dispose” an interface reference.

Version CM-1.0 Copyright 1999, Health Level Seven

15

16

Context Management Specification, Component Technology Mapping: ActiveX

Copyright 1999, Health Level Seven Version CM-1.0

Context Management Specification, Component Technology Mapping: ActiveX

4 Dual Interfaces

Dual Interfaces are a COM optimization that enables an Automation interface to be called
using a run-time dispatching mechanism (i.e., so called dispatch interfaces), or directly viaa
compile-time binding mechanism (i.e., so called v-table interfaces). The latter approach
generaly resultsin better performance. Dual interfaces accommodate the widest possible range
of application development tools, from interpreted late binding languages like Smalltalk and
VisuaBasic to compiled early binding languages like C and C++.

Context manager, mapping agent, and authentication repository implementations shall expose
their CMA-defined Automation interfaces as dua interfaces. This may limit the choice of
programming language for these components to just those that support the development of dual
interfaces. However, the advantage is better overall run-time performance.

Context participant applications can choose to implement their CM A-defined

| ContextParticipant interface as a dispatch interface or as adual interface. This enables
application developers to use a wide range of programming languages, as not all languages
support dual interfaces.

Version CM-1.0 Copyright 1999, Health Level Seven 17

18

Context Management Specification, Component Technology Mapping: ActiveX

Copyright 1999, Health Level Seven Version CM-1.0

Context Management Specification, Component Technology Mapping: ActiveX

5 Windows Registry Settings

ActiveX components can have awide variety of Windows registry entries. It is not unusual for
these entries to become quite complex. An objective of this document is to specify the smplest
registry entries that will enable applications and components that conform to the CMA
specifications to be implemented using any of the common ActiveX-capable programming
languages and still seamlesdy interoperate.

The context manager shall be registered in the Windows registry. This enables context
participant applications to locate and bind to the context manager. If present, a mapping agent
shall also be registered in the Windows registry. This enables the context manager to locate
and bind to the mapping agent. Finally, if present, the authentication repository shall be
registered in the Windows registry. This enables context participant applications to locate and
bind to the authentication repository.

ActiveX component registry entries often include implementation-specific information, such as
the file name and path to the component’ s executable code, and may vary depending upon how
the component has been implemented (e.g., executable vs. dynamic link library). However, the
registry entry for an ActiveX component can use a program identifier (ProglD), whichisa
symbolic name for the type of component, as aregistry key. A registry key is used to locate a
registry entry (known as avalue).

The value associated with a ProgID is the component’s class identifier (CLSID), which
denotes an implementation of the component. By fixing the ProglD, it is possible to write
client’sfor atype of component such that the client does not need to know anything about the
component’ s implementation. Instead, the client uses the Progl D to locate the component’s
CLSID at run-time. The CLSID isthen used to create an instance of the component, or to
connect to an existing instance of a running component.

In summary, ProglD’s are invariant across implementation. Therefore, no matter how they are
implemented, al of the CMA compliant applications and components shall use the Progld’s
defined below™:

The context manager shall be registered using the Progl D sub-key string,
“CCOW.ContextManager”. The CLSID under which a context manager is registered
shal be different for different context manager implementations.

! These ProglD’s are the same as defined by the Clinical Context Object Workgroup, upon whose
origina specification this specification is based.

Version CM-1.0 Copyright 1999, Health Level Seven 19

Context Management Specification, Component Technology Mapping: ActiveX

The patient mapping agent shall be registered using the Progl D sub-key string,
“CCOW.MappingAgent_Patient”. The CLSID under which the patient mapping agent
isregistered shall be different for different patient mapping agent implementations.

The user mapping agent shall be registered using the Progl D sub-key string,
“CCOW.MappingAgent_Patient”. The CLSID under which the user mapping agent is
registered shall be different for different user mapping agent implementations.

The authentication repository shall be registered using the Progl D sub-key string,
“CCOW.AuthenticationRepository”. The CLSID under which the authentication
repository is registered shall be different for different authentication repository
implementations.

The ProgID prefix “CCOW?” isreserved for use by HL7 for creating future CMA-related
ProglDs. A CMA-compliant application or component shall not use this prefix other than as
specified in this document.

The use of acommon ProgID but implementation-specific CLSID requires additional effort on
the part of context manager and mapping agent developers. It may aso require additional
effort on the part of context participant developers:

20

Context manager, mapping agent, and authentication repository implementations shall
provide ActiveX Javawrapper classes for their CMA coclasses and interfaces as part
of their installation package. The details of how these wrapper classes should be
prepared and packaged are described below. These wrapper classes are needed in
order hide the ActiveX implementation details of these components, including their
CLSIDs, from J+ Automation clients for these components.

