
 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 1

 Health Level Seven Standard 1

 2

 3

 4

 Context Management Specification 5

Technology- and Subject-Independent Component Architecture 6

Version CM-1.0 7

 8

 9

 10

 11

 DOCUMENT ID: HL7SIGVI_5_1_99

 REVISION ID: May 24, 1999

 FILE NAME: hl7_sigvi_arch_cm_1_0.doc

 SUPERCEDES: n/a

 12

 13

 14

 15

 16

 17

 18

 19

 Copyright ©1999 Health Level Seven, Inc. 20
ALL RIGHTS RESERVED. The reproduction of this material is any 21

form is strictly forbidden without the written permission of the publisher. 22

 23

 24

 Context Management Specification, Technology and Subject-Independent Component Architecture

 2 Copyright 1999, Health Level Seven Version CM-1.0

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 3

 Contents 1

 1 INTRODUCTION ...11 2

 1.1 CLINICAL CONTEXT ..11 3
 1.2 LINKS AND SUBJECTS ..11 4
 1.3 ARCHITECTURE SUMMARY ..13 5
 1.4 READING THIS DOCUMENT ..14 6

 2 SCOPE AND OBJECTIVES...16 7

 2.1 SPECIFICATION ORGANIZATION ...16 8
 2.2 ASSUMPTIONS/ASSERTIONS ...17 9
 2.3 CMA DESIGN CENTER ..19 10

 3 TECHNOLOGY NEUTRALITY ...20 11

 4 REQUIREMENTS AND CAPABILITIES...24 12

 5 SYSTEM ARCHITECTURE..26 13

 5.1 USE-MODEL ...26 14
 5.2 CONTEXT MANAGEMENT RESPONSIBILITY ...35 15
 5.3 CONTEXT CHANGE DETECTION ...36 16
 5.4 CONTEXT DATA REPRESENTATION...36 17
 5.5 CONTEXT DATA ACCESS ...37 18
 5.6 CONTEXT DATA INTERPRETATION ...38 19

 5.6.1 Establishing the Meaning of Context Data Item Names ..39 20
 5.6.2 Establishing the Meaning of Context Data Item Values ..40 21
 5.6.3 Representing Context Subjects That Cannot Be Uniquely Identified40 22
 5.6.4 Context Subjects and Item Name Format..41 23
 5.6.5 Standard Context Data Items..41 24
 5.6.6 Non-Standard Context Data Items ..42 25
 5.6.7 Representing “Null” Item Values ...43 26
 5.6.8 Representing an Empty Context Subject ...43 27
 5.6.9 Case Sensitivity with Regard to Item Names and Item Values ...43 28

 6 COMPONENT MODEL ...46 29

 6.1 COMPONENT AND INTERFACE CONCEPTS..47 30
 6.1.1 Interfaces and References...47 31
 6.1.2 Interface Interrogation ...47 32
 6.1.3 Principal Interface ...48 33
 6.1.4 Interface Reference Registry ..48 34
 6.1.5 Interface Reference Management ...48 35

 7 PATIENT LINK THEORY OF OPERATION ..50 36

 7.1 PATIENT LINK COMPONENT ARCHITECTURE...50 37
 7.2 PATIENT SUBJECT ...51 38
 7.3 PATIENT MAPPING AGENT...52 39
 7.4 CONTEXT CHANGE TRANSACTIONS..52 40
 7.5 JOINING THE COMMON CONTEXT SYSTEM..53 41
 7.6 CONTEXT CHANGE TRANSACTIONS..54 42
 7.7 TRANSACTIONAL CONSISTENCY...54 43
 7.8 CONTEXT CHANGE NOTIFICATION PROCESS ...55 44
 7.9 LEAVING A COMMON CONTEXT SYSTEM ..57 45
 7.10 BEHAVIORAL DETAILS...57 46

 Context Management Specification, Technology and Subject-Independent Component Architecture

 4 Copyright 1999, Health Level Seven Version CM-1.0

 7.10.1 Application Behavior When it Cannot Cancel Context Changes57 1
 7.10.2 Application Behavior When it Does Not Understand Context Identifiers58 2
 7.10.3 Application Behavior with Regard to an Empty Context ...58 3
 7.10.4 Surveying Details ...58 4

 7.11 COMMON CLINICAL CONTEXT USE MODEL ..60 5
 7.11.1 Lifecycle of Common Context...61 6
 7.11.2 Context Selection Change Use Case...64 7
 7.11.3 Abnormal Termination of Common Context Use Case ..73 8

 7.12 STAT ADMISSIONS...75 9
 7.13 OPTIMIZATIONS ..75 10
 7.14 THE SIMPLEST APPLICATION..76 11

 8 MAPPING AGENTS...78 12

 8.1 ASSUMPTIONS AND ASSERTIONS ..78 13
 8.2 INTERFACES..79 14
 8.3 THEORY OF OPERATION...80 15

 8.3.1 Initializing a Context System When a Mapping Agent is Present.......................................81 16
 8.3.2 Terminating a Context System When a Mapping Agent is Present.....................................82 17
 8.3.3 Distinguishing Between Mapping Agents and Context Participants83 18
 8.3.4 Mapping Agent Updates to Context Data ...84 19
 8.3.5 Conditions for Mapping Agent Invalidation of Context Changes84 20
 8.3.6 Treatment of Mapping Agent Invalidation of Context Changes...86 21
 8.3.7 Mapping Null-Valued Identifiers ..87 22
 8.3.8 Initializing Mapping Agents ...88 23
 8.3.9 Handling Mapping Agent Failures ...89 24

 8.4 MAPPING AGENT EFFECT ON APPLICATION SECURITY POLICIES ..89 25
 8.5 IDENTIFYING MAPPING AGENT IMPLEMENTATIONS...90 26
 8.6 PERFORMANCE COSTS AND OPTIMIZATIONS ...90 27

 9 USER LINK THEORY OF OPERATION...92 28

 9.1 USER LINK TERMS...93 29
 9.2 DESKTOP ASSUMPTIONS ..93 30
 9.3 USER SUBJECT ..93 31
 9.4 USER AUTHENTICATION DATA IS NOT PART OF THE USER CONTEXT ...94 32
 9.5 USER LINK COMMON CONTEXT SYSTEM DESCRIPTION ...95 33

 9.5.1 User Mapping Agent ..95 34
 9.5.2 Context Management Interfaces ...96 35
 9.5.3 Authentication Repository ..96 36
 9.5.4 Overall User Link Component Architecture..97 37

 9.6 USER LINK SIGN-ON PROCESS ...98 38
 9.7 DESIGNATING APPLICATIONS FOR USER AUTHENTICATION ...98 39
 9.8 SIGNING ON TO APPLICATIONS NOT DESIGNATED FOR AUTHENTICATING USERS99 40
 9.9 APPLICATION BEHAVIOR WHEN LAUNCHED ...100 41
 9.10 MULTIPLE CONTEXT SUBJECTS..100 42

 9.10.1 The Effect of Multiple Subjects on the Meaning of “Link”..100 43
 9.10.2 Context Manager Support for Multiple Context Subjects ..101 44
 9.10.3 Effect of Multiple Subjects on Context Change Transaction ...102 45
 9.10.4 Context Manager Treatment of Multi-Subject Context Data ...103 46
 9.10.5 Effect of Multiple Subjects on Mapping Agents ..103 47
 9.10.6 Application Treatment of Multiple Subjects ..104 48

 9.11 ACCESS CONTROL LISTS..104 49
 9.12 EMPTY CONTEXTS ..104 50
 9.13 CHANGING USERS ...104 51
 9.14 LOGGING-OFF AND APPLICATION TERMINATION ..105 52

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 5

 9.15 AUTOMATIC LOG-OFF ...108 1
 9.16 REAUTHENTICATION TIME-OUT ...108 2
 9.17 BUSY APPLICATIONS ...109 3
 9.18 CO-EXISTENCE WITH APPLICATIONS NOT USER LINK-ENABLED..110 4
 9.19 POPULATING THE USER MAPPING AGENT ...110 5
 9.20 AUTHENTICATION REPOSITORY ...111 6

 9.20.1 Repository Implementation Considerations ..112 7
 9.20.2 Populating the Repository ..112 8

 10 CHAIN OF TRUST ...114 9

 10.1 USER CONTEXT CHANGE TRANSACTIONS AND THE CHAIN OF TRUST ...114 10
 10.2 CREATING THE CHAIN OF TRUST..114 11

 10.2.1 Object Infrastructures ..115 12
 10.2.2 Secure Communications Protocols ...115 13
 10.2.3 Security Building Blocks ..116 14
 10.2.4 Security Attacks On the Chain Of Trust ..118 15
 10.2.5 Chain of Trust Implementation Limitations...120 16

 10.3 DIGITAL SIGNATURES AND CMA COMPONENTS ...120 17
 10.3.1 Public Key / Private Key Encryption as a Means for Generating Signatures121 18
 10.3.2 Incorporation of Signatures into the Context Management Architecture.........................123 19
 10.3.3 Computing a Digital Signature...125 20
 10.3.4 Public Key Distribution..126 21

 10.3.4.1 Passcode Generation Requirements ...128 22
 10.3.4.2 Protecting Passcodes ...129 23
 10.3.4.3 Protecting Private Keys ...130 24

 10.3.5 System Configuration Requirements ...130 25
 10.3.6 Defending Against Replay Attacks..131 26

 10.4 TRUST RELATIONSHIPS..132 27
 10.4.1 Trust Between Applications and Context Manager ...132 28
 10.4.2 Trust Between Context Manager and User Mapping Agent...132 29
 10.4.3 Trust Between Applications and Authentication Repository ..133 30

 10.5 CHAIN OF TRUST INTERACTIONS ..134 31

 11 INTERFACE DEFINITIONS..1 32

 11.1 INTERFACE DEFINITION LANGUAGE ...138 33
 11.1.1 Interface Definition Body ...139 34
 11.1.2 Simple Data Types..140 35
 11.1.3 Exception Declaration..141 36
 11.1.4 Sequences...141 37
 11.1.5 Interface References...142 38
 11.1.6 Principal Interface ...142 39
 11.1.7 Qualifying Names...142 40

 11.2 INTERFACE IMPLEMENTATION ISSUES...143 41
 11.2.1 NotImplemented Exception...143 42
 11.2.2 GeneralFailure Exception ..143 43
 11.2.3 Coupon Representation ..143 44
 11.2.4 Format for Application Names ...143 45
 11.2.5 Extraneous Context Items...144 46
 11.2.6 Forcing the Termination of a Context Change Transaction ..144 47
 11.2.7 Character-Encoded Binary Data ..146 48
 11.2.8 Representing Message Authentication Codes, Signatures and Public Keys147 49
 11.2.9 Representing Basic Data Types as Strings ..147 50
 11.2.10 Pre-Defined Mapping Agent Coupons ..148 51

 11.3 INTERFACES..150 52

 Context Management Specification, Technology and Subject-Independent Component Architecture

 6 Copyright 1999, Health Level Seven Version CM-1.0

 11.3.1 AuthenticationRepository (AR) ...150 1
 11.3.1.1 Synopsis..150 2
 11.3.1.2 Connect...151 3
 11.3.1.3 Disconnect ..151 4
 11.3.1.4 SetAuthenticationData ..151 5
 11.3.1.5 DeleteAuthenticationData ...152 6
 11.3.1.6 GetAuthenticationData..153 7

 11.3.2 ContextData (CD) ..156 8
 11.3.2.1 Synopsis..156 9
 11.3.2.2 GetItemNames ..157 10
 11.3.2.3 DeleteItems...157 11
 11.3.2.4 SetItemValues...158 12
 11.3.2.5 GetItemValues ..159 13

 11.3.3 ContextManager (CM) ...162 14
 11.3.3.1 Synopsis..163 15
 11.3.3.2 MostRecentContextCoupon...163 16
 11.3.3.3 JoinCommonContext ...163 17
 11.3.3.4 LeaveCommonContext ..164 18
 11.3.3.5 StartContextChanges...164 19
 11.3.3.6 EndContextChanges ..165 20
 11.3.3.7 UndoContextChanges..166 21
 11.3.3.8 PublishChangesDecision ...167 22
 11.3.3.9 SuspendParticipation...167 23
 11.3.3.10 ResumeParticipation ...169 24

 11.3.4 ContextParticipant (CP)...171 25
 11.3.4.1 Synopsis..171 26
 11.3.4.2 ContextChangesPending..171 27
 11.3.4.3 ContextChangesAccepted..172 28
 11.3.4.4 ContextChangesCanceled..172 29
 11.3.4.5 CommonContextTerminated..173 30
 11.3.4.6 Ping ..173 31

