
 Context Management Specification, Component Technology Mapping: ActiveX

 Version CM-1.0 Copyright 1999, Health Level Seven 1

 Health Level Seven Standard

 Context Management Specification
Component Technology Mapping: ActiveX

Version CM-1.0

 DOCUMENT ID: HL7SIGVI_5_2_99

 REVISION ID: May 24, 1999

 FILE NAME: hl7_sigvi_activex_cm_1_0 .doc

 SUPERCEDES: n/a

 Copyright © 1999 by Health Level Seven, Inc.
ALL RIGHTS RESERVED. The reproduction of this material in any
form is strictly forbidden without written permission of the publisher.

 Context Management Specification, Component Technology Mapping: ActiveX

 2 Copyright 1999, Health Level Seven Version CM-1.0

 Context Management Specification, Component Technology Mapping: ActiveX

 Version CM-1.0 Copyright 1999, Health Level Seven 3

 Contents

 1 INTRODUCTION ...7

 1.1 ASSUMPTIONS...7
 1.2 COMPATABILITY ...7
 1.3 TECHNOLOGY MAPPING ..8

 2 COMPONENT MODEL MAPPING..11

 3 INTERFACE REFERENCE MANAGEMENT ...15

 4 DUAL INTERFACES..17

 5 WINDOWS REGISTRY SETTINGS ...19

 6 ACTIVEX JAVA WRAPPERS...23

 7 MICROSOFT’S CRYPTO32 API...25

 7.1 SECURE BINDING PROPERTIES..25
 7.2 CRYPTOGRAPHIC SERVICE PROVIDER ...26
 7.3 CREATING DIGITAL SIGNATURES ...26
 7.4 SIGNATURE FORMAT ...26
 7.5 PUBLIC KEY FORMAT ..26
 7.6 HASH VALUE FORMAT...27
 7.7 KEY CONTAINERS ...27

 7.7.1 Required Containers ..27
 7.7.2 Key Container Naming Convention ..28
 7.7.3 Key Container Management ...28
 7.7.4 Key Container Security ..28

 8 ERROR HANDLING ..31

 9 CHARACTER SET ...35

 10 MIDL LISTING...37

 10.1 TYPE LIBRARIES..38
 10.2 IAUTHENTICATIONREPOSITORY...39
 10.3 ICONTEXTDATA ...40
 10.4 ICONTEXTMANAGER ..41
 10.5 ICONTEXTPARTICIPANT ..42
 10.6 IIMPLEMENTATIONINFORMATION ..43
 10.7 IMAPPINGAGENT ..44
 10.8 ISECUREBINDING..45
 10.9 ISECURECONTEXTDATA..46

 Context Management Specification, Component Technology Mapping: ActiveX

 4 Copyright 1999, Health Level Seven Version CM-1.0

 Figures

 Figure 1: Organization of HL7 Context Management Specification Documents...9

 Figure 2: Automation Interfaces in a Common Context System...12

 Tables

 Table 1: How Interface References Are Obtained...13

 Table 2: Secure Binding Properties ...25

 Table 3: Key Container Naming Scheme...29

 Table 4: Exception Codes..33

 Context Management Specification, Component Technology Mapping: ActiveX

 Version CM-1.0 Copyright 1999, Health Level Seven 5

 Preface

 This document was prepared by Robert Seliger, Sentillion, Inc., on behalf of Health Level
Seven’s Special Interest Group for Visual Integration (formerly the Clinical Context Object
Workgroup --- CCOW). Comments about the organization or wording of the document should
be directed to the author (robs@sentillion.com). Comments about technical content should be
directed to ccow@lists.hl7.org.

 Context Management Specification, Component Technology Mapping: ActiveX

 6 Copyright 1999, Health Level Seven Version CM-1.0

 Context Management Specification, Component Technology Mapping: ActiveX

 Version CM-1.0 Copyright 1999, Health Level Seven 7

1 Introduction

 This document specifies the details needed to develop Microsoft ActiveX implementations of
applications and components that conform to the HL7 Context Management Architecture
(CMA). Using this specification, the resulting applications and service components will be able
to communicate with each other per the CMA even if they were independently developed.

 The scope of this document is limited to the details pertaining to implementing the CMA-
specified application and component interfaces using ActiveX Automation (formerly known as
OLE Automation). This sub-technology within the ActiveX portfolio of technologies is
supported by a wide range of Microsoft and non-Microsoft development tools.

 Visual Basic 4.0 is used as the “lowest common denominator” baseline programming
language for developing context participant applications. The collective capabilities of Visual
Basic 5.0 (as opposed to 4.0) , Visual C++ 5.0, and Visual J++ 1.1 (Microsoft’s
implementation of Java) are used as the baseline baseline programming language
implementations for developing CMA components, including the context manager, patient and
user mapping agents, and authentication repository. This specification is also forwards-
compatible with more recent versions of these tools.

 However, any development tool that supports the creation of Automation clients and servers,
and in particular supports the IQueryInterface idiom, should enable the development of
applications and components that conform to this specification.

1.1 Assumptions
 It is assumed that the reader is familiar with Microsoft’s ActiveX technology and with the

Microsoft’s underlying Component Object Model (COM).

1.2 Compatability
 This specification is compatible with the following host operating systems:

• Windows NT Workstation 4.0 service pack 3, or later

• Windows 95 OSR2 or later

 This specification is compatible with at least the following programming language
implementations:

• Visual C++ 5.0 or later

 Context Management Specification, Component Technology Mapping: ActiveX

 8 Copyright 1999, Health Level Seven Version CM-1.0

• Visual Basic 4.0 or later

• Visual J++ 1.1 or later with Microsoft’s Java SDK 3.1 or later and Microsoft’s Java
Virtual Machine 5.00.3161 or later

 The specification is likely to be compatible with other implementations of these languages, as
well as with other programming languages.

1.3 Technology Mapping
 The HL7 Context Management Architecture specification is technology-neutral. This means

that while an underlying component system is assumed, a specific system is not identified
within the architecture. It is the purpose of this document, and its companions for other
component technologies, to map the CMA to a specific target technology. For Automation, the
technology-specific details specified in this document include (but are not limited to):

• multiple interfaces

• interface reference management

• dual interface requirements

• registry settings

• ActiveX Java wrappers for ActiveX components

• error handling

• implementable interface definitions

 It is beyond the scope of this document to provide all of the details that are needed in order to
fully implement conformant CMA applications and components. The necessary additional
details are covered in a series of companion specification documents, starting most notably
with the Health Level Seven Context Management Specification, Technology- And Subject-
Independent Component Architecture, CM-1.0.