Context manager, mapping agent, and authentication repository implementations shall
each provide ActiveX-compliant registry entriesin

HKEY_CLASSES ROOT\ | nt er f ace\ for each of their CMA-specified
Automation interfaces. This information is needed so that the Automation clients for
these components can create instances of these interfaces.

Context manager, mapping agent, and authentication repository implementations shall
each provide an ActiveX-compliant registry entry

HKEY_CLASSES_ROOT\ TypeLi b\ for their respective type libraries. This
information is needed so that the Automation clients for these components can create
callsto these interfaces using the dispatch mechanism.

Deveopers of CMA-compliant context participant applications and components shall
use the Progld, not the CLSID, to bind to any of the CMA-defined components that
are registered in the registry. This enables implementations to be changed without
affecting interoperability.

Copyright 1999, Health Level Seven Version CM-1.0

Context Management Specification, Component Technology Mapping: ActiveX

Developers of J++ CMA-compliant context participant applications and components
shall use the ActiveX Javawrapper classes provided with the CMA-defined
components of which they are clients. Thisis as opposed to client-generated wrappers,
which require that the client have devel opment time (versus run-time) access to the
implementation of the wrapped component’ s type library. Thisis not only impractical,
but introduces the probability that a J++ client would only work with a specific
Automation server implementation.

When these rules are followed, context participant applications and CMA components will
interoperate independently of each other’simplementations.

Version CM-1.0 Copyright 1999, Health Level Seven 21

22

Context Management Specification, Component Technology Mapping: ActiveX

Copyright 1999, Health Level Seven Version CM-1.0

Context Management Specification, Component Technology Mapping: ActiveX

6 ActiveX Java Wrappers

Context manager and mapping agent implementations must provide ActiveX Java wrapper
classes:

The Java package name " ccow.contextmanager” shall be used for the context manager
package.

The Java package name “ccow.mappingagent_patient” shall be used for the patient
mapping agent package.

The Java package name “ccow.mappingagent_user” shall be used for the user
mapping agent package

The Java package name “ccow.authenticationrepository” shall be used for the
authentication repository package.

The context manager package shall minimally contain the Java wrapper classes
ContextManager.class, 1ContextManager.class, |ContextData.class,

| SecureContextData.class, |SecureBinding.class, | mplementationl nformation.class
and | ContextParticipant.class.

Both of the mapping agent packages shall minimally contain the Java wrapper classes
MappingAgent.class, IMappingAgent.class, and |mplementati onl nformation.class.

The authentication repository package shall minimally contain the Java wrapper
classes AuthenticationRepository.class, | AuthenticationRepository.class,
| SecureBinding.class, and Implementati onl nformation.class.

The wrapper classes hide component implementation details. One specific detail hidden isthe
CLSID to be used by J+ Automation clients for these objects. In order to hide these details,
the wrapper classes must be created with knowledge of the details that they hide, hence the
need for them to be provided with each component implementation.

From the perspective of a J++ Automation client, the wrapper classes will look and behave the
same across component implementations. The wrapper classes are dynamically loaded by a
J++ client whenever it first accesses the corresponding Automation client.

Theinstallation of a new component will simply cause J++ clients to automatically access a
different version of a seemingly identical component.

Version CM-1.0 Copyright 1999, Health Level Seven 23

Context Management Specification, Component Technology Mapping: ActiveX

The wrapper classes for the context manager should be packaged as "package
ccow.contextmanager” and located in:

%M ndir%javaltrustlib\ccow cont ext manager

The wrapper classes for the patient mapping agent should be packaged as "package
ccow.mappingagent_patient” and located in:

%M ndir% java\trustli b\ ccow mappi ngagent _pati ent

The wrapper classes for the user mapping agent should be packaged as "package
ccow.mappingagent_user" and located in:

%M ndir%javaltrustli b\ ccow mappi ngagent _user

The wrapper classes for authentication repository should be packaged as "package
ccow.authenticationrepository” and located in:

%M ndir% java\trustlib\ccow aut henticati onrepository

Note that ccow, cont ext manager , mappi ngagent _pati ent,
mappi ngagent _user,andaut henti cati onrepository areal lower case.

24 Copyright 1999, Health Level Seven Version CM-1.0

Context Management Specification, Component Technology Mapping: ActiveX

7 Microsoft’'s CRYPTO32 API

All ActiveX implementations of CMA-compliant applications and components that use the
CMA-defined secure interfaces shall use the RSA public key / private key scheme and shall
use the MD5 one-way hash algorithm. It is recommended that Microsoft’ s Cryptography
Application Programming Interface (CRY PTO32) be used, and that the Microsoft RSA Base
Provider be selected as the cryptographic service provider.

However, adifferent APl and/or cryptographic service provider implementation can be used as
long as it employs agorithms and binary data formats that are functionally identical to those
employed by the Microsoft RSA Base Provider as accessed viathe CRYPTO32 API.