 11.3.5 ImplementationInformation (II) ..174 32
 11.3.5.1 Synopsis..174 33
 11.3.5.2 ComponentName...174 34
 11.3.5.3 RevMajorNum ..174 35
 11.3.5.4 RevMinorNum ..174 36
 11.3.5.5 PartNumber ..174 37
 11.3.5.6 Manufacturer ..174 38
 11.3.5.7 TargetOS ..175 39
 11.3.5.8 TargetOsRev...175 40
 11.3.5.9 WhenInstalled ...175 41

 11.3.6 MappingAgent (MA)...176 42
 11.3.6.1 Synopsis..176 43
 11.3.6.2 ContextChangesPending..176 44
 11.3.6.3 Ping ..176 45

 11.3.7 SecureBinding (SB) ..178 46
 11.3.7.1 Synopsis..178 47
 11.3.7.2 InitiateBinding ..178 48
 11.3.7.3 FinalizeBinding...180 49

 11.3.8 SecureContextData (SD) ..183 50
 11.3.8.1 Synopsis..183 51
 11.3.8.2 GetItemNames ..183 52
 11.3.8.3 SetItemValues...184 53
 11.3.8.4 GetItemValues ..184 54

 12 BACKWARDS COMPATIBILITY..186 55

 APPENDIX: DIAGRAMMING CONVENTIONS ..188 56

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 7

 GLOSSARY ..1 1

 2

 Figures 3

 Figure 1: Patient Linked Applications ..12 4

 Figure 2: Organization of HL7 Context Management Specification Documents................................16 5

 Figure 3: Overall Role of the CMA Specification..19 6

 Figure 4: COM/Java/CORBA Interoperability ...22 7

 Figure 5: Patient Selection Change Use Case..29 8

 Figure 6: Patient Context Automatically Changes within all Context Participant Applications30 9

 Figure 7: User Informed of Potential Data Loss and Cancels Context Change...................................31 10

 Figure 8: User forces Application AAA to Become Out of Synchrony with other Context Participants32 11

 Figure 9: Context Participant Not Responding to Selection Change Request.....................................33 12

 Figure 10: User Accepts Consequences of going ahead with Patient Selection Change with all 13
Applications ..34 14

 Figure 11: Patient Link Component Architecture..51 15

 Figure 12: Patient Link Context Change Process ..53 16

 Figure 13: Common Clinical Context Use Model ...60 17

 Figure 14: Common Context Lifecycle Use Case ..61 18

 Figure 15: Context Selection Change Use Case ..64 19

 Figure 16: Abnormal Termination of Common Context Use Case ..73 20

 Figure 17: User Link Component Architecture ...97 21

 Figure 18: User Link Sign-On Process..98 22

 Figure 19: User Subject Context Data Mapped for Different Applications.......................................110 23

 Figure 20: Signing A Message..123 24

 Figure 21: Forming Signature Using Method Parameters ...124 25

 26

 Tables 27

 Table 1: User Link-Enabled Application Behavior for Termination and Log-Off106 28

 Table 2: Chain of Trust Attacks and Defenses ..119 29

 Context Management Specification, Technology and Subject-Independent Component Architecture

 8 Copyright 1999, Health Level Seven Version CM-1.0

 Table 3: Handling Transaction Instigator Failure ...145 1

 Table 4: Character Representations for Basic Data Types ...148 2

 3

 Interaction Diagrams 4

 Interaction Diagram 1: Common Context Lifecycle ..62 5

 Interaction Diagram 2: Suspending/Resuming Context Participation..63 6

 Interaction Diagram 3: All applications accept the changes ..65 7

 Interaction Diagram 4: An application conditionally accepts the changes; user decides to cancel 8
changes ...66 9

 Interaction Diagram 5: An application does not respond to survey..67 10

 Interaction Diagram 6: An application does not respond to change notification68 11

 Interaction Diagram 7: An application responds after context change transaction has completed......69 12

 Interaction Diagram 8: A non-surveyed application participates in context change...........................70 13

 Interaction Diagram 9: An application conditionally accepts the changes; user decides to accept 14
consequences of change ...71 15

 Interaction Diagram 10: An application conditionally accepts the changes; user breaks link with 16
common context ..72 17

 Interaction Diagram 11: Abnormal Termination of Common Context ..74 18

 Interaction Diagram 12: Simplest Application...77 19

 Interaction Diagram 13: Context Change Transaction with Mapping Agent83 20

 Interaction Diagram 14: Mapping Agent Invalidates Context Change Transaction..........................88 21

 Interaction Diagram 15: User Logs Off From One Application...107 22

 Interaction Diagram 16: User Logs-Off From Desktop..107 23

 Interaction Diagram 17: Populating Authentication Repository with User Authentication Data135 24

 Interaction Diagram 18: User Link Context Change Transaction..136 25

 26

 27

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 9

 Preface 1

 This document was prepared by Robert Seliger, Sentillion, Inc., on behalf of Health Level 2

Seven’s Special Interest Group for Visual Integration (formerly the Clinical Context Object 3

Workgroup --- CCOW). Comments about the organization or wording of the document should 4

be directed to the author (robs@sentillion.com). Comments about technical content should be 5

directed to ccow@lists.hl7.org. 6

 Context Management Specification, Technology and Subject-Independent Component Architecture

 10 Copyright 1999, Health Level Seven Version CM-1.0

 1

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 11

1 Introduction 1

 This document specifies the Health Level Seven Context Management Architecture (CMA). 2

This architecture enables multiple applications to be automatically coordinated and 3

synchronized in clinically meaningful ways at the point-of-use. The architecture specified in 4

this document establishes the basis for bringing interoperability among healthcare applications 5

to the point-of-use, such as the clinical desktop. 6

1.1 Clinical Context 7

 Clinical context is state information that a user establishes and modifies while interacting with 8

healthcare applications at the point-of-use (e.g., a clinical desktop). The context is common 9

because it establishes parameters that should uniformly affect the behavior or operation of 10

multiple healthcare applications. The context needs to be managed so that the user has a way 11

of controlling it, and so that applications have a way of robustly coordinating their behavior as 12

the context changes. 13

 Examples of clinical context includes but are not limited to: 14

• The identity of a patient whose data the user wants to view or update via the 15

applications. 16

• The identity of the user who wants to access the applications. 17

• A moment in time around which temporal data displays should be centered by the 18

applications. 19

• A particular patient encounter that the user wants to review via the applications. 20

 Healthcare application developers often implement a common clinical context capability for 21

their own applications. However, there are currently no standards that enable independently- 22

developed applications to share a common clinical context. Further, with the diversity of 23

application programming technologies currently available, a common context solution should 24

strive to be applicable to at least several of the dominant and emerging technologies. 25

1.2 Links and Subjects 26

 The approach taken for the CMA is to define the architecture that enables applications to 27

establish a single link based upon a set of clinical subjects of common interest. The 28

applications automatically and cooperatively change their state whenever the user sets a new 29

 Context Management Specification, Technology and Subject-Independent Component Architecture

 12 Copyright 1999, Health Level Seven Version CM-1.0

value for one or more of these subjects. Two link subjects are defined as core to the CMA, and 1

are therefore introduced in this document: 2

• Patient, which enables the user to select the patient of interest once from any 3

application as the means to automatically “tune” all of the applications to the selected 4

patient. 5

• User, which enables the user to securely logon once to any application as the means to 6

automatically “tune” all of the applications to the user. 7

 Applications that share the same common context are said to comprise a common context 8

system. These applications have established and maintain a common context link. There is only 9

one link, while there can be multiple subjects. However, in the vernacular that arose as the 10

CMA was being developed, it became useful to refer specific link subjects. This has given rise 11

to the terms such as Patient Link and User Link. An example of a set of Patient Linked 12

applications is shown in Figure 1. 13

 Figure 1: Patient Linked Applications 14

 15

 The architecture for Patient Link was developed prior to the extensions defined for User Link. 16

In particular, User Link introduced substantial additional security-related capabilities. This 17

specification presents a single consolidated view of the overall CMA. 18

 The CMA enables additional subjects to be defined in a manner that does not require changes 19

to the architecture. This capability is the basis for extensible standards-based context 20

Nancy
Furlow

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 13

management solutions that can evolve to address new requirements without requiring massive 1

architecture or application implementation changes. 2

1.3 Architecture Summary 3

 The CMA defines the interfaces between applications, known as context participants, and a 4

coordinating component, known as the context manager. The CMA also defines the policies 5

that govern the use of these interfaces and the interaction among and between CMA-compliant 6

applications can components. 7

 Applications that share a common context with each other, and the context manager that 8

mediates the applications, are collectively referred to as a common context system. 9

Applications only need to interact with the context manager in order to participate in a 10

common context system. 11

 The data that defines the common clinical context for a common context system resides in the 12

context manager. The data is organized as a set of name/value pairs that are grouped by 13

context subject (e.g., patient, user, etc.). 14

 When the user performs an application gesture that instructs the application to change the 15

common clinical context (e.g., the user has selected a different patient), the application starts a 16

context change transaction. Context items can be added or removed, or have their values set, 17

during a context change transaction. Only one transaction can be in progress at a time. 18

 When the application that instigated the transaction has completed its changes to the context 19

data, the context manager conducts a two-phase process to coordinate the propagation of the 20

context changes to the other applications. 21

 In the first phase, the context manager surveys the other applications to determine which ones 22

can apply the new context, and which ones either cannot, or prefer not to. An application 23

cannot apply the changes if it is blocked, for example if it is waiting for the user to enter data. 24

An application might prefer not to apply the new context if, for example, doing so might cause 25

the user to loose work-in-progress. 26

 The context manager informs the instigating application of the survey results. If all of the 27

applications are willing to apply the new context, then they are all instructed to do so. If at 28

least one of the surveyed applications is blocked (“busy”) or prefers to keep the previous 29

context, then the user is asked by the instigating application to decide how to proceed: 30

• The user can cancel the context change. 31

 Context Management Specification, Technology and Subject-Independent Component Architecture

 14 Copyright 1999, Health Level Seven Version CM-1.0

• The user can break the link between the instigating application and the other 1

applications. The new context is then applied only to the instigating application, while 2

the other applications remain linked together and tuned to the previous context. 3

• The user can apply the changes anyway (as long as there are no busy applications). 4

 The context manager broadcasts the decision to all of the context participants to complete the 5

second phase of the transaction. This approach ensures that the link among application is never 6

broken unless the user has performed an explicit gesture instructing that the link be broken. 7

 Mapping agents are an optional CMA components that provide an automatic means for adding 8

data to the common context. The additional data augments the context such that all of the 9

participant applications can “tune” to the same subject even when they do not necessarily have 10

a common way to identify the subject. The specific job of a mapping agent is to map the 11

context data set by the application that instigated a context change transaction to data that can 12

be interpreted by the other context participant applications. A mapping agent only interacts 13

with the context manager, so its existence is transparent to the applications. 14

 Finally, for situations in which the secure conveyance of a context change is required, the 15

“chain of trust” is defined. In the chain of trust, the applications and components in a context 16

system use digital signatures to identify themselves in a manner that can be readily 17

authenticated but not easily violated. The chain of trust allows only trusted applications and 18

components to interact within a common context system. 19

1.4 Reading This Document 20

 This document presents a comprehensive specification of the HL7 Context Management 21

Architecture. The precision of the specification becomes increasingly more detailed as the 22

document progresses. Several of the early chapters present concepts that underlie the 23

architecture and lead the reader through the rationale for various architectural choices, while 24

all of the chapters in this document include information that the reader should find pertinent to 25

the explanation of the CMA. 26

 However, Chapters 5 through 0 all contain normative content and as such should be regarded 27

as the core of the CMA specification. In particular, Chapter 0, Copyright 1999, Health 28

Level SevenVersion CM-1.0, concludes the core specification with the complete set of CMA 29

interface definitions, including methods and their argument signatures. These interfaces are 30

ultimately the basis for the implementation of applications and components that conform to the 31

CMA specification. 32

 A compliant CMA application or component shall implement the relevant set of CMA 33

interfaces exactly as specified. A compliant application or component implementation shall 34

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 15

adhere to these interface definitions and to the policies specified throughout this document that 1

govern the use and behavior of these interfaces. 2

 Context Management Specification, Technology and Subject-Independent Component Architecture

 16 Copyright 1999, Health Level Seven Version CM-1.0

2 Scope and Objectives 1

 The HL7 Context Management Architecture (CMA) enables independently developed 2

applications to share data that describes a common clinical context. This document emphasizes 3

the policies, protocols, software interfaces, and responsibilities applications must implement 4

and adhere to as participants in a shared context system. 5

 A common context system is comprised of applications launched directly or indirectly by a 6

particular clinical end-user, wherein the applications share the same context data. Also 7

included in this system is a context management facility that enables applications to share the 8

context data. 9

2.1 Specification Organization 10

 It is beyond the scope of this document to provide all of the details that are needed in order to 11

fully implement a conformant CMA system. The necessary additional details are covered in a 12

series of companion specification documents. As illustrated in Figure 2, these documents are 13

organized to facilitate the process of defining additional link subjects and to accelerate the 14

process of realizing the CMA using any one of a variety of technologies. 15

 Figure 2: Organization of HL7 Context Management Specification Documents 16

 17

 The context management subjects and technologies that are of interest are determined by the 18