 As illustrated in Figure 1, these documents are organized to facilitate the process of defining
additional link subjects and to accelerate the process of realizing the CMA using any one of a
variety of technologies.

 Context Management Specification, Component Technology Mapping: ActiveX

 Version CM-1.0 Copyright 1999, Health Level Seven 9

 Figure 1: Organization of HL7 Context Management Specification Documents

 The context management subjects and technologies that are of interest are determined by the
HL7 constituency:

• There is an HL7 context management data definition specification document for each
of the standard link subjects. Each document defines the data elements that comprise a
link subject. Concurrent with the publication of this document, the following
documents have been developed:

 Health Level-Seven Standard Context Management Specification Data Definition:
Patient Subject, Version CM-1.0

 Health Level-Seven Standard Context Management Specification,
Data Definition: User Subject, Version CM-1.0

• There is an HL7 context management user interface specification document for each of
the user interface technologies with which CMA-enabled applications can be
implemented. Each document reflects the user interface requirements established in
this document in terms of a technology-specific look-and-feel. Concurrent with the
publication of this document, the following document has been developed:

 Health Level-Seven Standard Context Management Specification
User Interface: Microsoft Windows OS, Version CM-1.0

Technology Neutral Context
Management Architecture

Specification

Technology Specific User
Interface Specifications

Technlogy X

Technology Y

Technlogy Z

ActiveX

Technlogy 2

Technology 3

Technology Specific
Component Mapping

Specification

Technology-Neutral
Subject Data Definition

Specifications

Subject A

Subject B
Subject C

 Context Management Specification, Component Technology Mapping: ActiveX

 10 Copyright 1999, Health Level Seven Version CM-1.0

 Finally, there is an HL7 context management component technology mapping specification
document for each of the component technologies. Each document provides the technology-
specific details needed to implement CMA-compliant applications and the associated CMA
components, as specified in this document. This document serves the role of specifying the
details for a CMA implementation using Microsoft’s ActiveX technology.

 Context Management Specification, Component Technology Mapping: ActiveX

 Version CM-1.0 Copyright 1999, Health Level Seven 11

2 Component Model Mapping

 Each interface defined in the CMA specification is implemented as an ActiveX automation
interface. All of the components defined in the CMA specification, including context
participant applications, are clients as well as servers. In the parlance of ActiveX, they are all
Automation clients and servers because they implement and use Automation interfaces.

 Context participant applications are only currently required to implement a single Automation
interface. However, context managers and mapping agents are required to implement multiple
distinct Automation interfaces.

 The COM IUnknown::QueryInterface idiom is used to enable context components to acquire
each others’ interface references through interface interrogation. (Note that Visual Basic
implements IUnknown::QueryInterface “under the covers” via the Visual Basic assignment
operator.) The COM interface IUnknown serves as a context component’s principal interface.
See the chapter Component Model in the document HL7 Context Management Specification,
Technology- And Subject- Independent Component Architecture, CM-1.0 for a discussion
about interface interrogation and principal interfaces.

 In some cases a component obtains a reference to IQueryInterface for another component from
the Windows registry. This registry serves as the interface reference registry described in the
chapter Component Model in the document HL7 Context Management Specification,
Technology- And Subject- Independent Component Architecture, CM-1.0. In other cases,
components pass interface references to each other as method parameters.

 The various Automation interfaces employed in a common context system are shown in Figure
1. The means by which the various CMA compliant applications and components obtain
interface references to each other are described in Table 1.

 Context Management Specification, Component Technology Mapping: ActiveX

 12 Copyright 1999, Health Level Seven Version CM-1.0

MA

II

CP

Application #N
Implementation

CP

Application #1
Implementation

CM SD

Context Manager
Implementation

Common
Context
Data

Optional Mapping
Agent Implementations

Optional External
Authentication
Repository
Implementation

AR

SB

II

II

Tool, etc.

Tool, etc.

Tool, etc.

SB

Automation Interfaces
AR = IAuthenticationRepository II = IImplementationInformation
CD = IContextData MA = IMappingAgent
CM = IContextManager SB = ISecureBinding
CP = IContextParticipant SD = ISecureContextData

CD

User Patient

 Figure 2: Automation Interfaces in a Common Context System

 Context Management Specification, Component Technology Mapping: ActiveX

 Version CM-1.0 Copyright 1999, Health Level Seven 13

 Client’s means for obtaining server’s interface reference(s) … Automation Server

 Automation
Client

 Means for obtaining reference

 Context Manager’s
IContextManager and
IContextData interfaces.

 Context
Participant

 A context participant obtains a reference to
the context manager’s IUnknown interface
from the Windows registry. The context
participant then performs
IUnknown::QueryInterface on the context
manager to get the desired interface
references.

 Context Manager’s
IContextData interface.

 Mapping
Agent

 The context manager provides a reference to
its IUnknown interface to the mapping agent
when the context manager calls
IMappingAgent::ContextChangesPending.
The mapping agent then performs
IUnknown::QueryInterface on the context
manager to get the desired interface
reference.

 Mapping Agent’s
IMappingAgent and
IImplementationInformation
interfaces.

 Context
Manager

 The context manager obtains a reference to
the mapping agent’s IUnknown interface
from the Windows registry. The context
manager then performs
IUnknown::QueryInterface on the mapping
agent to get the desired interface references.

 Context Participant’s
IContextParticipant
interface.

 Context
Manager

 A context participant provides a reference to
its IContextParticipant interface to the
context manager when the context
participant calls
IContextManager::JoinCommonContext.

 Authentication Repository’s
IAuthenticationRepository

 Context
Participant

 A context participant obtains a reference to
the authentication repository’s IUnknown
interface from the Windows registry. The
context participant then performs
IUnknown::QueryInterface on the
authentication repository to get the desired
interface references.

 Table 1: How Interface References Are Obtained

 Context Management Specification, Component Technology Mapping: ActiveX

 14 Copyright 1999, Health Level Seven Version CM-1.0

 Context Management Specification, Component Technology Mapping: ActiveX

 Version CM-1.0 Copyright 1999, Health Level Seven 15

3 Interface Reference Management

 In order to “possess” an interface reference, as described in the chapter Component Model in
the HL7 Context Management Specification, Technology- And Subject- Independent
Component Architecture, CM-1.0 document, COM interface reference counts should be
incremented and decremented in accordance with COM conventions. In general, a component
performs IUnknown::AddRef to “possess” an interface reference. Conversely, a component
performs IUnknown::Release to “dispose” an interface reference.