7.1 Secure Binding Properties

The CMA-defined interface 1 SecureBinding requires that the bindee indicate to the binder
various security properties that depend upon the bindee' s implementation. The properties that
must be indicated, and the allowed value or values for each property, depend upon the
underlying implementation technology.

For an ActiveX implementation, the following secure binding property names and values
defined in Table 2: Secure Binding Properties shall be used.

Property Name Allowed Value Meaning

Technol ogy CRYPT(32 Microsoft CRYPTO32 or
equivalent.

PubKey Schene RSA EXPORTABLE? Exportable version of RSA public
key / private key scheme (employs
40 bit keys).

HashAl go VD5 MD5 secure hash algorithm (creates
128 bit hash).

Table 2: Secure Binding Properties

2 public key / private key schemes are subject to United States export restrictions. Specifically, The
U.S. Government limits the size (in bits) of the security keys that can be used as part of applications
exported by U.S. vendors. The Microsoft Base Service Provider has been approved for export by the

U.S. Government. Applications that use this CSP viathe CRYPTO32 API should not require
additional export approvals.

Version CM-1.0 Copyright 1999, Health Level Seven 25

Context Management Specification, Component Technology Mapping: ActiveX

Property names are not case sensitive. Property values shall be character-encoded per the
convention stated in the CMA specification.

7.2 Cryptographic Service Provider

The CRYPTO32 API enables applications to select from a set of cryptographic service
providers (CSP). Each CSP provides cryptographic services that can be accessed viathe
CRYPTO32 API. For CMA-compliant applications and components that are implemented
using the CRYPTO32 API, the Microsoft RSA Base Provider shall be used as the
cryptographic service provider. The means that the value of the dwProvType to the
CRYPTQO32 function CryptAcquireContext shall be PROV_RSA_FULL.

7.3 Creating Digital Signatures

The CRYPTO32 function CryptSignHash is used to create a digital signature. The function
CryptVerifySignature is used to verify a signature. Both of these functions accept an optional
pointer to a character string for the parameter sDescription. The value of this parameter shall
be NULL for al callsto these functions asit pertains to creating or comparing signatures used
to implement User Link.

7.4 Signature Format

Digital signatures passed via any of the CMA-defined Automation interfaces shall be
represented as a string. This string contains binary data that has been character-encoded per
the convention defined in CMA specification. The binary data from which a signature string is
created is the byte array produced by CryptSignHash. This string must be converted back to
binary datain order to be used as an input to CryptV erifySignature.

7.5 Public Key Format

Public keys passed via any of the CMA-defined Automation interfaces shall be represented as
astring. This string contains binary data that has been character-encoded per the convention
defined in CMA specification. The binary data from which a public key is created is the byte
array produced by CryptExportK ey with the parameter dwBlobType set to
PUBLICKEYBLOB. This string must be converted back to binary datain order to be used as
an input to CryptimportKey.

26 Copyright 1999, Health Level Seven Version CM-1.0

Context Management Specification, Component Technology Mapping: ActiveX

7.6 Hash Value Format

Hash values passed via any of the CMA-defined Automation interfaces shall be represented as
astring. This string contains binary data that has been character-encoded per the convention
defined in CMA specification. The binary data from which a hash value is created is the byte
array produced by CryptGetHashParam. Hash values shall be compared for equality by
comparing their character-encode string representations. Character case shall not be considered
when comparing these strings.

7.7 Key Containers

With CRYPTO32, public keys and public key / private key pairs are maintained in key
containers. These containers can be created and deleted using the CRY PTO32 API function
CryptAcquireContext. Keys can be imported into a container, or keys can be directly generated
within an empty container.

7.7.1 Required Containers
An application shall maintain the following key containers:
A key container for holding its own public key / private key pair.
A key container for holding the context manager’s public key.
Optionally, akey container for holding the authentication repository’s public key.
The context manager shall maintain the following key containers:
A key container for holding its own public key / private key.
A key container for holding each designated application’s public key.
A key container for holding the user mapping agent’s public key.
The user mapping agent shall maintain the following key containers:
A key container for holding its own public key / private key.
A key container for holding the context manager’s public key.
The authentication repository shall maintain the following key containers:

A key container for holding its own public key / private key.

Version CM-1.0 Copyright 1999, Health Level Seven 27

Context Management Specification, Component Technology Mapping: ActiveX

A key container for holding the public keys for each of applications that use the
repository.

The convention for naming these containers and for managing their creation and deletion are
described next.

7.7.2 Key Container Naming Convention

All of the key containers shall have unique names when they are co-resident on the same
Windows host. The naming convention is defined in Table 3: Key Container Naming Scheme.