HL7 constituency. There is an HL7 context management data definition specification 19

 Technology Neutral Context
Management Architecture

Specification

 Technology Specific User
Interface Specifications

Technlogy X

Technology Y

Technlogy Z

Technology 1

Technlogy 2

Technology 3

 Technology Specific
Component Mapping

Specification

 Technology-Neutral
Subject Data Definition

Specifications

Subject A

Subject B
Subject C

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 17

document for each of the standard link subjects. Each document defines the data elements that 1

comprise a link subject. Concurrent with the publication of this document, the following 2

documents have been developed: 3

 Health Level-Seven Standard Context Management Specification, 4

Data Definition: Patient Subject, Version CM-1.0 5

 Health Level-Seven Standard Context Management Specification, 6

Data Definition: User Subject, Version CM-1.0 7

 There is an HL7 context management user interface specification document for each of the 8

user interface technologies with which CMA-enabled applications can be implemented. Each 9

document reflects the user interface requirements established in this document in terms of a 10

technology-specific look-and-feel. Concurrent with the publication of this document, the 11

following document has been developed: 12

 Health Level-Seven Standard Context Management Specification, 13

User Interface: Microsoft Windows OS, Version CM-1.0 14

 Finally, there is an HL7 context management component technology mapping specification 15

document for each of the component technologies that can be used to implement the CMA. 16

Each document provides the technology-specific details needed to implement CMA-compliant 17

applications and the associated CMA components, as specified in this document. Concurrent 18

with the publication of this document, the following document has been developed: 19

 Health Level-Seven Standard Context Management Specification, 20

Component Technology Mapping: ActiveX, Version CM-1.0 21

2.2 Assumptions/Assertions 22

 Key assertions and assumptions that were made during the course of developing the CMA are 23

indicated below: 24

• The architecture does not intend to solve nor is it a substitute for solving the patient 25

identification problem1. However, the architecture does attempt to accommodate 26

 1 In general, patients cannot be reliably identified using their given name because given names are
not necessarily unique. Identifiers can be assigned, but often a single person accumulates multiple
patient identifiers over time. This is because the assigned identifiers are not universally unique, and
generally only refer to a population of patients known to a particular healthcare institution, or known
to a site within an institution. Government assigned identifiers, such as a social security number, may
not be unique, or may change over time. In general, there is currently no simple and reliable way to
identify the same patient across all possible systems that might contain data pertinent to the patient.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 18 Copyright 1999, Health Level Seven Version CM-1.0

established means for achieving consistent interpretations of patient identification 1

information. 2

• Architectural support for context data other than that which is used to identify patients 3

is a non-objective to the extent it complicates the architecture. However, the 4

architecture is currently applicable to a wide range of context data elements. 5

• Architectural support for distributed applications is a non-objective to the extent it 6

complicates the architecture. However, the architecture is currently applicable to 7

distributed as well as co-located applications. 8

• Context management is not a form of data interchange nor is it a substitute for data 9

interchange. However, the common context might contain data that can also be 10

obtained by an application through data interchange mechanisms such as those based 11

upon HL7 (e.g., a patient’s name or date of birth in addition to a patient identifier). 12

When such data is provided, it is only as a means to simplify or optimize the sharing 13

of common context. 14

• The context management facility is not visible to the clinical end-user. However, it 15

might be visible to a systems integrator or systems administrator. 16

• The architecture is intended for use in clinical systems that are configured by an IT 17

staff. Ad-hoc installation and configuration of a common context system by the 18

clinical user is a non-objective to the extent it complicates the architecture. 19

• There is at most one context management facility per clinical desktop. However, 20

applications shall work correctly with any facility implementation that conforms with 21

the CMA specification. It is the decision of the IT staff as to which facility 22

implementation is actually used by a clinical system. 23

• Implementation complexities will be shifted to the context management facility, as 24

opposed to the applications, whenever this tactic is practical and reasonable. 25

Minimizing the burden for the application developer is valued as an essential element 26

for attracting the participation of the widest possible array of applications. 27

• It is assumed that the clinical data used by applications that share a common clinical 28

context are appropriately synchronized (e.g., via back-end data interchange) to the 29

degree necessary to ensure the consistent interpretation of the common context. 30

• It is assumed that any application that has been activated by the user can be used to set 31

the user’s common clinical context as long as the application conforms to the CMA 32

specification. This enables multiple applications to provide context setting capabilities, 33

which is convenient for the user. 34

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 19

• It is assumed that any application that does not understand or is otherwise unable or 1

unwilling (e.g., for security reasons) to respond to a change in the common clinical 2

context will ignore the change. However, any application that chooses to ignore a 3

context change must clearly indicate its decision, for example by blanking its data 4

display and/or minimizing itself. 5

2.3 CMA Design Center 6

 The CMA specification is primarily aimed at enabling interoperability in the form of 7

application control by the end user. Applications that interoperate in this manner appear to the 8

user as visually integrated. This is because the user can see ways in which the applications 9

interoperate. 10

 This is in contrast to traditional healthcare standards, which have been primarily aimed at 11

enabling interoperability in the form of data interchange between applications. Further, the 12

design focus for the CMA specification is applications that have a means for interchanging 13

clinical data. The overall role of the CMA specification is illustrated in Figure 3. 14

 Figure 3: Overall Role of the CMA Specification 15

 (No Data Interchange)

 Application
#2

 Application
#3

 Application
#1

 Common
Clinical Data

 Common
Clinical Context

 Not CMA Design Focus

 “visual integration”

 “data integration”

 CMA Design Focus

 Database Database

 Context Management Specification, Technology and Subject-Independent Component Architecture

 20 Copyright 1999, Health Level Seven Version CM-1.0

3 Technology Neutrality 1

 As recently as one year ago, it would have sufficed to architect and implement a common 2

clinical context solution that was targeted specifically for the Microsoft Window platforms. 3

With the recent explosion of Web-based technologies, such as Java, this restriction is no longer 4

practical. Fortunately, it is possible to architect a solution that is not predicated upon a specific 5

technology. Specifically, in the architecture described in this document, the concept of 6

technology neutrality is also applied. 7

 The term “technology neutral” does not mean that any technology is applicable. Rather, it 8

means that the common clinical context approach should work equally well with any one of a 9

candidate set of relevant technologies. 10

 The candidate technologies considered for this document are based upon market leadership: 11

• Inter-component communication: via Microsoft Automation through COM/DCOM; 12

via any CORBA 2.0 compliant object request broker. 13

• Programming languages: any language that can be interfaced with Microsoft 14

Automation and/or CORBA (e.g., VisualBasic®, C++, Java, MUMPS). 15

• Operating Systems: Windows 95®; Windows NT®; any platform that can host a 16

Java virtual machine. 17

 The primary reason that technology neutrality is practical is because all of these technologies 18

have a lot in common, including: 19

• They are all based upon object-oriented principles. 20

• They are all embraced by Microsoft or are readily available on Microsoft platforms. 21

 These two points have an interesting consequence: the technologies are compatible and 22

interoperable. This makes it a lot easier to be technology neutral. For example: 23

• CORBA supports multiple programming languages. Support already exists for C, 24

C++, Smalltalk, Java, and MUMPS. Objects implemented in any of these languages 25

can transparently interoperate using CORBA. 26

• COM supports multiple programming languages. Support already exists for C++, 27

VisualBasic, ObjectPascal, Java, and MUMPS. Objects implemented in any of these 28

languages can transparently interoperate using COM. 29

• Most vendor’s CORBA object request brokers enable CORBA objects to transparently 30

interoperate with COM objects. 31

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 21

• Microsoft’s Java virtual machine enables Java objects (applets) to transparently 1

interoperate with COM objects. 2

• Java objects (applets) can transparently communicate with remote Java objects using 3

the Java Remote Method Invocation (RMI) mechanism. 4

 Given the synergistic state of the dominant object technologies, the emphasis of this document 5

is on the structure of the common context system, the roles and responsibilities of the 6

components that comprise the system, the precise definition of the interfaces they need to 7

implement in order to be participants, the interactions between the components (via their 8

interfaces), and a host of architectural decisions that are intended to result in a robust, 9

practical, and useful common context solution. 10

 Figure 4 illustrates a COM-encapsulated Java object that interoperates with other COM 11

objects, and C++ and Java CORBA objects that interoperates with other CORBA objects. 12

 Context Management Specification, Technology and Subject-Independent Component Architecture

 22 Copyright 1999, Health Level Seven Version CM-1.0

 Figure 4: COM/Java/CORBA Interoperability 1

 2

 3

 Windows
platform

 Microsoft Java
Virtual Machine

 COM-
encapsulated
Java object
(applet)

 IUnknown

 IDispatch

 Virtual
Machine-
provided COM
wrapper

 a COM
Object

 Ixxx

 C++
CORBA
Object

 Host platform

 C++
Object
Request
Broker
Library

 Java
CORBA
Object
(applet)

 Any Java
Virtual Machine

 Java
Object
Request
Broker

 Host platform

 Tool-generated
C++ CORBA
Interface Stubs

 Tool-generated
Java CORBA
Interface Stubs

 CORBA
Object

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 23

 Context Management Specification, Technology and Subject-Independent Component Architecture

 24 Copyright 1999, Health Level Seven Version CM-1.0

4 Requirements and Capabilities 1

 The architecture described in this document is intended to serve as an extensible basis for 2

future, more advanced, common clinical context capabilities. However, for now, an attempt 3

will be made to focus on the immediate issue of developing a robust solution for sharing a 4

common patient selection context. 5

 In a complete solution, at least the following issues need to be addressed: 6

• Extensibility - how can new context elements be easily added in the future? 7

• Coordination - how can applications be coordinated so that they respond to context 8

setting changes in an orchestrated and manageable manner? 9

• Flexibility - how can applications and common context managers be structured so that 10

they implement only the capabilities that they need? 11

• Performance - how can applications and common context managers be structured so 12

that their temporal performance and utilization of computing resources is acceptable to 13

the end-user? 14

• Localizability - how are internationalization issues addressed (e.g., local character 15

sets, etc.)? 16

• Scalability - how is the performance of a common context system affected by the 17

quantity of active applications? 18

• Applicability - how should context information be structured and managed so that 19

application behaviors are useful to the end user? 20

• Usability - what are the policies that govern the use of a common context such that the 21

resulting application behaviors are intuitive and reasonable? 22

• Verifiability - how will the correctness of independently developed common context 23

implementations be verified? 24

 Architectural approaches that address these issues are presented next. 25

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 25

 Context Management Specification, Technology and Subject-Independent Component Architecture

 26 Copyright 1999, Health Level Seven Version CM-1.0

5 System Architecture 1

 At the most abstract level, the Context Management Architecture (CMA) provides a way for 2

independent applications to share data that describe a common clinical context. However, the 3

CMA must provide solutions for the following problems: 4

• What is the general use model for a common context, from the user’s perspective? 5

• Where does the responsibility for context management reside? 6

• How are changes to context data detected by applications? 7

• How is context data organized and represented so that it can be uniformly understood 8

by applications? 9

• How is context data accessed by applications? 10

• How is the meaning of context data consistently interpreted by applications? 11

 Before drilling into the details of the complete CMA, this chapter presents approaches and 12

associated trade-offs for the problems listed above. 13

5.1 Use-Model 14

 There are many possible use-models for a common clinical context. 15

 The extremes of application support for making context changes are represented by: 16

• Context changes can be performed only via a single, distinguished, application. 17

• Context changes can be performed via any application. 18

 In the model chosen for the CMA, context changes can be performed via any application. This 19

is because it is not reasonable to assume the universal existence of a distinguished application, 20

and it is beyond the interests and scope of HL7 to specify one. 21

 The extremes of application behavior when context changes are made are represented by: 22

• When the user changes the context, the changes are automatically communicated to all 23

of the applications that share the context. Applications that are able and willing to 24

apply the context changes do so immediately. Applications that are unable or unwilling 25

to apply the context changes maintain their current context. It is assumed that the user 26

can easily determine which context an application is using. 27

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 27

• When the user changes the context, the changes are automatically communicated to all 1

of the applications that share the context. However, the context changes are only 2

allowed if all of the applications are able and willing to apply the context changes 3

immediately. 4

 The model developed for the CMA is a hybrid of these two extremes that attempts to enable a 5

high degree of automatic context management while also emphasizing clinical safety: 6