 Context Management Specification, Component Technology Mapping: ActiveX

 16 Copyright 1999, Health Level Seven Version CM-1.0

 Context Management Specification, Component Technology Mapping: ActiveX

 Version CM-1.0 Copyright 1999, Health Level Seven 17

4 Dual Interfaces

 Dual Interfaces are a COM optimization that enables an Automation interface to be called
using a run-time dispatching mechanism (i.e., so called dispatch interfaces), or directly via a
compile-time binding mechanism (i.e., so called v-table interfaces). The latter approach
generally results in better performance. Dual interfaces accommodate the widest possible range
of application development tools, from interpreted late binding languages like Smalltalk and
VisualBasic to compiled early binding languages like C and C++.

 Context manager, mapping agent, and authentication repository implementations shall expose
their CMA-defined Automation interfaces as dual interfaces. This may limit the choice of
programming language for these components to just those that support the development of dual
interfaces. However, the advantage is better overall run-time performance.

 Context participant applications can choose to implement their CMA-defined
IContextParticipant interface as a dispatch interface or as a dual interface. This enables
application developers to use a wide range of programming languages, as not all languages
support dual interfaces.

 Context Management Specification, Component Technology Mapping: ActiveX

 18 Copyright 1999, Health Level Seven Version CM-1.0

 Context Management Specification, Component Technology Mapping: ActiveX

 Version CM-1.0 Copyright 1999, Health Level Seven 19

5 Windows Registry Settings

 ActiveX components can have a wide variety of Windows registry entries. It is not unusual for
these entries to become quite complex. An objective of this document is to specify the simplest
registry entries that will enable applications and components that conform to the CMA
specifications to be implemented using any of the common ActiveX-capable programming
languages and still seamlessly interoperate.

 The context manager shall be registered in the Windows registry. This enables context
participant applications to locate and bind to the context manager. If present, a mapping agent
shall also be registered in the Windows registry. This enables the context manager to locate
and bind to the mapping agent. Finally, if present, the authentication repository shall be
registered in the Windows registry. This enables context participant applications to locate and
bind to the authentication repository.

 ActiveX component registry entries often include implementation-specific information, such as
the file name and path to the component’s executable code, and may vary depending upon how
the component has been implemented (e.g., executable vs. dynamic link library). However, the
registry entry for an ActiveX component can use a program identifier (ProgID), which is a
symbolic name for the type of component, as a registry key. A registry key is used to locate a
registry entry (known as a value).

 The value associated with a ProgID is the component’s class identifier (CLSID), which
denotes an implementation of the component. By fixing the ProgID, it is possible to write
client’s for a type of component such that the client does not need to know anything about the
component’s implementation. Instead, the client uses the ProgID to locate the component’s
CLSID at run-time. The CLSID is then used to create an instance of the component, or to
connect to an existing instance of a running component.

 In summary, ProgID’s are invariant across implementation. Therefore, no matter how they are
implemented, all of the CMA compliant applications and components shall use the ProgId’s
defined below1:

• The context manager shall be registered using the ProgID sub-key string,
“CCOW.ContextManager”. The CLSID under which a context manager is registered
shall be different for different context manager implementations.

 1 These ProgID’s are the same as defined by the Clinical Context Object Workgroup, upon whose
original specification this specification is based.

 Context Management Specification, Component Technology Mapping: ActiveX

 20 Copyright 1999, Health Level Seven Version CM-1.0

• The patient mapping agent shall be registered using the ProgID sub-key string,
“CCOW.MappingAgent_Patient”. The CLSID under which the patient mapping agent
is registered shall be different for different patient mapping agent implementations.

• The user mapping agent shall be registered using the ProgID sub-key string,
“CCOW.MappingAgent_Patient”. The CLSID under which the user mapping agent is
registered shall be different for different user mapping agent implementations.

• The authentication repository shall be registered using the ProgID sub-key string,
“CCOW.AuthenticationRepository”. The CLSID under which the authentication
repository is registered shall be different for different authentication repository
implementations.

 The ProgID prefix “CCOW” is reserved for use by HL7 for creating future CMA-related
ProgIDs. A CMA-compliant application or component shall not use this prefix other than as
specified in this document.

 The use of a common ProgID but implementation-specific CLSID requires additional effort on
the part of context manager and mapping agent developers. It may also require additional
effort on the part of context participant developers:

• Context manager, mapping agent, and authentication repository implementations shall
provide ActiveX Java wrapper classes for their CMA coclasses and interfaces as part
of their installation package. The details of how these wrapper classes should be
prepared and packaged are described below. These wrapper classes are needed in
order hide the ActiveX implementation details of these components, including their
CLSIDs, from J++ Automation clients for these components.

• Context manager, mapping agent, and authentication repository implementations shall
each provide ActiveX-compliant registry entries in
HKEY_CLASSES_ROOT\Interface\ for each of their CMA-specified

Automation interfaces. This information is needed so that the Automation clients for
these components can create instances of these interfaces.

• Context manager, mapping agent, and authentication repository implementations shall
each provide an ActiveX-compliant registry entry
HKEY_CLASSES_ROOT\TypeLib\ for their respective type libraries. This

information is needed so that the Automation clients for these components can create
calls to these interfaces using the dispatch mechanism.

• Developers of CMA-compliant context participant applications and components shall
use the ProgId, not the CLSID, to bind to any of the CMA-defined components that
are registered in the registry. This enables implementations to be changed without
affecting interoperability.

 Context Management Specification, Component Technology Mapping: ActiveX

 Version CM-1.0 Copyright 1999, Health Level Seven 21

• Developers of J++ CMA-compliant context participant applications and components
shall use the ActiveX Java wrapper classes provided with the CMA-defined
components of which they are clients. This is as opposed to client-generated wrappers,
which require that the client have development time (versus run-time) access to the
implementation of the wrapped component’s type library. This is not only impractical,
but introduces the probability that a J++ client would only work with a specific
Automation server implementation.

 When these rules are followed, context participant applications and CMA components will
interoperate independently of each other’s implementations.