Note that al of the lettersin a container’ s name shall be capitalized. Also note that the portion
of acontainer name shown as APPLICATION-NAME is the same string that an application
provides to the context manager when it joins the common context system.

7.7.3 Key Container Management

An application, context manager, user mapping agent, and authentication repository shall
delete any containersthat its has created prior to terminating.

However, an application, context manager, user mapping agent, or authentication repository
that terminates prematurely might fail to delete some or all of the containers that it has created.
When the failed component is next launched it will not be able to create a new container if a
previoudly created container with the same name ill exists. This situation shall be handled as
follows: The existing container shall be deleted and a new container created. The necessary
keys shall be created and/or imported into the new container.

7.7.4 Key Container Security

CMA-compliant applications and components that maintain key containers shall protect their
containers from unauthorized access. This means that only the application or component that
created the container should be able to access the container.

If key containers are not protected then they are vulnerable to unintended uses. For example, a
rogue application might access the keys within a container created by valid CMA-compliant
application as a means to impersonate the application within a context management system.

There are a variety of ways to protect key containers. In order to maximize design flexibility
for CMA-compliant applications and components, a particular approach is not defined in this
specification.

28 Copyright 1999, Health Level Seven Version CM-1.0

Context Management Specification, Component Technology Mapping: ActiveX

Container created by Container purpose ... Container name ...

Application Holding own key pair. CCOW. APPLICATION-NAME.SELF
Holding context manager’s CCOW. APPLICATION-NAME.CM
public key.

Holding authentication CCOW. APPLICATION-NAME.AR
repository’s public key.

Context Manager Holding own pair. CCOW.CM.SELF
Holding an application’s CCOW.CM. APPLICATION-NAME
public key.

Holding user mapping CCOW.CM.MA_USER
agent’s public key.

User Mapping Agent Holding own key pair. CCOW.MA_USER.SELF
Holding context manager’s CCOW.MA_USER.CM
public key.

Authentication Repository Holding own key pair. CCOW.AR.SELF
Holding an application’s CCOW.AR. APPLICATION-NAME
public key.

Table 3: Key Container Naming Scheme

Version CM-1.0 Copyright 1999, Health Level Seven 29

30

Context Management Specification, Component Technology Mapping: ActiveX

Copyright 1999, Health Level Seven Version CM-1.0

Context Management Specification, Component Technology Mapping: ActiveX

8 Error handling

The CMA specifies a set of exceptions that can be raised by CMA components. (Context
participant applications do not currently throw exceptions).

ActiveX Automation exceptions are implemented in atwo-stage process. First, all Automation
and dual interface methods return a 32-bit encoded error value, called an HRESULT, to their
caler. Secondly, ActiveX components that support the Microsoft-defined | Errorinfo and

| SupportErrorinfo interfaces can provide additional error information to clients when
requested. Thisinformation includes a textual description of the error and the guid3 of
interface that threw the error.

Each of the CMA-specified exceptions is identified by a distinguished HRESULT.
Additionally, the context manager, both mapping agents, and the authentication repository
snall support the IErrorinfo and | SupportErrorinfo interfaces. Automation clients for these
objects should check the HRESULT after each method invocation to determine if an exception
has occurred. Clients may then optionally access additiona error information viathe server
component’s | Errorinfo interface.

In the Win32 COM implementation there is at most one error object associated with each
logical thread of execution (i.e. athread can logically span multiple processes on the same or
different hosts), and that the error object may be overwritten by a subsequent error. Clients
should access |Errorinfo immediately after detecting an exception to insure that the error
information they obtain is pertinent.

Visua Basic developers should note that the Visual Basic Err object handles all the |Errorinfo
manipulations automatically. In the event that a Visua Basic client encounters an exception,
the Visual Basic Err object will contain the exception information.

Thelist of CMA-defined HRESULTS valuesis shown in Table 4: Exception Codes.

iy guid isaglobally unique identifier. Every COM interface definition is denoted by a different guid.

Version CM-1.0 Copyright 1999, Health Level Seven 31

Context Management Specification, Component Technology Mapping: ActiveX

Exception Hexadecimal Explanation

value

Notlmplemented 0x80004001L Method not implemented. Thisis the same
value as defined for the Win32
E NOT | MPL HRESULT.

GeneralFailure 0x80004005L An error was detected or afailure occurred.
Thisisthe same value as defined for the
Win32 E_FAI L HRESULT.

ChangesNotEnded 0x80000201L Attempt to publish context changes before
ending the context change transaction.

InvalidContextCoupon 0x80000203L A context coupon does not match most
recently committed coupon or current
transaction coupon.

reserved 0x80000204L

reserved 0x80000205L

NameV alueCountMismatch 0x80000206L A name array and its corresponding value
array do not have the same number of
elements.

NotInTransaction 0x80000207L Attempt to perform a context management
transaction method when atransaction is not
in progress.