• The likelihood that applications can become uncoordinated with regard to a common 7

clinical context is minimized. 8

• The circumstances that can prevent context changes from being automatically applied 9

are expected to be infrequent. 10

 The CMA model also respects the challenges of retrofitting common context capabilities into 11

existing healthcare applications. Only modest assumptions about the capabilities of these 12

applications and technology used to develop them are presumed. The CMA model is as 13

follows: 14

• All or part of the common context can be set by the user from any application for 15

which providing this capability is functionally relevant. 16

• When the user changes the context, the change is automatically communicated to all of 17

the applications that share the context. The applications are expected to apply the new 18

context in a clinically meaningful manner. In general, applications are also expected to 19

apply the context changes immediately. Exceptions are described below. 20

• An application may choose to defer applying a context change until some time in the 21

future. For example, an application that retrieves large medical image files (that 22

require substantial processing) might choose to not retrieve images each time a 23

different patient is selected as part of the clinical context. Instead, the application 24

might wait for an explicit directive or gesture from the user before actually retrieving 25

the image. An application that behaves in this manner must be sure that it does not 26

show data for an earlier context. Blanking-out its data displays or minimizing itself are 27

possible ways that this can be accomplished. 28

• An application for which a change in the context might result in the loss of work 29

performed by the user can request that the user explicitly decide whether to proceed 30

with the context change anyway, or to cancel the change. The solicitation of user input 31

is performed by the application that is being used to change the context. The 32

solicitation includes an identification of the application for which work might be lost 33

and a description of the work that might be lost. An application that behaves in this 34

manner is expected to be able to discard its work in progress and apply the context 35

changes if instructed to do so. For example, a medication ordering application might 36

 Context Management Specification, Technology and Subject-Independent Component Architecture

 28 Copyright 1999, Health Level Seven Version CM-1.0

indicate that the inputs for a medication order that has not yet been completed by the 1

user will be lost if the context is changed to a different patient. 2

• When an application is unable to respond to a context change, perhaps because the 3

user left it waiting for user input, the user is asked to explicitly decide about how to 4

proceed. The solicitation of user input is performed by the application that is being 5

used to change the context. The solicitation includes the identification of the non- 6

responsive application and indicates that the application cannot respond to a context 7

change. For patient safety reasons, when there are applications that cannot respond to 8

the changes, context changes will not be automatically applied to the applications that 9

share a common context. 10

• When it is not desirable or possible for context changes to be automatically applied, 11

either because there are applications for which work might be lost, or there are busy 12

applications that cannot be notified about context changes, the user can explicitly 13

interact with these applications to correct the situation, and then apply the context 14

changes. For example, the user might complete or terminate a dialog that was left open 15

in order to enable an application to apply the context changes. 16

• When it is not desirable or possible for context changes to be automatically applied, 17

the user can also decide to apply the context change only to the application that is 18

being used to change the context. The decision to do this is typically in response to an 19

interruption during which the user needs to momentarily divert her attention to a 20

different context for a specific application. The application is, in effect, disconnected 21

from the common context, and must clearly indicate this fact to the user in a visual 22

manner. The application can be subsequently instructed by the user to reconnect and 23

apply the common context. The common context may have changed between the time 24

the application was disconnected and the time it is reconnected to the common context. 25

 A high-level summary of the interactions between applications when a clinical patient context 26

is changed is illustrated below. Figure 5 illustrates the use case actors (i.e. external forces) 27

involved in a context change such as a patient selection. (The actors are the user plus 28

applications, all of which are represented in the Jacobson modeling technique as stick figures.) 29

Figure 6 through Figure 10 illustrate some possible instances of the Patient Selection Change 30

Use Case from the user’s perspective. Not all possible instances of this use case are provided. 31

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 29

Participates InParticipates In

Patient Selection Change

Chooses

Healthcare
Application

Healthcare
Application

Authorized User

 1

 Figure 5: Patient Selection Change Use Case 2

 3

 The initial condition for each of the use case instances is that the currently selected patient is 4

Jane Doe. In each instance, the user changes the common clinical context by selecting the 5

patient Sam Smith. Some possible alternative outcomes follow: 6

• Figure 6 illustrates all applications reacting to the context change by changing their 7

context to the patient “Sam Smith.” 8

• Figure 7 illustrates an application (Application DDD) conditionally accepting the 9

context change and providing information describing work that could be lost if a 10

context change occurs at this time. The user deciding to cancel the change is shown. 11

• Figure 8 illustrates a use case instance similar to Figure 7. However, the possible 12

outcome of the user deciding to force a context change within Application AAA while 13

the other applications remain with the original context is shown. This exemplifies 14

Application AAA disconnecting from the common context system. Once disconnected, 15

Application AAA’s context is no longer in synchrony with the other applications. 16

• Figure 9 illustrates healthcare application DDD not responding to a selection change 17

request in a timely fashion. The user deciding to cancel the change is shown. 18

• Figure 10 illustrates the user being notified of potential data loss if selection change 19

proceeds. The user accepting these consequences and proceeding with the change is 20

shown. 21

 Context Management Specification, Technology and Subject-Independent Component Architecture

 30 Copyright 1999, Health Level Seven Version CM-1.0

select "Sam Smith"

User Application AAA Application BBB Application CCC Application DDD

I choose "Sam Smith"

Selected patient is "Jane Doe"

select "Sam Smith"

select "Sam Smith"

change to
"Sam Smith"

change to
"Sam Smith"

change to
"Sam Smith"

 "Sam Smith"

Selected patient is "Sam Smith"

change to
"Sam Smith"

 1

 Figure 6: Patient Context Automatically Changes within all Context Participant Applications 2

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 31

cancel selection

User Application AAA Application BBB Application CCC Application DDD

Selected patient is "Jane Doe"

I choose "Sam Smith"
select "Sam Smith"

can I change
selection?

select "Sam Smith"

can I change
selection?

select "Sam Smith"

can I change
selection?

change accepted

change accepted

conditionally accept: "You could lose work."

Application DDD warns
"You could lose work."

Cancel selection

cancel selection

cancel selection

 Selected patient remains "Jane Doe"

 1

 Figure 7: User Informed of Potential Data Loss and Cancels Context Change 2

 Context Management Specification, Technology and Subject-Independent Component Architecture

 32 Copyright 1999, Health Level Seven Version CM-1.0

cancel selection

User Application AAA Application BBB Application CCC Application DDD

Selected patient is "Jane Doe"

 Selected patient is "Jane Doe"

I choose "Sam Smith"

Application DDD warns
"You could lose work."

Apply only to
AAA

select "Sam Smith"

can I change
selection?

change accepted

cancel selection

select "Sam Smith"

can I change
selection?

change accepted

cancel selection

select "Sam Smith"

can I change
selection?

conditionally accepted: "You could lose work."

Selected patient
is "Sam Smith"

"Sam Smith"

 1

 Figure 8: User forces Application AAA to Become Out of Synchrony with other Context Participants 2

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 33

cancel selection

User Application AAA Application BBB Application CCC Application DDD

Selected patient is "Jane Doe"

 Selected patient is "Jane Doe"

I choose "Sam Smith"

Application DDD
did not respond

to selection
change request.

Cancel selection

select "Sam Smith"

can I change
selection?

change accepted

cancel selection

select "Sam Smith"

can I change
selection?

change accepted

cancel selection

select "Sam Smith"

Application DDD
does not
respond to
selection
change request.

 1

 Figure 9: Context Participant Not Responding to Selection Change Request 2

 Context Management Specification, Technology and Subject-Independent Component Architecture

 34 Copyright 1999, Health Level Seven Version CM-1.0

select "Sam Smith"

User Application AAA Application BBB Application CCC Application DDD

Selected patient is "Jane Doe"

Selected patient is "Sam Smith"

I choose "Sam Smith"

Application DDD warns
"You could lose work."

Go ahead with selection change

select "Sam Smith"

can I change
selection?

change accepted

accept selection change

select "Sam Smith"

can I change
selection?

change accepted

accept selection change

can I
change

selection?

conditionally accept: "You could lose work."

accept selection change

 1

 Figure 10: User Accepts Consequences of going ahead with Patient Selection Change with all Applications 2

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 35

5.2 Context Management Responsibility 1

 There are two fundamental schemes for architecting the responsibility for context management: 2

• Distributed: The responsibility for managing the common context is uniformly 3

distributed among the applications. There is no central point of common context 4

management. 5

• Centralized: The responsibility for managing the common context is centralized in a 6

common facility that is responsible for coordinating the sharing of the context among 7

the applications. 8

 In the distributed model, applications must either all know about each other, or at least form a 9

completely connected graph within which each application knows at least one other 10

application. This is necessary in order for the applications to communicate context and control 11

data among themselves. 12

 Further, each application has the responsibility to act as a server for the common context in 13

addition to acting as a client of the context. This is to offset the fact that there is no central 14

point of ownership for the context, so each application must be capable of being an owner. 15

This may be elegant, but it does introduce implementation complexities and burdens on all 16

applications. 17

 In the centralized model, applications only need to know about a common service or resource. 18

This service off-loads from the applications much of the burden of maintaining and managing 19

the common context. While a centralized service represents a single point of failure and a 20

potential performance bottleneck, it is nevertheless the approach that is pursued in this 21

document. The primary reasons include: 22

• It is simpler from the perspective of the application developer. 23

• The consequence of the service being a single point of failure is offset by the fact that 24

the service and the applications it serves are typically co-resident on the same personal 25

computer. Failures, if any, will be localized to a single user. 26

• The consequence of the service being a performance bottleneck is offset by the fact 27

that the applications are far more likely to become the performance bottlenecks. 28

 Given this basic system structure, the approaches for the other major architectural issues are 29

summarized next. 30

 Context Management Specification, Technology and Subject-Independent Component Architecture

 36 Copyright 1999, Health Level Seven Version CM-1.0

5.3 Context Change Detection 1

 There are at least two distinct categories of architectural approaches for realizing a common 2

clinical context system: 3

• Pull-model: A shared component is used to maintain the shared context data. 4

Applications update this resource to change the data. Other applications periodically 5

poll the component to determine if the data has changed. 6

• Push-model: A shared component is used to maintain the shared context data. This 7

component notifies applications whenever the data is changed. In order to receive a 8

notification, an application must have first explicitly indicated its interest in being 9

notified. 10

 Both models have advantages and disadvantages. For example, the pull model is simpler to 11

implement (e.g., does not require applications to handle asynchronous notifications), but can 12

lead to performance problems due to polling even when the context data has not changed. 13

Conversely, the push model can be the basis for better performance, but introduces additional 14

implementation complexity. 15

 Both models introduce the additional challenges of synchronizing concurrent access to the 16

context data (e.g., to prevent two applications from attempting to change the data at the same 17

time). In addition, both models must deal with failures modes that can occur when independent 18

applications (i.e., applications that may be implemented as separate executables) are involved. 19

For example, an application that crashes in the middle of changing the context data may leave 20

the context data in an inconsistent state. 21

 Given this analysis, the approach that is taken for the CMA is perhaps best described as a 22

robust push-model. This is a push model that deals with synchronization and partial failure 23

issues. 24

5.4 Context Data Representation 25

 There are at least three distinct categories of architectural approaches for representing the 26

common context data: 27

• Fully-populated objects: Objects are defined with properties and methods that model 28

the real-world entities that they represent (e.g., a patient, a provider, etc.). These 29

objects may be complex and involve a rich structure (e.g., are comprised of a logical 30

network of objects). 31

• Fully-populated messages: Messages (as in “HL7 messages”) are used to convey 32

detailed information about the context data. 33

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 37

• Name-value pairs: A set of name-value pairs represent only key summary information 1

about the common context (e.g., just the patient’s name and medical record number). 2

The symbolic name for an item describes its meaning. The data types for the items 3

come from a set of simple primitive data types. 4

 The fully-populated object approach is perhaps the purest approach, but is subject to 5

performance concerns. Copies of the objects could be produced and then communicated to each 6

application every time the state of the primary copy changes. However, this involves the 7

performance cost of marshaling the objects. The problem is further compounded by the fact 8

that marshaling capability would need to be explicitly implemented in either CORBA or COM. 9

(Java RMI implicitly supports the capability to communicate objects by value.) 10

 The fully-populated message approach is actually a stylized way of marshaling objects. While 11

it is appealing to think of leveraging existing healthcare standards such as HL7, it is non-trivial 12

to implement the parsers and translators to create and interpret these messages. Even if such an 13

implementation was commercially available, it is not clear that it would be desirable to require 14

that all of the applications in a shared context system be able to support HL7 messages. 15

 The name-value pair approach represents the compromise that is pursued in this document. 16