 Context Management Specification, Component Technology Mapping: ActiveX

 22 Copyright 1999, Health Level Seven Version CM-1.0

 Context Management Specification, Component Technology Mapping: ActiveX

 Version CM-1.0 Copyright 1999, Health Level Seven 23

6 ActiveX Java Wrappers

 Context manager and mapping agent implementations must provide ActiveX Java wrapper
classes:

• The Java package name "ccow.contextmanager" shall be used for the context manager
package.

• The Java package name “ccow.mappingagent_patient” shall be used for the patient
mapping agent package.

• The Java package name “ccow.mappingagent_user” shall be used for the user
mapping agent package

• The Java package name “ccow.authenticationrepository” shall be used for the
authentication repository package.

• The context manager package shall minimally contain the Java wrapper classes
ContextManager.class, IContextManager.class, IContextData.class,
ISecureContextData.class, ISecureBinding.class, IImplementationInformation.class
and IContextParticipant.class.

• Both of the mapping agent packages shall minimally contain the Java wrapper classes
MappingAgent.class, IMappingAgent.class, and ImplementationInformation.class.

• The authentication repository package shall minimally contain the Java wrapper
classes AuthenticationRepository.class, IAuthenticationRepository.class,
ISecureBinding.class, and ImplementationInformation.class.

 The wrapper classes hide component implementation details. One specific detail hidden is the
CLSID to be used by J++ Automation clients for these objects. In order to hide these details,
the wrapper classes must be created with knowledge of the details that they hide, hence the
need for them to be provided with each component implementation.

 From the perspective of a J++ Automation client, the wrapper classes will look and behave the
same across component implementations. The wrapper classes are dynamically loaded by a
J++ client whenever it first accesses the corresponding Automation client.

 The installation of a new component will simply cause J++ clients to automatically access a
different version of a seemingly identical component.

 Context Management Specification, Component Technology Mapping: ActiveX

 24 Copyright 1999, Health Level Seven Version CM-1.0

 The wrapper classes for the context manager should be packaged as "package
ccow.contextmanager" and located in:

 %windir%\java\trustlib\ccow\contextmanager

 The wrapper classes for the patient mapping agent should be packaged as "package
ccow.mappingagent_patient" and located in:

 %windir%\java\trustlib\ccow\mappingagent_patient

 The wrapper classes for the user mapping agent should be packaged as "package
ccow.mappingagent_user" and located in:

 %windir%\java\trustlib\ccow\mappingagent_user

 The wrapper classes for authentication repository should be packaged as "package
ccow.authenticationrepository" and located in:

 %windir%\java\trustlib\ccow\authenticationrepository

 Note that ccow, contextmanager, mappingagent_patient,
mappingagent_user, and authenticationrepository are all lower case.

 Context Management Specification, Component Technology Mapping: ActiveX

 Version CM-1.0 Copyright 1999, Health Level Seven 25

7 Microsoft’s CRYPTO32 API

 All ActiveX implementations of CMA-compliant applications and components that use the
CMA-defined secure interfaces shall use the RSA public key / private key scheme and shall
use the MD5 one-way hash algorithm. It is recommended that Microsoft’s Cryptography
Application Programming Interface (CRYPTO32) be used, and that the Microsoft RSA Base
Provider be selected as the cryptographic service provider.

 However, a different API and/or cryptographic service provider implementation can be used as
long as it employs algorithms and binary data formats that are functionally identical to those
employed by the Microsoft RSA Base Provider as accessed via the CRYPTO32 API.

7.1 Secure Binding Properties
 The CMA-defined interface ISecureBinding requires that the bindee indicate to the binder

various security properties that depend upon the bindee’s implementation. The properties that
must be indicated, and the allowed value or values for each property, depend upon the
underlying implementation technology.

 For an ActiveX implementation, the following secure binding property names and values
defined in Table 2: Secure Binding Properties shall be used.

 Property Name Allowed Value Meaning

 Technology CRYPTO32 Microsoft CRYPTO32 or

equivalent.

 PubKeyScheme RSA_EXPORTABLE2 Exportable version of RSA public

key / private key scheme (employs

40 bit keys).

 HashAlgo MD5 MD5 secure hash algorithm (creates

128 bit hash).

 Table 2: Secure Binding Properties

 2 Public key / private key schemes are subject to United States export restrictions. Specifically, The
U.S. Government limits the size (in bits) of the security keys that can be used as part of applications
exported by U.S. vendors. The Microsoft Base Service Provider has been approved for export by the
U.S. Government. Applications that use this CSP via the CRYPTO32 API should not require
additional export approvals.

 Context Management Specification, Component Technology Mapping: ActiveX

 26 Copyright 1999, Health Level Seven Version CM-1.0

 Property names are not case sensitive. Property values shall be character-encoded per the
convention stated in the CMA specification.

7.2 Cryptographic Service Provider
 The CRYPTO32 API enables applications to select from a set of cryptographic service

providers (CSP). Each CSP provides cryptographic services that can be accessed via the
CRYPTO32 API. For CMA-compliant applications and components that are implemented
using the CRYPTO32 API, the Microsoft RSA Base Provider shall be used as the
cryptographic service provider. The means that the value of the dwProvType to the
CRYPTO32 function CryptAcquireContext shall be PROV_RSA_FULL.

7.3 Creating Digital Signatures
 The CRYPTO32 function CryptSignHash is used to create a digital signature. The function

CryptVerifySignature is used to verify a signature. Both of these functions accept an optional
pointer to a character string for the parameter sDescription. The value of this parameter shall
be NULL for all calls to these functions as it pertains to creating or comparing signatures used
to implement User Link.

7.4 Signature Format
 Digital signatures passed via any of the CMA-defined Automation interfaces shall be

represented as a string. This string contains binary data that has been character-encoded per
the convention defined in CMA specification. The binary data from which a signature string is
created is the byte array produced by CryptSignHash. This string must be converted back to
binary data in order to be used as an input to CryptVerifySignature.

7.5 Public Key Format
 Public keys passed via any of the CMA-defined Automation interfaces shall be represented as

a string. This string contains binary data that has been character-encoded per the convention
defined in CMA specification. The binary data from which a public key is created is the byte
array produced by CryptExportKey with the parameter dwBlobType set to
PUBLICKEYBLOB. This string must be converted back to binary data in order to be used as
an input to CryptImportKey.

 Context Management Specification, Component Technology Mapping: ActiveX

 Version CM-1.0 Copyright 1999, Health Level Seven 27

7.6 Hash Value Format
 Hash values passed via any of the CMA-defined Automation interfaces shall be represented as

a string. This string contains binary data that has been character-encoded per the convention
defined in CMA specification. The binary data from which a hash value is created is the byte
array produced by CryptGetHashParam. Hash values shall be compared for equality by
comparing their character-encode string representations. Character case shall not be considered
when comparing these strings.