TransactionlnProgress 0x80000209L Attempt to perform a context management
method when a transaction isin progress.

UnknownltemName 0x8000020AL An item name not known.

UnknownParticipant 0x8000020BL Participant coupon does not denote a known
participant.

TooM anyParticipants 0x8000020CL Attempt to join a context that can't
accommodate another participant.

AcceptNotPossible 0x8000020DL Attempt to publish an “accept” decision but
there were participants for which it was not
possible to obtain a survey response (e.g.,
these participants were blocked)

BadltemNameFormat 0x8000020EL An item name does not conform to format
rules.

BaditemType 0x8000020FL An item data type does not conform to data
definition for the item.

BadltemValue 0x80000210L An item value does not conform to the
allowed set of values as defined by the data
definition for the item.

32 Copyright 1999, Health Level Seven Version CM-1.0

Context Management Specification, Component Technology Mapping: ActiveX

Exception Hexadecimal Explanation
value

InvalidTransaction 0x80000211L A transaction has been invalidated and
aborted because it violates one or more
semantic integrity constraints.

UndoNotPossible 0x80000212L Attempt to undo context changes after the
transaction has ended.

ChangesNotPossible 0x80000213L Attempt to set or delete context data after the
transaction has ended.

ChangesNotAllowed 0x80000214L Mapping agent attempts set or delete a
context data item that has been set by the
participant that instigated the transaction.

AuthenticationFailed 0x80000215L A signature could not be authenticated.

SignatureRequired 0x80000216L A signature is required to perform the
method.

UnknownApplication 0x80000217L An application name is not known.

UnknownConnection 0x80000218L A connection is not known to the
authentication repository.

L ogonNotFound 0x80000219L The desired user logon is not found in the
authentication repository.

UnknownDataFormat 0x8000021AL The format of user authentication data
requested could not be found in the
authentication repository.

UnknownBindee 0x8000021BL A security binding coupon does not denote a
known bindee.

ImproperK eyFormat 0x8000021CL A public key is not properly formatted.

BindingRejected 0x8000021DL The identity of a bindee could not be
verified.

ImproperM ACFormat 0x8000021EL A message authentication code is not
properly formatted.

UnknownPropertyName 0x8000021FL A property name is not known.

BadProperty Type 0x80000220L A property data type does not conform to
specification.

BadPropertyValue 0x80000221L A property data value does not conform to
specification.

AlreadyJoinedContext 0x80000222L The application has aready joined the

context.

Table 4: Exception Codes

Version CM-1.0

Copyright 1999, Health Level Seven 33

Context Management Specification, Component Technology Mapping: ActiveX

Copyright 1999, Health Level Seven Version CM-1.0

Context Management Specification, Component Technology Mapping: ActiveX

9 Character Set

The Unicode character set shall be used to represent all character strings that are transmitted
amongst and between CMA-compliant applications and components. The Unicode character
set enables representation of virtualy any local character set.

The use of ActiveX Automation, in which character strings are represented by the Automation
datatype BSTR, provides built-in support for Unicode. This means that an ActiveX
implementation of a CMA-compliant applications and components will inherently support
Unicode for the character strings that are communicated via the CMA-defined ActiveX
Automation interfaces.

Version CM-1.0 Copyright 1999, Health Level Seven 35

36

Context Management Specification, Component Technology Mapping: ActiveX

Copyright 1999, Health Level Seven Version CM-1.0

Context Management Specification, Component Technology Mapping: ActiveX

10 MIDL Listing

The interfaces defined below are an implementable trand ation of the abstract interfaces
definitions documented in the CMA specification. The following rules were applied to produce
the trandation:

The prefix “1” is prepended to the names of each interface, per COM conventions.

The closest available data types supported by Automation were employed (see table
below).

Outputs are mapped as return values (retval) and in/out parameters. Plain out
parameters are not used because they are not easily implemented using Visua Basic
5.0. (Note: the use of infout parameters requires special attention to proper memory
management techniques when implementing context managers or context participants
with the C++ programming language.)

Exceptions names are mapped as HRESUL Ts. Support for exception data valuesis
optional. If supported, the data values should be mapped to formatted strings and
made available through the IErrorinfo interface.

An interface reference to a component’s principal interface is mapped as an I[Unknown
pointer. A reference to any other component interface is mapped as an IDispatch
pointer.

Sequences are mapped as safe arrays.

Abstract data types are mapped to Automation data types as follows:

Version CM-1.0

Abstract Data Type Automation Data Type
byt e unsi gned char
short short
| ong | ong
fl oat fl oat

doubl e doubl e
bool ean VARI ANT_BOCOL
string BSTR
date DATE
type VARTYPE
vari ant VARl ANT

Copyright 1999, Health Level Seven

37

Context Management Specification, Component Technology Mapping: ActiveX

The MIDL that follows must be used by all ActiveX implementations of context managers and
context participants. Thisincludes interface and class names, and method signatures.