Using simple primitive data types enables the values of the items to be easily communicated 17

between processes. Performance concerns are mitigated because an application will be able to 18

examine the values of only those items of interest in a single out-of-process access. (The 19

application simply indicates the names of the items whose values it is interested in.) The 20

approach is also readily extensible, as new items (i.e., new name-value pairs) can easily be 21

added to the set of items. 22

 All of the context data representation approaches described above are subject to establishing 23

semantic agreement about the meaning of the data. This is true whether the context data is 24

represented as objects, messages, or name-value pairs. The process for establishing this 25

agreement is beyond the scope of the CMA, and is instead specified in a series of HL7 context 26

management subject-specific data definition documents. These data definitions are key to 27

implementing a plug-and-play common clinical context system. 28

5.5 Context Data Access 29

 Any common context architecture must provide a way for an application that has just started 30

to obtain its initial view of the common context. The pull-model implicitly solves this problem. 31

With the push-model, there are two basic approaches: 32

• When the application joins the common context system, the necessary data is pushed 33

to it. 34

 Context Management Specification, Technology and Subject-Independent Component Architecture

 38 Copyright 1999, Health Level Seven Version CM-1.0

• The data can be accessed from a well-known location, such as a file, or from the 1

component that is responsible for pushing changes to the context system participants. 2

This is, in effect, a specialized use of the pull-scheme. 3

 The approach to this problem is linked to the approach by which applications access the 4

context data for updating it, and the approach by which applications obtain the values for the 5

context data when it has changed. 6

 The options are straightforward: 7

• Each application maintains a copy of the context data. As changes occur, each 8

application updates its local copy accordingly. 9

• A central “authentic” copy of the context data is maintained. Context data updates are 10

directed by applications to this copy. Applications access this copy in order to inspect 11

changes. 12

 The approach in which each application maintains its own copy of the context data has an 13

elegance to it. However, in the absence of an authentic copy, an application that has gotten out 14

of synchrony with its peers may have a difficult time restoring its notion of the common 15

context. Further, the communication costs of keeping all applications in synchrony can become 16

significant, particularly as the complexity and size of the common context increases over time 17

as additional common context items are defined. 18

 The approach that is taken for the CMA is to maintain a single authentic copy of the common 19

context for each common context system. Applications can choose to cache context data or 20

they can simply access the authentic copy whenever they need to. Applications can also 21

selectively read or write specific context data name-value pairs. Further, when the context 22

changes, an application is only informed about the change and is not provided with the data 23

that has changed. The application can selectively access this data when it needs to. 24

 This approach was chosen as a balance between performance and complexity. Performance 25

issues are addressed by enabling applications to have selective access to context data. 26

Complexity issues are addressed by not forcing applications to maintain their own copy of the 27

common context data. 28

5.6 Context Data Interpretation 29

 In order for applications to apply common context data in a clinically consistent manner, they 30

must interpret the meaning of the data in a uniform manner. With context items represented as 31

name-value pairs, applications must be able to uniformly interpret both the meaning of the 32

name and the value of a context item, or determine that it cannot correctly interpret the item. 33

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 39

 Context data items logically represent two categories of information: data that identifies a real- 1

world entity or concept (such as a specific patient or a specific encounter), and data that can be 2

used to corroborate the identity data. Identity information is required in order to establish a 3

common context between applications that involves a real-world entity or concept. 4

Corroborating data can be used by applications and/or users as a basis for checking further 5

that the identified entity or concept is what was expected. 6

 For example, a patient’s name can rarely be used to uniquely identify a patient. Typically, a 7

medical record number or similar identifier that is generally unique over some population of 8

patients for one or more clinical systems is used. However, these identifiers are rarely 9

meaningful to the user. Corroborating data might be comprised of the patient’s name, sex, and 10

data of birth. This data provides applications and/or the user with an additional means to check 11

that the identified patient is the intended patient. 12

 The clinical context is considered to have changed in a meaningful manner when identifier data 13

is set. Applications are notified of changes to the context when identifier data, and possibly 14

corroboration data, are set. Changes to corroboration data that are not accompanied by 15

associated changes to identifier data are not meaningful and are rejected. 16

5.6.1 Establishing the Meaning of Context Data Item Names 17

 Given this approach of organizing context data items into identity and corroborating data, there 18

are two basic techniques for establishing the meaning of context item names: 19

• Apply a Context Management-specific information modeling process to identify and 20

define candidate clinical context item names and meanings. 21

• Leverage names and their meaning as established by existing healthcare standards, 22

such as the HL7 messaging standard. 23

 The approach that is taken for the CMA is that existing HL7 messaging terms and their 24

meaning will be used as the default source for clinical context item names. New item names 25

and associated meanings will be created only when the HL7 messaging standard is not 26

applicable. The standard set of clinical context data context item names are specified in 27

separate HL7 context management data definition specification documents. Only the specified 28

set of context data items shall be implemented by conformant systems. 29

 The reason for this approach is that the value-added for HL7 context management is not in 30

defining clinical content, but rather in enabling new forms of clinically-rooted desktop-based 31

interoperability between independently-developed healthcare applications. There is little 32

incentive to create new information models and develop new clinical concepts when there are 33

existing concepts, such as those already specified for HL7 messaging, which can be leveraged. 34

 Context Management Specification, Technology and Subject-Independent Component Architecture

 40 Copyright 1999, Health Level Seven Version CM-1.0

5.6.2 Establishing the Meaning of Context Data Item Values 1

 The abstract data types used to represent context data item values will also be leveraged from 2

the HL7 messaging standard. These types may be represented as strings encoded using a 3

simple subset of the HL7 character encoding rules. These types may also be mapped into 4

convenient technology-specific data types. The actual clinical context data context item data 5

types are specified in the HL7 context management data definition specification documents. 6

 There are two basic approaches for establishing the meaning of context item values: 7

• Assume that each item has a value that can be globally interpreted by all of the 8

applications that share a common clinical context. 9

• Provide multiple values for each item name such that each value represents that same 10

real-world entity or concept. Each application can apply the value it understands. 11

 In some cases, it is safe to assume that a context item’s value can be globally interpreted by all 12

applications. For example, if a patient’s date of birth is defined to be a corroborating context 13

data item, the value of this item has a single global interpretation. 14

5.6.3 Representing Context Subjects That Cannot Be Uniquely Identified 15

 Unfortunately, it is not possible to assume that all context subjects, such as patients, can be 16

identified using globally unique identifier values. For example, a patient cannot necessarily be 17

globally identified using a single identifier, such as a medical record number. 18

 However, in these cases, there may be multiple synonymous identifier values, each of which is 19

pertinent to a subset of the applications that share a common context. For example, a hospital 20

and its affiliated clinics may assign their own medical record numbers to the same patient 21

population. Applications, such as master patient index systems, enable tracking and mapping 22

between these values. The result is multiple distinct values that identify the same patient. 23

 It is not the purview of the CMA to resolve global identification issues. It is within the scope of 24

the CMA to at least recognize that multiple identifier values may be necessary. Therefore, the 25

approach taken in this document is to support multiple identifier values for context items when 26

necessary. 27

 An item that can have multiple values is actually represented as multiple items that have a 28

common name prefix but use a distinct name suffix. The prefix for an item, and the constraints 29

on values for the suffix, is defined in the HL7 context management subject-specific data 30

definition specification document within which the item is defined. The suffixes are configured 31

into an application using an application-specific process when the application is installed at a 32

site. 33

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 41

 The values for such items are provided either by an application when it changes the clinical 1

context, or by an external mapping agent. (See Chapter 8, Mapping Agent.) 2

 Immediately following the item subject label is a short string that indicates the role of the item 3

in terms of whether it represents identifier data or corroborating data. The string “id” shall 4

indicate the role of identifier data. The string “co” shall indicate the role of corroborating data. 5

5.6.4 Context Subjects and Item Name Format 6

 All context items are organized by subject. Each subject represents a real-world entity or 7

concept that is identified as part of the overall common clinical context. 8

 Standard subject labels are defined in the HL7 context management subject-specific data 9

definition specification documents. The labels comprise the first part of each context data item 10

name. Examples of possible subject labels are “Patient” and “User”. Item name elements are 11

separated by a period (.) and shall only be comprised of alphanumeric characters and the 12

underscore (_) character. An item name element shall not include white space characters. 13

 The general format of a context data item name is: 14

 Item_subject_label.role.item_name_prefix.optional_item_name_suffix 15

 Examples of the name format for possible context data items is shown below. The name for the 16

items that represent a patient’s medical record numbers (MRN) for both a hospital and its 17

affiliated clinic (assuming that they use different medical record numbers): 18

 “Patient.Id.MRN.St_Elsewhere_Hospital” 19

 20

“Patient.Id.MRN.St_Elsewhere_Clinic” 21

 The name for an item that represents a patient’s date of birth might be: 22

 “Patient.co.date_of_birth” 23

 The actual subject labels, item names, and rules for generating an item name suffix are 24

specified in each the HL7 context management subject-specific data definition specification 25

documents. 26

5.6.5 Standard Context Data Items 27

 Each of the standard HL7 CMA subjects and associated context data items are defined in a 28

corresponding HL7 context management subject-specific data definition specification 29

document. This includes the two core subjects, patient, and user, and their respective context 30

data items. 31

 Context Management Specification, Technology and Subject-Independent Component Architecture

 42 Copyright 1999, Health Level Seven Version CM-1.0

5.6.6 Non-Standard Context Data Items 1

 Organizations, such as healthcare provider institutions and vendors, may define their own 2

context data items. These items are in addition to the standard items defined for the standard 3

subjects. 4

 The names for such items shall only use the item role denoted by the string “zz” 2. This makes 5

it simple to distinguish standard and non-standard context data items. Non-standard items do 6

not have a formal role as identifier data nor corroborating data. It is not possible to indicate in 7

an item’s name as to whether it is an identifier or corroborating data. Instead, the meaning of 8

the data depends upon the conventions established by the defining organization. 9

 The item name prefix for a non-standard item can be the same as a standard item name prefix, 10

although this approach is discouraged because it can be confusing. An organization should 11

choose item name prefixes that are different from the standard item name prefixes. 12

 Each such item shall always include an organizationally-defined suffix. This suffix shall denote 13

the organization that defined the non-standard item. It can be the case that non-standard items 14

defined by multiple different organizations will be part of the same system’s context data set. 15

To prevent conflicts among data item names, an organization is encouraged to choose a suffix 16

that is unlikely to be the same as a suffix defined by another organization. 17

 The assignment, format, and content of this suffix is not currently managed or specified by 18

HL7. In the future, HL7 will assign identifiers, per ISO/IEC 8824:1990(E) clause 28, that 19

enable an organization to have a unique suffix or set of suffixes. Organizations that choose to 20

use such an identifier will be guaranteed that their identifier is unique. 21

 An example of a non-standard item representing the next of kin for a patient is: 22

 “Patient.zz.next_of_kin.Galaxy_Medical_Systems” 23

 Organizations that define and/or use non-standard items should do so with the understanding 24

that applications that use these items may not easily interoperate with applications that do not 25

use the items. However, the definition of non-standard context data items can be an expedient 26

for implementing context management systems with specific, extended, capabilities. 27

Nevertheless, organizations are encouraged to work with HL7 to define new standard context 28

data items and subjects, and limit the use of non-standard items to interim solutions. 29

 2 The use of “zz” is motivated by the HL7 2.3 Data Interchange specification, in which Z segments
represent non-standard message segments.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 43

5.6.7 Representing “Null” Item Values 1

 The value of a context identifier item or corroborating data item can be set to the distinguished 2

value of null to indicate that the item does not have a valid value. This capability provides a 3

means for an application to explicitly indicate it has not set a valid value for a particular 4

context item. For example, setting the value of the identifier whose name is: 5

 “Patient.Id.MRN.St_Elsewhere_Hospital” 6

 to null indicates that the application has not set a valid value for this identifier. 7

 The actual representation of null is technology-dependent and is specified in each of the HL7 8

context management technology mapping specification documents. 9

5.6.8 Representing an Empty Context Subject 10

 A context subject is empty when a real-world entity or concept is not currently identified. For 11

example, for the patient subject, this means that a patient is not currently identified. 12

 An empty context subject is represented in either of two ways: 13

• There are no context identifier items. 14

• There are context identifier items, but the values for all of these items are null. 15

 The initial state for all subjects in the context is that they do not contain any identifier items. 16

See Section 7.6, Context Change Transactions. An application can explicitly establish an 17

empty context. See Section 7.10.3, Application Behavior with Regard to an Empty Context. 18

5.6.9 Case Sensitivity with Regard to Item Names and Item Values 19

 Context item names are case insensitive. This means that case is not to be used for the 20

purposes of comparing names. Further, the case used to represent the same item name can be 21

different for different applications, and the case used to represent a particular item’s name at 22

one time need not necessarily be the same at a later time. For example, the item names: 23

 “Patient.Id.MRN.St_Elsewhere_Hospital” 24

 “patient.id.mrn.st_elsewhere_hospital” 25

 “PATIENT.ID.MRN.ST_ELSEWHERE_HOSPITAL” 26

 are all equivalent. 27

 Context Management Specification, Technology and Subject-Independent Component Architecture