7.7 Key Containers
 With CRYPTO32, public keys and public key / private key pairs are maintained in key

containers. These containers can be created and deleted using the CRYPTO32 API function
CryptAcquireContext. Keys can be imported into a container, or keys can be directly generated
within an empty container.

7.7.1 Required Containers

 An application shall maintain the following key containers:

• A key container for holding its own public key / private key pair.

• A key container for holding the context manager’s public key.

• Optionally, a key container for holding the authentication repository’s public key.

 The context manager shall maintain the following key containers:

• A key container for holding its own public key / private key.

• A key container for holding each designated application’s public key.

• A key container for holding the user mapping agent’s public key.

 The user mapping agent shall maintain the following key containers:

• A key container for holding its own public key / private key.

• A key container for holding the context manager’s public key.

 The authentication repository shall maintain the following key containers:

• A key container for holding its own public key / private key.

 Context Management Specification, Component Technology Mapping: ActiveX

 28 Copyright 1999, Health Level Seven Version CM-1.0

• A key container for holding the public keys for each of applications that use the
repository.

 The convention for naming these containers and for managing their creation and deletion are
described next.

7.7.2 Key Container Naming Convention

 All of the key containers shall have unique names when they are co-resident on the same
Windows host. The naming convention is defined in Table 3: Key Container Naming Scheme.

 Note that all of the letters in a container’s name shall be capitalized. Also note that the portion
of a container name shown as APPLICATION-NAME is the same string that an application
provides to the context manager when it joins the common context system.

7.7.3 Key Container Management

 An application, context manager, user mapping agent, and authentication repository shall
delete any containers that its has created prior to terminating.

 However, an application, context manager, user mapping agent, or authentication repository
that terminates prematurely might fail to delete some or all of the containers that it has created.
When the failed component is next launched it will not be able to create a new container if a
previously created container with the same name still exists. This situation shall be handled as
follows: The existing container shall be deleted and a new container created. The necessary
keys shall be created and/or imported into the new container.

7.7.4 Key Container Security

 CMA-compliant applications and components that maintain key containers shall protect their
containers from unauthorized access. This means that only the application or component that
created the container should be able to access the container.

 If key containers are not protected then they are vulnerable to unintended uses. For example, a
rogue application might access the keys within a container created by valid CMA-compliant
application as a means to impersonate the application within a context management system.

 There are a variety of ways to protect key containers. In order to maximize design flexibility
for CMA-compliant applications and components, a particular approach is not defined in this
specification.

 Context Management Specification, Component Technology Mapping: ActiveX

 Version CM-1.0 Copyright 1999, Health Level Seven 29

 Container created by …. Container purpose … Container name …

 Application Holding own key pair. CCOW. APPLICATION-NAME.SELF

 Holding context manager’s
public key.

 CCOW. APPLICATION-NAME.CM

 Holding authentication
repository’s public key.

 CCOW. APPLICATION-NAME.AR

 Context Manager Holding own pair. CCOW.CM.SELF

 Holding an application’s
public key.

 CCOW.CM. APPLICATION-NAME

 Holding user mapping
agent’s public key.

 CCOW.CM.MA_USER

 User Mapping Agent Holding own key pair. CCOW.MA_USER.SELF

 Holding context manager’s
public key.

 CCOW.MA_USER.CM

 Authentication Repository Holding own key pair. CCOW.AR.SELF

 Holding an application’s
public key.

 CCOW.AR. APPLICATION-NAME

 Table 3: Key Container Naming Scheme

 Context Management Specification, Component Technology Mapping: ActiveX

 30 Copyright 1999, Health Level Seven Version CM-1.0

 Context Management Specification, Component Technology Mapping: ActiveX

 Version CM-1.0 Copyright 1999, Health Level Seven 31

8 Error handling

 The CMA specifies a set of exceptions that can be raised by CMA components. (Context
participant applications do not currently throw exceptions).

 ActiveX Automation exceptions are implemented in a two-stage process. First, all Automation
and dual interface methods return a 32-bit encoded error value, called an HRESULT, to their
caller. Secondly, ActiveX components that support the Microsoft-defined IErrorInfo and
ISupportErrorInfo interfaces can provide additional error information to clients when
requested. This information includes a textual description of the error and the guid3 of
interface that threw the error.

 Each of the CMA-specified exceptions is identified by a distinguished HRESULT.
Additionally, the context manager, both mapping agents, and the authentication repository
shall support the IErrorInfo and ISupportErrorInfo interfaces. Automation clients for these
objects should check the HRESULT after each method invocation to determine if an exception
has occurred. Clients may then optionally access additional error information via the server
component’s IErrorInfo interface.

 In the Win32 COM implementation there is at most one error object associated with each
logical thread of execution (i.e. a thread can logically span multiple processes on the same or
different hosts), and that the error object may be overwritten by a subsequent error. Clients
should access IErrorInfo immediately after detecting an exception to insure that the error
information they obtain is pertinent.

 Visual Basic developers should note that the Visual Basic Err object handles all the IErrorInfo
manipulations automatically. In the event that a Visual Basic client encounters an exception,
the Visual Basic Err object will contain the exception information.

 The list of CMA-defined HRESULTS values is shown in Table 4: Exception Codes.

 3 A guid is a globally unique identifier. Every COM interface definition is denoted by a different guid.

 Context Management Specification, Component Technology Mapping: ActiveX

 32 Copyright 1999, Health Level Seven Version CM-1.0

 Exception Hexadecimal
value

 Explanation

 NotImplemented 0x80004001L Method not implemented. This is the same
value as defined for the Win32
E_NOT_IMPL HRESULT.

 GeneralFailure 0x80004005L An error was detected or a failure occurred.
This is the same value as defined for the
Win32 E_FAIL HRESULT.

 ChangesNotEnded 0x80000201L Attempt to publish context changes before
ending the context change transaction.

 InvalidContextCoupon 0x80000203L A context coupon does not match most
recently committed coupon or current
transaction coupon.

 reserved 0x80000204L

 reserved 0x80000205L

 NameValueCountMismatch 0x80000206L A name array and its corresponding value
array do not have the same number of
elements.

 NotInTransaction 0x80000207L Attempt to perform a context management
transaction method when a transaction is not
in progress.