10.1 Type Libraries

All CMA-compliant Automation server component implementations shall provide atype
library that is consistent with the interface definitions specified below. A default interface
should not be specified for any of these components. Clients should not assume that an
Automation server has a default interface. An explicit call to lUnknown::Queryinterfaceis
necessary to abtain areference to a specific interface from an Automation server.

38 Copyright 1999, Health Level Seven Version CM-1.0

Context Management Specification, Component Technology Mapping: ActiveX

10.2 1AuthenticationRepository

import "oaidl.idl";
import "ocidl.idl";

L

]
1
£

object,
uuid(12B28736-2895-11d2-BD6E-0060B0573ADC),
dual,
helpstring("'l1AuthenticationRepository Interface'),
pointer_default(unique)

nterface lAuthenticationRepository : IDispatch

[helpstring(“Establish connection with authentication repository”)]
HRESULT Connect([in] BSTR applicationName,
[out, retval] long *bindingCoupon);

[helpstring(“Terminate connection with authentication repository”)]
HRESULT Disconnect([in] long bindingCoupon);

[helpstring(''Set user authentication data for specified logon name')]
HRESULT SetAuthenticationData([in] coupon,
[in] BSTR logonName,
[in] BSTR dataFormat,
[in] BSTR appSignature);

[helpstring(''Delete user authentication data for specified logon name™)]

HRESULT DeleteAuthenticationData([in] coupon,
[in] BSTR logonName,
[in] BSTR dataFormat,
[in] BSTR appSignature);

[helpstring("'Retrieve user authentication data for specified logon name')]

HRESULT GetAuthenticationData([in] coupon,
[in] BSTR logonName,
[in] BSTR dataType,
[in] BSTR appSignature,
[in, out] BSTR *userData,
[out, retval] BSTR *repositorySignature);

Version CM-1.0 Copyright 1999, Health Level Seven

39

Context Management Specification, Component Technology Mapping: ActiveX

10.3 IContextData

import "oaidl.idl";
import "ocidl.idl";

L
object,
uuid(2AAE4991-A1FC-11D0-808F-00A0240943E4),
dual,
helpstring("'1ContextData Interface"),
pointer_default(unique)

1

interface IContextData : IDispatch

{

[helpstring(‘'get the names of all of the context items')]
HRESULT GetltemNames([in] long contextCoupon, [out, retval] VARIANT *itemNames);

[helpstring(“'delete an item(s) from the set of context items'")]
HRESULT Deleteltems([in] long participantCouppn,
[in] VARIANT names,
[in] long contextCoupon);

[helpstring('set the value of one or more context items™)]
HRESULT SetltemValues([in] long participantCoupon,
[in] VARIANT itemNames,
[in] VARIANT itemValues,
[in] long contextCoupon);

[helpstring(''get the value of one or more context items™)]
HRESULT GetltemValues([in] VARIANT names,
[in] VARIANT_BOOL onlyChanges,
[in] long contextCoupon,
[out, retval] VARIANT *itemValues);

40 Copyright 1999, Health Level Seven Version CM-1.0

Context Management Specification, Component Technology Mapping: ActiveX

10.4 IContextManager

import "oaidl.idl";
import "ocidl.idl";

L

]
1
£

object,
uuid(41126C5E-A069-11D0-808F-00A0240943E4),
dual,
helpstring("'1ContextManager Interface"),
pointer_default(unique)
nterface IContextManager : IDispatch
[propget, helpstring(‘'property MostRecentContextCoupon')]
HRESULT MostRecentContextCoupon([out, retval] long *pval);
[helpstring(“enables an application to join a common context system')]
HRESULT JoinCommonContext([in] IDispatch *contextParticipant,
[in] BSTR sApplicationTitle,
[in] VARIANT_BOOL survey,
[in] VARIANT_BOOL wait,
[out, retval] long *participantCoupon);
[helpstring(“enables an application to leave a common context system'™)]
HRESULT LeaveCommonContext([in] long participantCoupon);
[helpstring(“enables an application to start a context change transaction')]
HRESULT StartContextChanges([in] long participantCoupon,
[out, retval] long *pCoupon);
[helpstring(“enables the application that instigated a context change transaction to
indicate that it has completed its changes')]
HRESULT EndContextChanges([in] long contextCoupon,
[in, out] VARIANT_BOOL *someBusy,
[out, retval] VARIANT *vote);
[helpstring(“enables an application to discard any context data changes that it has
already made')]
HRESULT UndoContextChanges([in] long contextCoupon);
[helpstring(“enables the application that instigated a context change transaction to
inform the other applications in a context system about whether the changes are to be
applied or have been canceled™)]
HRESULT PublishChangesDecision([in] long contextCoupon,
[in] BSTR decision);
[helpstring(“enables an application to indicate that it wants to suspend its active
participation in a common context system while remaining registered as a
participant™)]
HRESULT SuspendParticipation([in] long participantCoupon);
[helpstring(“enables an application to indicate that it wants to resume active
participation in a common context system')]
HRESULT ResumeParticipation([in] long participantCoupon,
[in] VARIANT_BOOL wait);