 44 Copyright 1999, Health Level Seven Version CM-1.0

 A context item whose value is represented as a character string is also case insensitive, unless 1

otherwise noted in the HL7 context management subject-specific data definition specification 2

document that defines the item. 3

 However, for consistency with the situations in which item values are case sensitive, the case 4

used to represent the value for a particular item is preserved once the value has been set. The 5

casing for the item’s value is maintained until a different value is subsequently established for 6

the item. 7

 For example, the following flow of events is allowed: 8

1. An application sets the value of “Patient.Id.MRN.St_Elsewhere_Hospital” to 9

“RS779238XZW”. 10

2. An application gets the value of “Patient.Id.MRN.St_Elsewhere_Hospital” as 11

“RS779238XZW”. 12

3. An application sets the value of “Patient.Id.MRN.St_Elsewhere_Hospital” to 13

“AS119292RUH”. 14

4. An application gets the value of “Patient.Id.MRN.St_Elsewhere_Hospital” as 15

“AS119292RUH”. 16

5. An application sets the value of “Patient.Id.MRN.St_Elsewhere_Hospital” to 17

“rs779238xzw”. 18

6. An application gets the value of “Patient.Id.MRN.St_Elsewhere_Hospital” as 19

“rs779238xzw”. 20

 The following flow of events is not allowed: 21

7. An application sets the value of “Patient.Id.MRN.St_Elsewhere_Hospital” to 22

“RS779238XZW”. 23

8. An application gets the value of “Patient.Id.MRN.St_Elsewhere_Hospital” as 24

“rs779238xzw”. 25

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 45

 1

 Context Management Specification, Technology and Subject-Independent Component Architecture

 46 Copyright 1999, Health Level Seven Version CM-1.0

6 Component Model 1

 The architecture for a common clinical context system is described in terms of components and 2

the interfaces they must implement in order to be participants in the system. Only the 3

components and interfaces that are germane to the establishment and maintenance of a 4

common clinical context for a clinical desktop are described. 5

 A role is described for each component, and the policies that govern the intended use of the 6

interfaces are detailed. These policies can be thought of as the patterns of allowed interactions 7

between components. Both normal and exceptional interactions are described. 8

 The key components in a common clinical context system are a clinical context manager, one 9

or more context participant applications, and an optional mapping agent for each context 10

subject. 11

 The context manager coordinates the applications each time there is a context change. It is also 12

the “owner” of the authentic context for the system. The context participant applications set 13

and/or get the context from the context manager. They must follow the policies established 14

later in this document in order to behave as proper context management “citizens.” 15

 A mapping agent is a service component that from the perspective of an application is a 16

transparent participant in a context change. A mapping agent’s primary role is to add 17

additional subject-specific context identifier items to the context data. This is useful when a 18

subject is known to the various context participant applications via multiple distinct identifiers, 19

but only one or a few of these identifiers are known to the application that sets the context. 20

 Additional context management components are also defined, but serve in supporting roles. All 21

of the necessary components are detailed later in this document. 22

 The context manager does not need to know about the functionality or specific features 23

implemented by any of the applications. Conversely, all applications perceive the context 24

manager through a uniform set of interfaces and capabilities. Further, the applications do not 25

need to know about each other in order to participate in the same context system. Finally, a 26

mapping agent is transparent to applications, as it interacts only with the context manager. 27

 Applications and the context management components can all be independently implemented 28

and still interoperate as long as they comply with the CMA specification. The CMA 29

specification is in turn predicated upon an underlying component model, described next. 30

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 47

6.1 Component and Interface Concepts 1

 The clinical context manager and the applications that participate in a common context system 2

are modeled in the architecture as components. The component model that is used is a high- 3

level hybrid of the component models defined by Microsoft for its Component Object Model 4

(COM) and by the Object Management Group for its Object Management Architecture 5

(OMA). 6

6.1.1 Interfaces and References 7

 In the hybrid model, components have one or more formally-defined object-oriented interfaces. 8

Each interface defines a semantically related set of operations (methods) that the component is 9

capable of performing. The interfaces implemented by a component represent the only way that 10

other components can interact with it. Each interface is denoted by a reference that can be 11

resolved at run-time to access the component instance that implements the interface. 12

 Each method has a name and a set of inputs, outputs, and exceptions. The inputs enable a 13

component’s clients to parameterize the behavior of the method each time they request that it 14

be performed. The outputs enable the component to convey to a client the results that pertain to 15

having properly performed the method. The exceptions enable the component to convey to a 16

client the fact that something unexpected was encountered during the course of performing the 17

method (such as an error condition). A method completes by returning outputs or by raising 18

exceptions. Methods need not have inputs, outputs, or exceptions. 19

 The methods defined for an interface are invoked using a binary calling sequence. This means 20

that the component that issued the call does not need to be aware of how the component that 21

services the call is implemented. The components might be implemented using different tools 22

and libraries, and even different programming languages. Further, components can interact 23

with each other in a location independent manner. A component only needs a reference to 24

another component’s interface to perform calls against the component. Knowledge of the 25

physical location of a component that services a call is not needed. 26

6.1.2 Interface Interrogation 27

 The interfaces that a component implements can be determined by other components at run- 28

time through direct interrogation. The interrogator uses the symbolic name of the interface, or 29

an identifier that denotes the interface, to indicate the desired interface. If the interface exists, 30

the component being interrogated returns a reference to the interface. Otherwise an error 31

indication is returned. 32

 It is assumed that all of the interfaces defined in this document include a common method that 33

enables interface interrogation. The name and signature for this method is the same for all 34

components implemented using a particular technology. The details of this method vary for 35

different implementation technologies and are not specified in this architecture document. 36

 Context Management Specification, Technology and Subject-Independent Component Architecture

 48 Copyright 1999, Health Level Seven Version CM-1.0

6.1.3 Principal Interface 1

 Every component implements at least one well-known interface, referred to as the component’s 2

principal interface. The principal interface includes the same interface interrogation method as 3

a component’s other interfaces. The name of the principal interface is the same for all 4

components implemented using a particular technology. The principal interface enables 5

components to perform initial interface interrogations because the name of the principal 6

interface is known a priori, and because all components implement it. 7

 The details of the principal interface and the methods that it supports vary for different 8

implementation technologies and are not specified in this architecture document. 9

6.1.4 Interface Reference Registry 10

 An interface reference registry is a service that contains references to component interfaces. 11

Components can use the registry to obtain interface references to each other. A reference can 12

be used to access a component via the referenced interface. Each reference is denoted in the 13

registry by a symbolic name and/or description. This enables components to locate references 14

of interest based upon a symbolic and/or logical description of the reference of interest. 15

 It is assumed that an interface reference registry is provided by the underlying implementation 16

technology. The means by which interface references are denoted and placed into the registry, 17

and the means by which components access the registry to retrieve the references, are 18

technology-dependent. 19

 The registry is assumed to be a well-known service that logically resides on each clinical 20

desktop. This means that each component on a desktop has an a priori technology-specific 21

means for knowing how to locate the desktop’s registry. This provides all components on a 22

desktop with a common means to obtain references to each other. 23

6.1.5 Interface Reference Management 24

 To ensure orderly system behavior, components must have a means of knowing whether or not 25

other components possess references to any of its interfaces. This enables a component to 26

determine when it needs to be in a running state (because there is at least one other component 27

that possess a reference), and when it can terminate (because no components possess a 28

reference). The means by which this is accomplished is technology-specific. 29

 It is assumed that each component that holds an interface reference performs an implicit or 30

explicit action, which is technology specific, that indicates it wants to use a particular interface 31

reference that it has obtained (e.g., from the interface reference registry). It is also assumed 32

that a component performs an implicit or explicit action, which is technology-specific, when it 33

no longer intends to use a particular reference. The latter action is referred to as disposing an 34

interface reference. 35

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 49

 1

 Context Management Specification, Technology and Subject-Independent Component Architecture

 50 Copyright 1999, Health Level Seven Version CM-1.0

7 Patient Link Theory of Operation 1

 Patient Link enables the user to select a patient once, from any Patient Link-enabled application, as the 2

means for automatically “tuning” all of the Patient Link-enabled applications in the common context 3

system to the same patient. 4

 Patient Link also establishes the foundation for all other context management “links”. For this reason, 5

many of the fundamental CMA principles and rules are explained in this chapter, but are framed in 6

terms of Patient Link so as not to become too abstract, and therefore hard to understand. 7

7.1 Patient Link Component Architecture 8

 The following context management interfaces for Patient Link are modeled and illustrated in Figure 11: 9

Patient Link Component Architecture: 10

• Context Manager (CM) - implemented by the context; used by applications to join/leave a 11

common context system and to indicate the start/end of a set of changes to the common context 12

data. 13

• Context Data (CD) - implemented by the context manager; used by applications to set/get the 14

data items that comprise the common context. 15

• Context Participant (CP) - implemented by an application that wants to participate in a 16

common context system; used by the context manager to inform an application that the context 17

has been set. 18

• Implementation Information (II) – implemented by the context manager and mapping agent; 19

used by applications, context management components, and tools, to obtain details about a 20

component’s implementation, including its revision, when it was installed, etc. 21

 Formal definitions of these interfaces, as well as example interactions between the components via 22

these interfaces, are presented later in this document. 23

 24

 25

 26

 27

 28

 29

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 51

 1

 Figure 11: Patient Link Component Architecture 2

7.2 Patient Subject 3

 The context subject of Patient is defined for Patient Link. The context data identifier item for this 4

subject is an aplhanumeric patient identifier, such as a medical record number. The patient’s name is 5

not used as an identifier. 6

 This identifier is unlikely to be universally unique. However, it is assumed that a population of patients 7

across which the identifier is unique can be established. Each such population is referred to as a site, as 8

it is typical that each population of patients corresponds to a physical site within an overall healthcare 9

institution. 10

 Consequently, a single patient may be identified using multiple patient subject identifier items. Each 11

item is differentiated by a different site-specific suffix. An application shall be configurable such that it 12

can be instructed on-site as to which suffix (of suffices) it is to use when it interacts with the context 13

manager to set or get patient context data. 14

 The format of a patient subject identifier item name includes a site-specific suffix. Use of this suffix, 15

and the values that may be assigned to this suffix, is at the discretion of each healthcare institution at 16

which a context management system is deployed. 17

CP CP

Application #1
Implementation

CM CD

Context Manager
Implementation

Common
Context
Data

Optional Patient Mapping
Agent Implementation

MA

II

II

Tool, etc.

Tool, etc.

Application #N
Implementation

 Context Management Specification, Technology and Subject-Independent Component Architecture

 52 Copyright 1999, Health Level Seven Version CM-1.0

 In addition to identifier items, the patient subject also supports corroborating data items. The actual 1

names, meaning, and data types used to represent the values for both patient subject identifier items 2

and corroborating data items are defined in the document Health Level-Seven Standard Context 3

Management Specification, Data Definition: Patient Subject. 4

 An example of a patient subject identifier item appears below: 5

 Patient Subject Identifier Item

 Example Item Name Format: Example Item Name: Example Item Value:

 Patient.Id.MRN.site_name Patient.Id.MRN.St_Elsewhere_Hospital RAS1958-12939213-122

 6

7.3 Patient Mapping Agent 7

 An optional patient mapping agent is also part of the common context system. The patient mapping 8

agent maps the identifiers for patients. Whenever an application sets the patient context, the context 9

manager instructs the patient mapping agent (if present) to provide any additional identifiers it knows 10

for the patient. The site-suffix for each of the mapped identifier items denotes the site for which the 11

patient identifier is valid, for example: 12

 Patient Subject Identifier Item

 Examples Item Names: Example Item Values:

 Patient.Id.MRN.St_Elsewhere_Hospital

Patient.Id.MRN.General_Hospital

 123-456-789Q36

6668-3923-987122

 13

 Mapping agents are described in more detail in Chapter 8. 14

7.4 Context Change Transactions 15

 All changes to the common context are governed by a context change transaction that is initiated by an 16

application but is coordinated by the context manager: 17

• An instigating application initiates a context change transaction and sets the patient context 18

within the context manager. This context contains the identity of the patient. 19

• The context manager consults the patient mapping agent (if present) and it adds data to the 20

context manager’s patient context. This data includes additional identifiers by which the 21

patient is known. 22

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 53

• The context manager surveys the other applications, and if the transaction completes, they 1

obtain pertinent patient context data from the context manager. 2

 The high-level events that transpire when a user selects a patient are summarized in Figure 12. This 3

description assumes that a patient mapping agent is present. The patient mapping agent is presumed to 4

know the identifiers for all patients for all applications within the common context system. (See 5

Chapter 8, Mapping Agents.) 6

 Figure 12: Patient Link Context Change Process 7

 8

 The details for how this process works and the responsibilities of the applications and CMA 9

components are described next. 10

7.5 Joining the Common Context System 11

 Applications join a common context system via the context manager for the system. The context 12

manager’s ContextManager interface is used for this purpose. The application obtains a reference to 13

this interface by interrogating the context manager’s principal interface. A reference to the context 14

manager’s principal interface is obtained from the desktop’s interface reference registry. 15

 An application typically retrieves the current common context data from the context manager’s 16

ContextData interface in order to establish its initial context. A reference to the context manager’s 17

ContextData interface is obtained by interrogating the context manager’s principal interface or by 18

interrogating the context manager’s ContextManager interface. The context data is represented as a set 19

of name-value pair items. 20

Application
XX

(1) User selects
the patient of
interest from
any application
on the clinical
desktop

Context
Manager

Application
YY

Application
ZZ

(4) Context manager tells the other applications that a new
patient context has been proposed. The context manager
surveys the applications to determine whether each can
apply the new context.
(7) Context manager tells each application to apply new
context, or that the transaction has been cancelled.