 TransactionInProgress 0x80000209L Attempt to perform a context management
method when a transaction is in progress.

 UnknownItemName 0x8000020AL An item name not known.

 UnknownParticipant 0x8000020BL Participant coupon does not denote a known
participant.

 TooManyParticipants 0x8000020CL Attempt to join a context that can't
accommodate another participant.

 AcceptNotPossible 0x8000020DL Attempt to publish an “accept” decision but
there were participants for which it was not
possible to obtain a survey response (e.g.,
these participants were blocked)

 BadItemNameFormat 0x8000020EL An item name does not conform to format
rules.

 BadItemType 0x8000020FL An item data type does not conform to data
definition for the item.

 BadItemValue 0x80000210L An item value does not conform to the
allowed set of values as defined by the data
definition for the item.

 Context Management Specification, Component Technology Mapping: ActiveX

 Version CM-1.0 Copyright 1999, Health Level Seven 33

 Exception Hexadecimal
value

 Explanation

 InvalidTransaction 0x80000211L A transaction has been invalidated and
aborted because it violates one or more
semantic integrity constraints.

 UndoNotPossible 0x80000212L Attempt to undo context changes after the
transaction has ended.

 ChangesNotPossible 0x80000213L Attempt to set or delete context data after the
transaction has ended.

 ChangesNotAllowed 0x80000214L Mapping agent attempts set or delete a
context data item that has been set by the
participant that instigated the transaction.

 AuthenticationFailed 0x80000215L A signature could not be authenticated.

 SignatureRequired 0x80000216L A signature is required to perform the
method.

 UnknownApplication 0x80000217L An application name is not known.

 UnknownConnection 0x80000218L A connection is not known to the
authentication repository.

 LogonNotFound 0x80000219L The desired user logon is not found in the
authentication repository.

 UnknownDataFormat 0x8000021AL The format of user authentication data
requested could not be found in the
authentication repository.

 UnknownBindee 0x8000021BL A security binding coupon does not denote a
known bindee.

 ImproperKeyFormat 0x8000021CL A public key is not properly formatted.

 BindingRejected 0x8000021DL The identity of a bindee could not be
verified.

 ImproperMACFormat 0x8000021EL A message authentication code is not
properly formatted.

 UnknownPropertyName 0x8000021FL A property name is not known.

 BadPropertyType 0x80000220L A property data type does not conform to
specification.

 BadPropertyValue 0x80000221L A property data value does not conform to
specification.

 AlreadyJoinedContext 0x80000222L The application has already joined the
context.

 Table 4: Exception Codes

 Context Management Specification, Component Technology Mapping: ActiveX

 34 Copyright 1999, Health Level Seven Version CM-1.0

 Context Management Specification, Component Technology Mapping: ActiveX

 Version CM-1.0 Copyright 1999, Health Level Seven 35

9 Character Set

 The Unicode character set shall be used to represent all character strings that are transmitted
amongst and between CMA-compliant applications and components. The Unicode character
set enables representation of virtually any local character set.

 The use of ActiveX Automation, in which character strings are represented by the Automation
data type BSTR, provides built-in support for Unicode. This means that an ActiveX
implementation of a CMA-compliant applications and components will inherently support
Unicode for the character strings that are communicated via the CMA-defined ActiveX
Automation interfaces.

 Context Management Specification, Component Technology Mapping: ActiveX

 36 Copyright 1999, Health Level Seven Version CM-1.0

 Context Management Specification, Component Technology Mapping: ActiveX

 Version CM-1.0 Copyright 1999, Health Level Seven 37

10 MIDL Listing

 The interfaces defined below are an implementable translation of the abstract interfaces
definitions documented in the CMA specification. The following rules were applied to produce
the translation:

• The prefix “I” is prepended to the names of each interface, per COM conventions.

• The closest available data types supported by Automation were employed (see table
below).

• Outputs are mapped as return values (retval) and in/out parameters. Plain out
parameters are not used because they are not easily implemented using Visual Basic
5.0. (Note: the use of in/out parameters requires special attention to proper memory
management techniques when implementing context managers or context participants
with the C++ programming language.)

• Exceptions names are mapped as HRESULTs. Support for exception data values is
optional. If supported, the data values should be mapped to formatted strings and
made available through the IErrorInfo interface.

• An interface reference to a component’s principal interface is mapped as an IUnknown
pointer. A reference to any other component interface is mapped as an IDispatch
pointer.

• Sequences are mapped as safe arrays.

• Abstract data types are mapped to Automation data types as follows:

 Abstract Data Type Automation Data Type

 byte unsigned char

 short short

 long long

 float float

 double double

 boolean VARIANT_BOOL

 string BSTR

 date DATE

 type VARTYPE

 variant VARIANT

 Context Management Specification, Component Technology Mapping: ActiveX

 38 Copyright 1999, Health Level Seven Version CM-1.0

 The MIDL that follows must be used by all ActiveX implementations of context managers and
context participants. This includes interface and class names, and method signatures.

10.1 Type Libraries
 All CMA-compliant Automation server component implementations shall provide a type

library that is consistent with the interface definitions specified below. A default interface
should not be specified for any of these components. Clients should not assume that an
Automation server has a default interface. An explicit call to IUnknown::QueryInterface is
necessary to obtain a reference to a specific interface from an Automation server.

 Context Management Specification, Component Technology Mapping: ActiveX

 Version CM-1.0 Copyright 1999, Health Level Seven 39

10.2 IAuthenticationRepository

import "oaidl.idl";

import "ocidl.idl";

[

object,

uuid(12B28736-2895-11d2-BD6E-0060B0573ADC),

dual,

helpstring("IAuthenticationRepository Interface"),

pointer_default(unique)

]

interface IAuthenticationRepository : IDispatch

{

 [helpstring(“Establish connection with authentication repository”)]

 HRESULT Connect([in] BSTR applicationName,

 [out, retval] long *bindingCoupon);

 [helpstring(“Terminate connection with authentication repository”)]

 HRESULT Disconnect([in] long bindingCoupon);

 [helpstring("Set user authentication data for specified logon name")]

 HRESULT SetAuthenticationData([in] coupon,

[in] BSTR logonName,

[in] BSTR dataFormat,

[in] BSTR appSignature);

 [helpstring("Delete user authentication data for specified logon name")]

 HRESULT DeleteAuthenticationData([in] coupon,

[in] BSTR logonName,

[in] BSTR dataFormat,

[in] BSTR appSignature);