Version CM-1.0 Copyright 1999, Health Level Seven 41

Context Management Specification, Component Technology Mapping: ActiveX

10.5IContextParticipant

import "oaidl.idl"
import "ocidl.idl";

L
object,
uuid(3E3DD272-998E-11D0-808D-00A0240943E4),
dual,
helpstring("l1ContextParticipant Interface"),
pointer_default(unique)
1
interface IContextParticipant : IDispatch
{
[helpstring("informs a participant that a change to the common context data is
pending')]
HRESULT ContextChangesPending([in] long contextCoupon,
[in, out] BSTR* reason,
[out, retval] BSTR *returnValue);
[helpstring("informs a participant that the common context data has changed™)]
HRESULT ContextChangesAccepted([in] long contextCoupon);
[helpstring("informs a particpant that a context change transaction has been rejected
by one or more of the other participating applications')]
HRESULT ContextChangesCanceled([in] long contextCoupon);
[helpstring("informs a participant that the system is being terminated")]
HRESULT CommonContextTerminated(void);
[helpstring('used to test if the participant is alive')]
HRESULT Ping(void);
}:

42 Copyright 1999, Health Level Seven Version CM-1.0

Context Management Specification, Component Technology Mapping: ActiveX

10.6 lImplementationinformation

import "oaidl.idl";
import "ocidl.idl";

L
object,
uuid(41123600-6CE1-11d1-AB3F-E892F5000000),
dual,
helpstring("'lImplementationlnformation Interface'),
pointer_default(unique)

]
1
£

nterface IlmplementationInformation : ldispatch

[propget, helpstring(‘'property ComponentName')]
HRESULT ComponentName([out, retval] BSTR *pVal);

[propget, helpstring(‘'property RevMajorNum'™)]
HRESULT RevMajorNum([out, retval] BSTR *pval);

[propget, helpstring(‘'property RevMinorNum'™)]
HRESULT RevMinorNum([out, retval] BSTR *pval);

[propget, helpstring(‘'property PartNumber')]
HRESULT PartNumber([out, retval] BSTR *pval);

[propget, helpstring(‘'property Manufacturer'™)]
HRESULT Manufacturer([out, retval] BSTR *pVal);

[propget, helpstring(‘'property Target0S')]
HRESULT TargetOS([out, retval] BSTR *pval);

[propget, helpstring(‘'property TargetOSRev'')]
HRESULT TargetOSRev([out, retval] BSTR *pval);

[propget, helpstring(‘'property Whenlnstalled")]
HRESULT Whenlnstalled([out, retval] BSTR *pVal);

Version CM-1.0 Copyright 1999, Health Level Seven

43

Context Management Specification, Component Technology Mapping: ActiveX

10.7 IMappingAgent

import "oaidl.idl";
import "ocidl.idl";

L
object,
uuid(753D98C0-6CE1-11d1-AB3F-E892F5000000),
dual,
helpstring("'IMappingAgent Interface™),
pointer_default(unique)

]
1
£

nterface IMappingAgent : ldispatch

[helpstring("informs a mapping that a change to the common context data ready for
mapping™)]
HRESULT ContextChangesPending([in] long mappingAgentCoupon,
[in] 1Unnknown *contextMgr,
[in] long contextCoupon,
[in, out] BSTR* reason,
[out, retval] BSTR *returnValue);

[helpstring('used to let Context Manager mapping agent is alive)]
HRESULT Ping(void);

44 Copyright 1999, Health Level Seven Version CM-1.0

Context Management Specification, Component Technology Mapping: ActiveX

10.8ISecureBinding

import "oaidl.idl";
import "ocidl.idl";

L
object,
uuid(F933331D-91C6-11D2-AB9F-4471FBC0O0000),
dual,
helpstring(l1SecureBinding Interface"),
pointer_default(unique)
1
interface ISecureBinding : IDispatch
{
[helpstring("Initiate secure binding™)]
HRESULT InitiatlizeBinding([in] long bindeeCoupon,
[in] VARIANT propertyNames,
[in] VARIANT propertyValues,
[in,out] BSTR *binderPublicKey,
[out, retval] BSTR *mac);
[helpstring("'Finalize secure binding™)]
HRESULT FinalizeBinding([in] long bindeeCoupon,
[in] BSTR bindeePublicKey,
[in] BSTR mac,
[out, retval] VARIANT privileges);
}:
Version CM-1.0 Copyright 1999, Health Level Seven