(5) Each application indicates
whether or not it can apply the new
context.

(2) Application tells the context manager to start
a context change transaction and sets the context
data to indicate the newly selected patient.

(6) If one or more of the applications
cannot or prefers not to apply the new
context, the user is asked to decided
whether to continue, or cancel.

Patient
Mapping
Agent
(Optional)

(3) Context manager tells patient
mapping agent that context change is
occurring; mapping agent supplies the
context manager with other identifers by
which the patient is known.

(8) Each application applies the new
context if instructed to do so by the
context manager. Each application
gets the new patient context from the
context manager.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 54 Copyright 1999, Health Level Seven Version CM-1.0

7.6 Context Change Transactions 1

 Once it is a participant within a common context system, the context will inform the application of 2

context data changes through the application’s ContextParticipant interface. This data can be set by 3

any of the participants in the common context system. A participant executes a context change 4

transaction to effect a context change. The transaction is coordinated by the context manager and 5

involves the instigator of the transaction as well as the other participants. 6

 The ContextManager interface is for beginning and ending a context change transaction. The 7

ContextData interface is used for setting the new context data. 8

 When a context change transaction is started, the context manager creates a transaction-specific 9

version of the context data. This version of the context data is initially empty and does not contain any 10

name-value pair items. This is to prevent data from the current context from becoming mixed with the 11

data for the new context. Items are added to the transaction-specific context data during the course of 12

the transaction. 13

 This version of the context data is updated during the course of the transaction and is intended to be 14

visible only to the application that instigated the transaction. All other applications continue to view the 15

context data as it was when most recently published. The published context data is replaced with the 16

context data set during the course of the transaction when the transaction completes successfully. 17

 Prior to the first context change transaction, the published set of context data items is empty. Items are 18

added during the course of subsequent transactions. 19

 While the context manager serves as a holder for the current context data, its semantic understanding 20

of the meaning of this data is intended to be minimal. Further, the specific items that constitute the 21

context data are not assumed to be hardwired into the context manager implementation. This enables 22

new context items to be defined over time without requiring changes to context manager 23

implementations. This includes context items that represent identifier data as well as corroboration 24

data. 25

 Only one context change transaction is allowed at a time. Once it has started a change transaction, the 26

instigator of the transaction is free to update the context data via the context manager’s ContextData 27

interface. 28

7.7 Transactional Consistency 29

 In order to ensure that changes to this set of items are self-consistent, a participant must explicitly 30

begin and end a context data change transaction. All of the context change operations that are 31

performed within the scope of the transaction are treated as a single logical unit of work. When the 32

transaction completes, either all of the changes are published, or none of them are. Other participants 33

that access the ContextData interface to read the context data values will see the values as they were 34

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 55

prior to the transaction. Only the instigator of the transaction will see the values as they are during the 1

course of the transaction. This prevents other participants from accidentally seeing inconsistent values. 2

 This capability relies upon the proper use of context coupons, which are monotonically increasing 3

identifiers that are assigned each time a change transaction begins. The context manager provides the 4

instigator of a transaction with the context coupon when it is started. All other participants can only 5

obtain from the context manager the coupon for the most recently committed transaction. A coupon is 6

also provided as a parameter to most of the methods defined for the ContextData interface, thereby 7

enabling the manager to determine whether it should respond in terms of the transaction-in-progress or 8

the most recently committed transaction. 9

 When the instigator of the context changes is done, it informs the context that the changes have been 10

completed. A context manager may unilaterally decide to terminate a transaction and undo the changes 11

if an application fails to indicate that it is done with its changes in a timely manner. (The context 12

manager decides how long “timely” is. How this value is determined is an implementation decision.) 13

7.8 Context Change Notification Process 14

 When the instigator completes the context changes, the context manager initiates a two-step change 15

notification process wherein it determines whether to publish the shared context data changes. This 16

process is inspired by the two-phase commit protocol used in many database systems to ensure 17

transaction consistency. For the purposes of managing a common clinical context, the protocol has 18

been simplified. 19

 In the first step of the process, the context manager surveys the applications. Each application is 20

informed that there are a candidate set of context data changes and is asked to indicate whether it can 21

accept these changes. At this point, applications are provided with the context coupon value for this 22

change transaction. This enables the applications to access the context data changes in order to 23

consider specific data values as part of their decision about whether to accept the changes. This is 24

accomplished via the context manager’s ContextData interface. It is possible for a participant to obtain 25

just the values for the subjects that have been set. 26

 The context manager gathers the results of the survey and provides them to the application that 27

instigated the context change. Depending upon the survey responses the application may be free to go 28

ahead and publish the changes, or it may need to solicit guidance from the user about how to proceed. 29

This guidance is required when there is at least one surveyed application that: 30

• is unable to apply the context change because it is blocked (e.g., it is a single threaded 31

application that has a modal dialog open); these applications are referred to as “busy” 32

• might lose work performed by the user if it applies the context changes (e.g., the user was in 33

the process of entering data that would not be applicable in the new context); these applications 34

are referred to as having “conditionally accepted” the context changes. 35

 Context Management Specification, Technology and Subject-Independent Component Architecture

 56 Copyright 1999, Health Level Seven Version CM-1.0

 For each application in one of these states, the user is provided with a description that identifies the 1

application and explains its situation. 2

 When user guidance is required, the following choices are offered: 3

• Cancel - the context change is canceled; the context changes are not published. 4

• Break Link - the context changes are applied just to the application with which the user 5

initiated the context changes. This application essentially breaks away from the common 6

context system until the user explicitly instructs the application to rejoin the system. The 7

application that has broken away displays a distinct visual cue indicating that its context may 8

be different from the other applications (e.g., it might display a warning message in a 9

prominent location)3. 10

• Apply - the context data changes are applied to all of the applications, including those that 11

indicated that they might loose work performed by the user; this choice is allowed only when 12

there are no busy applications. 13

 It is the responsibility of any application that enables the user to instigate a context change to present, 14

when necessary, a dialog that obtains the user’s guidance as described above. The appearance of the 15

dialog and the commands that the user can choose from are specified in each of the HL7 context 16

management technology-specific user interface specification documents. This will ensure a consistent 17

and familiar set of interactions for users across CMA-conformant applications. 18

 The ability for any one application to require the user’s direct involvement in mediating context 19

changes provides an important efficiency and safety feature. 20

 The efficiency feature addresses the fact that changing the context may cause an application to loose 21

work performed by the user. This work may be in the form of data entered but not yet saved by the 22

user, or may be in the form of an expensive computation (such as a lengthy database retrieval) that 23

would need to be re-performed in light of a context change. Allowing the user to decide how to proceed 24

in these circumstances minimizes the likelihood that the user will unintentionally loose work. 25

 The safety feature addresses the fact that it may not always be possible to force an application to 26

accept changes to the context data. Specifically, this is the case for blocked, or busy, applications. 27

 If context changes were automatically applied piecemeal to just the applications that could respond, 28

applications could become out of synchrony with regard to their clinical context, without the user being 29

aware of the situation. For example, the user might assume that after a context change, all of the 30

applications are displaying data for the same patient when in fact they are displaying data for different 31

 3 A specific visual cue will be recommended within each of the HL7 context management technology-specific
user interface specification documents.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 57

patients. The approach described above avoids this problem. This is because the only time that an 1

application can become out of synchrony with regard to the clinical context used by the other 2

applications is when the user has explicitly instructed it to break away. 3

 In the second step of the two-step change notification process, the applications in the common context 4

system are informed about whether or not the context changes are to be applied. If all of the surveyed 5

applications indicate that they accept the changes, then the changes are applied and are reflected as the 6

new context state. If the user indicates that the changes should be canceled, then the changes are 7

discarded. 8

 Once a participant has been informed that the context data has been set, it is free to inspect the data to 9

obtain the new values if it has not already done so (again, using the context manager’s ContextData 10

interface). The participants can also assume that all of the other participants are applying the same 11

context data. 12

 In either case, the context change transaction completes when all of the applications have been 13

informed of the outcome of the survey. If the context manager is unable to inform an application of the 14

survey outcome, it will keep trying periodically, unless the manager determines that the application has 15

terminated. The periodic attempt to notify a non-responsive application does not prevent the transaction 16

from completing, nor will it prevent a new transaction from being started. 17

7.9 Leaving a Common Context System 18

 When an application terminates, it explicitly leaves the common context system by informing the 19

context manager via its ContextManager interface. At this time, the context manager shall dispose of 20

any application interface references that it possesses, and the application shall dispose of any context 21

manager interface references that it possesses. 22

 A diagram of the overall common context system model is presented in Figure 13, followed by 23

component interaction diagrams that represent typical common context data update transactions. 24

7.10 Behavioral Details 25

7.10.1 Application Behavior When it Cannot Cancel Context Changes 26

 It is possible that an application that instigated a context change transaction cannot easily implement 27

the capability to cancel the transaction. In this case, it is acceptable for the application to not offer 28

canceling the transaction as an option to the user. The details of how this appears to the user are 29

specified in each of the HL7 context management technology-specific user interface specification 30

documents. 31

 Context Management Specification, Technology and Subject-Independent Component Architecture

 58 Copyright 1999, Health Level Seven Version CM-1.0

7.10.2 Application Behavior When it Does Not Understand Context Identifiers 1

 It is possible that an application is unable to interpret any of the context identifier items that were set 2

when the current context was established by another application. For example, the selected patient 3

might not be a patient known to the application. 4

 An application that is unable to interpret any of the identifiers shall still participate in the context 5

change transaction. This situation is not a basis for the application to prevent the transaction from 6

proceeding. Specifically, the application shall not use the surveying process to reject the context 7

change. 8

 However, at the completion of the transaction, the application shall clearly indicate to the user that it is 9

unable to apply the current context. The application shall not show any patient data. The details of how 10

this indication appears to the user are specified in each of the HL7 context management technology- 11

specific user interface specification documents. 12

7.10.3 Application Behavior with Regard to an Empty Context 13

 The context is empty when a context system is first initialized. (See Section 5.6.8, Representing an 14

Empty Context Subject). When this is the case, all of the applications in the context system shall 15

clearly indicate to the user that there is no current context. The details of how this indication appears to 16

the user are specified in each of the HL7 context management technology-specific user interface 17

specification documents. 18

7.10.4 Surveying Details 19

 During the context change survey, the context manager informs each of the applications in the common 20

context system (except for the application that instigated the changes) that there are pending context 21

data changes. When an application is surveyed, it shall create a visual cue that indicates it is about to 22

change its clinical context before responding to the survey4. It shall not change its context yet. The 23

context-changes-pending indication shall only be removed once the context manager has informed the 24

surveyed application about how to proceed. 25

 Under normal circumstances, the application will eventually be notified by the context manager about 26

whether or not the context changes should be applied. However, if the context manager is unable to 27

inform the application about how to proceed (e.g., because the application blocked after responding to 28

the survey but before being notified that the context changes have been accepted), the user will at least 29

be able to determine that the application may not be in synchrony with the other applications. This is 30

because the application is presumably still displaying a visual cue that indicates it might change its 31

clinical context. The fact that this cue is still being displayed after the context has been set clues the 32

user that there is a problem with the application. 33

 4 A specific visual cue recommended within each of the HL7 context management technology-specific user
interface specification documents.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 59

 An application can explicitly respond to a context change notification survey by indicating one of the 1

following: 2

• Accept: It is willing to accept the context data changes and to change its internal state 3

accordingly if the changes are published. 4

• Accept-Conditional: It is in the midst of a task that might cause work to be lost if the user 5

does not complete the task; if the changes are published it is willing to terminate the task, 6

accept the context data changes and change its internal state accordingly. 7

 If the changes are subsequently published, an application can defer changing its internal state until 8

some time in the future (for example, when it regains the focus for user-inputs). However, it must offer 9

a visual cue that indicates it not in synchrony with the new context. For example, it might blank out its 10

data display or minimize itself.5 11

 An application that cannot interpret the context data (e.g., does not know who the patient is) should 12

accept the changes. However, the application should clearly indicate to the user (e.g., by displaying a 13

message) that it cannot apply the current context data. 14

 The context manager infers an implicit response from an application under the following conditions: 15