 [helpstring("Retrieve user authentication data for specified logon name")]

 HRESULT GetAuthenticationData([in] coupon,

[in] BSTR logonName,

[in] BSTR dataType,

[in] BSTR appSignature,

[in, out] BSTR *userData,

[out, retval] BSTR *repositorySignature);

};

 Context Management Specification, Component Technology Mapping: ActiveX

 40 Copyright 1999, Health Level Seven Version CM-1.0

10.3 IContextData

import "oaidl.idl";

import "ocidl.idl";

[

object,

uuid(2AAE4991-A1FC-11D0-808F-00A0240943E4),

dual,

helpstring("IContextData Interface"),

pointer_default(unique)

]

interface IContextData : IDispatch

{

 [helpstring("get the names of all of the context items")]

 HRESULT GetItemNames([in] long contextCoupon, [out, retval] VARIANT *itemNames);

 [helpstring("delete an item(s) from the set of context items")]

 HRESULT DeleteItems([in] long participantCouppn,

 [in] VARIANT names,

 [in] long contextCoupon);

 [helpstring("set the value of one or more context items")]

 HRESULT SetItemValues([in] long participantCoupon,

 [in] VARIANT itemNames,

 [in] VARIANT itemValues,

 [in] long contextCoupon);

 [helpstring("get the value of one or more context items")]

 HRESULT GetItemValues([in] VARIANT names,

 [in] VARIANT_BOOL onlyChanges,

 [in] long contextCoupon,

 [out, retval] VARIANT *itemValues);

 };

 Context Management Specification, Component Technology Mapping: ActiveX

 Version CM-1.0 Copyright 1999, Health Level Seven 41

10.4 IContextManager

import "oaidl.idl";

import "ocidl.idl";

[

object,

uuid(41126C5E-A069-11D0-808F-00A0240943E4),

dual,

helpstring("IContextManager Interface"),

pointer_default(unique)

]

interface IContextManager : IDispatch

{

[propget, helpstring("property MostRecentContextCoupon")]

 HRESULT MostRecentContextCoupon([out, retval] long *pVal);

[helpstring("enables an application to join a common context system")]

 HRESULT JoinCommonContext([in] IDispatch *contextParticipant,

 [in] BSTR sApplicationTitle,

 [in] VARIANT_BOOL survey,

 [in] VARIANT_BOOL wait,

 [out, retval] long *participantCoupon);

[helpstring("enables an application to leave a common context system")]

 HRESULT LeaveCommonContext([in] long participantCoupon);

[helpstring("enables an application to start a context change transaction")]

 HRESULT StartContextChanges([in] long participantCoupon,

 [out, retval] long *pCoupon);

[helpstring("enables the application that instigated a context change transaction to

indicate that it has completed its changes")]

 HRESULT EndContextChanges([in] long contextCoupon,

 [in, out] VARIANT_BOOL *someBusy,

 [out, retval] VARIANT *vote);

[helpstring("enables an application to discard any context data changes that it has

already made")]

 HRESULT UndoContextChanges([in] long contextCoupon);

 [helpstring("enables the application that instigated a context change transaction to

inform the other applications in a context system about whether the changes are to be

applied or have been canceled")]

 HRESULT PublishChangesDecision([in] long contextCoupon,

 [in] BSTR decision);

[helpstring("enables an application to indicate that it wants to suspend its active

participation in a common context system while remaining registered as a

participant")]

 HRESULT SuspendParticipation([in] long participantCoupon);

 [helpstring("enables an application to indicate that it wants to resume active

participation in a common context system")]

 HRESULT ResumeParticipation([in] long participantCoupon,

 [in] VARIANT_BOOL wait);

};

 Context Management Specification, Component Technology Mapping: ActiveX

 42 Copyright 1999, Health Level Seven Version CM-1.0

10.5 IContextParticipant

import "oaidl.idl";

import "ocidl.idl";

[

object,

uuid(3E3DD272-998E-11D0-808D-00A0240943E4),

dual,

helpstring("IContextParticipant Interface"),

pointer_default(unique)

]

interface IContextParticipant : IDispatch

{

 [helpstring("informs a participant that a change to the common context data is

pending")]

 HRESULT ContextChangesPending([in] long contextCoupon,

 [in, out] BSTR* reason,

 [out, retval] BSTR *returnValue);

 [helpstring("informs a participant that the common context data has changed")]

 HRESULT ContextChangesAccepted([in] long contextCoupon);

 [helpstring("informs a particpant that a context change transaction has been rejected

by one or more of the other participating applications")]

 HRESULT ContextChangesCanceled([in] long contextCoupon);

 [helpstring("informs a participant that the system is being terminated")]

 HRESULT CommonContextTerminated(void);

 [helpstring("used to test if the participant is alive")]

 HRESULT Ping(void);

};

 Context Management Specification, Component Technology Mapping: ActiveX

 Version CM-1.0 Copyright 1999, Health Level Seven 43

10.6 IImplementationInformation

import "oaidl.idl";

import "ocidl.idl";

[

 object,

 uuid(41123600-6CE1-11d1-AB3F-E892F5000000),

 dual,

 helpstring("IImplementationInformation Interface"),

 pointer_default(unique)

]

interface IImplementationInformation : Idispatch

{

 [propget, helpstring("property ComponentName")]

 HRESULT ComponentName([out, retval] BSTR *pVal);

 [propget, helpstring("property RevMajorNum")]

 HRESULT RevMajorNum([out, retval] BSTR *pVal);

 [propget, helpstring("property RevMinorNum")]

 HRESULT RevMinorNum([out, retval] BSTR *pVal);

 [propget, helpstring("property PartNumber")]

 HRESULT PartNumber([out, retval] BSTR *pVal);

 [propget, helpstring("property Manufacturer")]

 HRESULT Manufacturer([out, retval] BSTR *pVal);

 [propget, helpstring("property TargetOS")]

 HRESULT TargetOS([out, retval] BSTR *pVal);

 [propget, helpstring("property TargetOSRev")]

 HRESULT TargetOSRev([out, retval] BSTR *pVal);

 [propget, helpstring("property WhenInstalled")]

 HRESULT WhenInstalled([out, retval] BSTR *pVal);

};

 Context Management Specification, Component Technology Mapping: ActiveX

 44 Copyright 1999, Health Level Seven Version CM-1.0

10.7 IMappingAgent

import "oaidl.idl";

import "ocidl.idl";