45

Context Management Specification, Component Technology Mapping: ActiveX

10.9 I[SecureContextData

import "oaidl.idl";
import "ocidl.idl";

L
object,
uuid(6F530680-BC14-11D1-90B1-76C60D000000),
dual,
helpstring("'1SecureContextData Interface'),
pointer_default(unique)

1

interface ISecureContextData : IDispatch

{

[helpstring('return collection of the names in the context'")]
HRESULT GetltemNames([in] long contextCoupon,
[out, retval] VARIANT *itemNames);

[helpstring('set the value of one or more context items™)]
HRESULT SetltemValues([in] long participantCoupon,
[in] VARIANT itemNames,
[in] VARIANT itemValues,
[in] long contextCoupon,
[in] BSTR appSignature);

[helpstring(“'obtain the value of one or more context items")]
HRESULT GetltemValues([in] long participantCoupon,
[in] VARIANT names,
[in] VARIANT_BOOL onlyChanges,
[in] long contextCoupon,
[in] BSTR appSignature,
[in, out] BSTR *managerSignature,
[out, retval] VARIANT *itemValues);

46 Copyright 1999, Health Level Seven Version CM-1.0

Context Management Specification, Component Technology Mapping: ActiveX

ActiveX, 7, 10, 19
Introduction to, 7
Assumptions, 7
authentication repository implementations, 17,
20,21
AuthenticationRepository, 39

C

CCOWw, 5, 19, 20, 29
Character Set, 35
CLSID, 19, 20, 21, 23
CMA, 7,8,9, 10, 11, 17, 19, 20, 21, 25, 26, 27,
29, 31, 35, 37, 38
CMS
subjects and technologies, 9
Compatability, 7
Visual Basic, 8
Visual C++, 8
Visual J++, 8
Windows 95, 8
Windows NT, 7
Component Mode, 11
Component Model Mapping, 11
COowMm, 11
1QueryInterface, 11
Context Management Architecture (CMA)., 7
Context Management Specification, 4, 8, 11, 15
context manager, 7, 13, 19, 20, 23, 24, 27, 28,
29, 31
Context manager, 17, 20, 21, 23
Context Manager, 13
Context Participant, 13
ContextData, 40
ContextManager, 41
ContextParticipant, 42
Creating Digital Signatures, 26
CryptExportKey, 26
Cryptographic Service Provider, 26
CRYPTO32 AP, 26
CryptSignHash, 26
CryptVerifySignature, 26

D

Dua Interfaces, 3, 17
dispatch interfaces, 17

dw Blob Type
PUBLICKEYBLOB, 26

Version CM-1.0

Copyright 1999, Health Level Seven

Error handling, 31
HRESULT, 31
IErrorinfo and | Supportinfo, 31

F

Figurel, 9

Figure 1: Organization of HL7 Context
Management Specification Documents, 9

Figure 2: Automation Interfacesin a Common
Context System, 12

H

Hash Value Format, 27
CryptGetHashParam, 27

| AuthenticationRepository, 13
|ContextData, 13

|ContextManager, 13
IContextParticipant, 3, 13, 17, 23, 42
IImplementationlnformation, 13
IMappingAgent, 13
Implementationinformation, 43
Introduction of Microsoft ActiveX, 7
1QueryInterface, 7

I1SecureBinding, 3, 23, 45

J
Java, 8

K

Key Container Management, 28

Key Container Naming Convention, 28

Key Container Security, 29

Key Containers, 27
CryptAcquireContext, 27

M

Mapping Agent, 13, 17, 19, 20, 21, 23, 24, 27,
28, 29, 44

MappingAgent, 44

Microsoft’s ActiveX, 7, 10

Microsoft's CRYPTO32 API, 3, 25

MIDL Listing, 37

47

Context Management Specification, Component Technology Mapping: ActiveX

P

patient mapping agent, 20
ProglD, 19, 20
Public Key Format, 3, 26

R
Required Containers, 27

S

Secure Binding Properties, 25
I1SecureBinding, 25

SecureContextData, 46

Signature Format, 26

T

Table1, 13

Table 1: How Interface References Are
Obtained, 13

Table 2: Secure Binding Properties, 25

48 Copyright 1999, Health Level Seven

Table 3

Key Container Naming Scheme, 29
Table4

Exception Codes, 33
Technology- And Subject- Independent

Component Architecture, 9, 11, 15

Technology Mapping, 8
Type Libraries, 38

U
user mapping agent, 20
V
Visual Basic, 8
Visual C++, 8
Visual J++, 8
W
Windows 95, 8
Windows NT, 7

Version CM-1.0