[

 object,

 uuid(753D98C0-6CE1-11d1-AB3F-E892F5000000),

 dual,

 helpstring("IMappingAgent Interface"),

 pointer_default(unique)

]

interface IMappingAgent : Idispatch

{

[helpstring("informs a mapping that a change to the common context data ready for

mapping")]

HRESULT ContextChangesPending([in] long mappingAgentCoupon,

 [in] IUnnknown *contextMgr,

 [in] long contextCoupon,

 [in, out] BSTR* reason,

 [out, retval] BSTR *returnValue);

[helpstring("used to let Context Manager mapping agent is alive")]

HRESULT Ping(void);

};

 Context Management Specification, Component Technology Mapping: ActiveX

 Version CM-1.0 Copyright 1999, Health Level Seven 45

10.8 ISecureBinding

import "oaidl.idl";

import "ocidl.idl";

[

object,

uuid(F933331D-91C6-11D2-AB9F-4471FBC00000),

dual,

helpstring("ISecureBinding Interface"),

pointer_default(unique)

]

interface ISecureBinding : IDispatch

{

[helpstring("Initiate secure binding")]

 HRESULT InitiatlizeBinding([in] long bindeeCoupon,

[in] VARIANT propertyNames,

 [in] VARIANT propertyValues,

[in,out] BSTR *binderPublicKey,

[out, retval] BSTR *mac);

 [helpstring("Finalize secure binding")]

 HRESULT FinalizeBinding([in] long bindeeCoupon,

[in] BSTR bindeePublicKey,

[in] BSTR mac,

 [out, retval] VARIANT privileges);

};

 Context Management Specification, Component Technology Mapping: ActiveX

 46 Copyright 1999, Health Level Seven Version CM-1.0

10.9 ISecureContextData

import "oaidl.idl";

import "ocidl.idl";

[

object,

uuid(6F530680-BC14-11D1-90B1-76C60D000000),

dual,

helpstring("ISecureContextData Interface"),

pointer_default(unique)

]

interface ISecureContextData : IDispatch

{

 [helpstring("return collection of the names in the context")]

 HRESULT GetItemNames([in] long contextCoupon,

 [out, retval] VARIANT *itemNames);

 [helpstring("set the value of one or more context items")]

 HRESULT SetItemValues([in] long participantCoupon,

 [in] VARIANT itemNames,

 [in] VARIANT itemValues,

 [in] long contextCoupon,

 [in] BSTR appSignature);

 [helpstring("obtain the value of one or more context items")]

 HRESULT GetItemValues([in] long participantCoupon,

 [in] VARIANT names,

 [in] VARIANT_BOOL onlyChanges,

 [in] long contextCoupon,

 [in] BSTR appSignature,

 [in, out] BSTR *managerSignature,

 [out, retval] VARIANT *itemValues);

};

 Context Management Specification, Component Technology Mapping: ActiveX

 Version CM-1.0 Copyright 1999, Health Level Seven 47

 Index

 A
 ActiveX, 7, 10, 19

 Introduction to, 7
 Assumptions, 7
 authentication repository implementations, 17,

20, 21
 AuthenticationRepository, 39

 C
 CCOW, 5, 19, 20, 29
 Character Set, 35
 CLSID, 19, 20, 21, 23
 CMA, 7, 8, 9, 10, 11, 17, 19, 20, 21, 25, 26, 27,

29, 31, 35, 37, 38
 CMS

 subjects and technologies, 9
 Compatability, 7

 Visual Basic, 8
 Visual C++, 8
 Visual J++, 8
 Windows 95, 8
 Windows NT, 7

 Component Mode, 11
 Component Model Mapping, 11

 COM, 11
 IQueryInterface, 11

 Context Management Architecture (CMA)., 7
 Context Management Specification, 4, 8, 11, 15
 context manager, 7, 13, 19, 20, 23, 24, 27, 28,

29, 31
 Context manager, 17, 20, 21, 23
 Context Manager, 13
 Context Participant, 13
 ContextData, 40
 ContextManager, 41
 ContextParticipant, 42
 Creating Digital Signatures, 26
 CryptExportKey, 26
 Cryptographic Service Provider, 26

 CRYPTO32 API, 26
 CryptSignHash, 26
 CryptVerifySignature, 26

 D
 Dual Interfaces, 3, 17

 dispatch interfaces, 17
 dw Blob Type

 PUBLICKEYBLOB, 26

 E
 Error handling, 31

 HRESULT, 31
 IErrorInfo and ISupportInfo, 31

 F
 Figure 1, 9
 Figure 1: Organization of HL7 Context

Management Specification Documents, 9
 Figure 2: Automation Interfaces in a Common

Context System, 12

 H
 Hash Value Format, 27

 CryptGetHashParam, 27

 I
 IAuthenticationRepository, 13
 IContextData, 13
 IContextManager, 13
 IContextParticipant, 3, 13, 17, 23, 42
 IImplementationInformation, 13
 IMappingAgent, 13
 ImplementationInformation, 43
 Introduction of Microsoft ActiveX, 7
 IQueryInterface, 7
 ISecureBinding, 3, 23, 45

 J
 Java, 8

 K
 Key Container Management, 28
 Key Container Naming Convention, 28
 Key Container Security, 29
 Key Containers, 27

 CryptAcquireContext, 27

 M
 Mapping Agent, 13, 17, 19, 20, 21, 23, 24, 27,

28, 29, 44
 MappingAgent, 44
 Microsoft’s ActiveX, 7, 10
 Microsoft’s CRYPTO32 API, 3, 25
 MIDL Listing, 37

 Context Management Specification, Component Technology Mapping: ActiveX

 48 Copyright 1999, Health Level Seven Version CM-1.0

 P
 patient mapping agent, 20
 ProgID, 19, 20
 Public Key Format, 3, 26

 R
 Required Containers, 27

 S
 Secure Binding Properties, 25

 ISecureBinding, 25
 SecureContextData, 46
 Signature Format, 26

 T
 Table 1, 13
 Table 1: How Interface References Are

Obtained, 13
 Table 2: Secure Binding Properties, 25

 Table 3
 Key Container Naming Scheme, 29

 Table 4
 Exception Codes, 33

 Technology- And Subject- Independent
Component Architecture, 9, 11, 15

 Technology Mapping, 8
 Type Libraries, 38

 U
 user mapping agent, 20

 V
 Visual Basic, 8
 Visual C++, 8
 Visual J++, 8

 W
 Windows 95, 8
 Windows NT, 7