• Terminated: the context manager has determined that the application has terminated without 16

first informing the context manager 17

• Busy: the context manager has determined that the application is still running but is unable to 18

answer the survey (e.g., the application is single-threaded and has a modal dialog open) 19

 It is not possible for a surveyed application to explicitly reject, and therefore prevent, a context change. 20

 The context manager gathers the survey responses and returns them to the application that was used to 21

instigate the context change transaction. Applications that have responded with accept-conditional are 22

expected to also provide a succinct but informative description of the consequences to the user of 23

applying the context changes. The context manager then prepends the name of the application 24

(provided by the application when it joined the common context system) to the description. This 25

description is shown to the user by the instigating application. 26

 The context manager also provides the instigating application with a succinct but informative 27

description about any applications that are busy. This description includes the name of the application. 28

This information is provided by the context manager on behalf of these applications, as they are unable 29

to do so for themselves. This description is also shown to the user by the instigating application. 30

 5 A specific visual cue is recommended within each of the HL7 context management technology-specific user
interface specification documents.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 60 Copyright 1999, Health Level Seven Version CM-1.0

 Applications that have terminated do not affect the survey process. The context manager considers 1

such applications to no longer be part of the common context system. Any information that the 2

manager is maintaining about terminated applications is discarded. 3

 Applications that have suspended their participation in the context are not involved in the survey 4

process. 5

 Applications that have joined the system but indicated that they do not want to participate in surveys 6

are not involved in the survey. However, they are informed along with the other participants whenever 7

the decision to accept the changes is published. (They are not informed about decisions to cancel 8

changes, as this information would be irrelevant.) 9

7.11 Common Clinical Context Use Model 10

 The Common Clinical Context Use Model (Figure 13) illustrates a system with four actors (Authorized 11

User, Healthcare Application, Context Manager, and a System’s Administrator) applying forces on 12

three use cases. The use cases are Lifecycle of Common Context, Context Selection Change, and 13

Abnormal Termination of Common Context. 14

Lifecycle of Common Context

Context Selection Change

Abnormal Termination of Common Context

 Authorized User

System Administrator
Healthcare Application

Common Clinical Context System

Context Manager

 15
 16

 Figure 13: Common Clinical Context Use Model 17

 18

 The common clinical context system is presented by providing a diagram of each use case followed by 19

interaction diagrams illustrating different behavioral flows of the associated use case. Each use case 20

has an associated description, which is provided below. Further, for brevity the specific interface 21

names (ContextManager, ContextParticipant, and ContextData) are not used; their abbreviations are 22

used instead (CM, CP, and CD). Also, the word “interface” is abbreviated to “iface”. The diagram 23

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 61

notes (illustrated as a sheet of paper with corner folded over) are from a software developer’s 1

perspective, not the user of the application. 2

7.11.1 Lifecycle of Common Context 3

 A common context does not initially exist. An application must establish the common context. The 4

common context ceases to exist when there are no longer any applications participating in the common 5

context. Figure 14, Interaction Diagram 1, and Interaction Diagram 2 illustrate this use case. 6

 7

Healthcare
Application

Context Manager

Common Context Lifecycle

Establishes/ends
common context

Coord inates

Authorized
 User

Chooses Patient

 8

 Figure 14: Common Context Lifecycle Use Case 9

 10

 Context Management Specification, Technology and Subject-Independent Component Architecture

 62 Copyright 1999, Health Level Seven Version CM-1.0

Single participant,
therefore, no survey
is required.

User Application AAA ContextManager

CM::JoinCommonContext(CP iface of AAA, surveyYes)

I choose "Jane Doe"

CM::StartContextChanges

context coupon

CD::SetItemValues

CM::EndContextChanges

survey results empty

Transaction
Begins

CM::PublishChangesDecision("accept")

Possibly more
transactions.

Transaction
Complete

Exit program

CM:LeaveCommonContext

Did last participant
leave?

Yes

Exit

MostRecentContext coupon=0
No items in the context.

MostRecentContext coupon has a unique value.
Items with values now in the context.

"Jane Doe"

 1

 Interaction Diagram 1: Common Context Lifecycle 2

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 63

 1

"Kent Clark"

User Application AAA ContextManager Application BBB Application CCC

I choose "Sam Smith"

CM::StartContextChanges

CM::JoinCommonContext(CP iface of AAA, surveyYes)

CD::SetItemValues

CM::EndContextChanges

survey results: all applications accept

CM::PublishChangesDecision("accept")

CP::ContextChangesAccepted

CM::JoinCommonContext(CP iface of BBB, surveyYes)

CP::ContextChangesPending

"accept"

CM::JoinCommonContext(CP iface of CCC, surveyYes)

CM::SuspendParticipation

CM::ResumeParticipation

CM::EndContextChanges
CP::ContextChangesPending

"accept"

survey results: all applications accept

CM::PublishChangesDecision("accept")

CP::ContextChangesAccepted

CP::ContextChangesAccepted

While suspended participation,
Application CCC is neither
surveyed or notified of context
changes.

I choose "Kent Clark"
CM::StartContextChanges

CP::ContextChangesPending

"accept"

Application CCC is
once again
surveyed and
notified of context
changes.

CM::SetItemValues

"Sam Smith"

 2

 Interaction Diagram 2: Suspending/Resuming Context Participation 3

 Context Management Specification, Technology and Subject-Independent Component Architecture

 64 Copyright 1999, Health Level Seven Version CM-1.0

7.11.2 Context Selection Change Use Case 1

 The Context Selection Change use case assumes a patient context has been established. The user is currently 2

focused on one application, while several other healthcare applications may be executing on the same host 3

machine. The user chooses to change the selected patient from “Jane Doe” to “Sam Smith”. 4

 Figure 15 illustrates this use case. There are several possible instances of this use case which are provided in 5

Interaction Diagram 3 through Interaction Diagram 10. 6

 7

Context Selection Change

Healthcare
Application

Authorized
 User

ParticipatesChooses

Context Manager

Coordinat

 8

 Figure 15: Context Selection Change Use Case 9

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 65

Possibly
concurrent
queries.

User Application AAA ContextManager Application BBB Application CCC

I choose "Sam Smith"

CM::StartContextChanges

CM::JoinCommonContext(CP iface of AAA, surveyYes)

CM::JoinCommonContext(CP iface of BBB, surveyYes)

CM::JoinCommonContext(CP iface of CCC, surveyYes)

CD::GetItemValues

CD::GetItemValues

CD::SetItemValues

CM::EndContextChanges
CP::ContextChangesPending

"accept"

CP::ContextChangesPending

"accept"

survey results: all applications accept

CM::PublishChangesDecision("accept")

CP::ContextChangesAccepted

CP::ContextChangesAccepted

"Sam Smith"

Possibly
concurrent
notifications.

Possibly
concurrent
surveys.

 Interaction Diagram 3: All applications accept the changes

 Context Management Specification, Technology and Subject-Independent Component Architecture

 66 Copyright 1999, Health Level Seven Version CM-1.0

CM::StartContextChanges

User Application AAA ContextManager Application BBB Application CCC

I choose “Sam Smith”
CM::StartContextChanges

CM::JoinCommonContext(CP iface to AAA, surveyYes)

CD::SetItemValues

CM::EndContextChanges

survey results:
Application CCC

conditionally accepted
with this consequence.

CM::PublishChangesDecision("cancel")

CM::JoinCommonContext(CP iface to BBB, surveyYes)

CP::ContextChangesCanceled

CM::JoinCommonContext(CP iface to CCC, surveyYes)

CP::ContextChangesCanceled

"Are you sure you want
to change?"

cancel

User is told that
Application CCC might
lose work in progress.
User is provided with
a description of
consequences of a
context change at this
time.

Provides
description of
why context
change is only
conditionally
accepted.

CP::ContextChangesPending

"accept"

CP::ContextChangesPending

"conditionally accept" and consequences

Completes work in progress

I choose "Sam Smith"

Sequence of context
changes re-initiated.

New Transaction Begins

 1

 Interaction Diagram 4: An application conditionally accepts the changes; user decides to cancel changes 2

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 67

CM::EndContextChanges

User Application AAA ContextManager Application BBB Application CCC

User is told that
Application CCC
did not respond to
pending changes
survey.

Sequence of context
changes re-initiated.

I choose "Sam Smith"

I choose "Sam Smith"

CM::StartContextChanges

CM::JoinCommonContext(CP iface to AAA, surveyYes)

CD::SetItemValues

survey results: Application CCC not responding

"Application CCC not responding."

cancel selection change

CM::PublishChangesDecision("cancel")

CM::StartContextChanges

CM::JoinCommonContext(CP iface to BBB, surveyYes)

CP::ContextChangesCanceled

CP::ContextChangesPending

"accept"

CM::JoinCommonContext(CP iface to CCC, surveyYes)

CP::ContextChangesPending

User waits or
makes
adjustments so
Application CCC
can handle
selection change.

Application
CCC busy and
does not
respond.

Application CCC
not notified of
cancellation.

New Transaction Begins

1

 Interaction Diagram 5: An application does not respond to survey2

 Context Management Specification, Technology and Subject-Independent Component Architecture

 68 Copyright 1999, Health Level Seven Version CM-1.0

User Application AAA ContextManager Application BBB Application CCC

Application CCC

busy and does

not respond.

I choose "Sam Smith"

CM::StartContextChanges

CM::JoinCommonContext(CP iface to AAA, surveyYes)

CD::SetItemValues

CM::EndContextChanges

survey results: all application accept

"Sam Smith"

CM::PublishChangesDecision("accept")

CM::JoinCommonContext(CP iface to BBB, surveyYes)

CP::ContextChangesAccepted

CP::ContextChangesPending

"accept"

CM::JoinCommonContext(CP iface to CCC, surveyYes)

CP::ContextChangesPending

"accept"

CP::ContextChangesAccepted

Context Manager

responsible for

attempting to notify

until a new

transaction begins.

Same interaction would

occur if pending changes

were canceled.

1

 Interaction Diagram 6: An application does not respond to change notification2

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 69

User Application AAA ContextManager Application BBB Application CCC

I choose "Sam Smith"

CM::StartContextChanges

CM::JoinCommonContext(CP iface to AAA, surveyYes)

CD::SetItemValues

CM::EndContextChanges

survey results: Application CCC not responding

"Application CCC not responding"

CM::PublishChangesDecision("cancel")

CM::JoinCommonContext(CP iface to BBB, surveyYes)

CP::ContextChangesCanceled

CP::ContextChangesPending

"accept"

CM::JoinCommonContext(CP iface to CCC, surveyYes)

CP::ContextChangesPending

Transaction Complete

"accept"

CP::ContextChangesCanceled

Late response to
change survey.

cancel selection change

 Interaction Diagram 7: An application responds after context change transaction has completed

 Context Management Specification, Technology and Subject-Independent Component Architecture

 70 Copyright 1999, Health Level Seven Version CM-1.0

CD::GetItemValues

User Application AAA ContextManager Application BBB Application CCC

I choose "Sam Smith"

CM::StartContextChanges

CM::JoinCommonContext(CP iface of AAA, surveyYes)

CD::SetItemValues

CM::EndContextChanges

CP::ContextChangesAccepted

CM::JoinCommonContext(CP iface of BBB, surveyYes)

CD::GetItemValues

CM::JoinCommonContext(CP iface of CCC, surveyNo)

survey results: all applications accept

CP::ContextChangesPending

"accept"

CM::PublishChangesDecision("accept")

CP::ContextChangesAccepted

Application
CCC not
surveyed.

Application
CCC notified of
context
change.

"Sam Smith"

Application does
not want to be
involved with
context change
surveys.

 Interaction Diagram 8: A non-surveyed application participates in context change

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 71

User Application AAA ContextManager Application BBB Application CCC

User is told that
Application CCC
might lose work in
progress. User is
provided with a
description of
consequences of
context change.

Provides
description of
consequences
of context
change being
accepted.

I choose "Sam Smith" CM::StartContextChanges

CM::JoinCommonContext(CP iface to AAA, surveyYes)

CD::SetItemValues

CM::EndContextChanges

survey results: Application
CCC conditionally accepted

with this reason.
"Are you sure you want to

change?"

accept selection change

CM::PublishChangesDecision("accept")

CM::JoinCommonContext(CP iface to BBB, surveyYes)

CP::ContextChangesAccepted

CP::ContextChangesPending

"accept"

CM::JoinCommonContext(CP iface to CCC, surveyYes)

CP::ContextChangesAccepted

CP::ContextChangesPending

"conditionally accept" and consequences

 Interaction Diagram 9: An application conditionally accepts the changes; user decides to accept consequences of change

 Context Management Specification, Technology and Subject-Independent Component Architecture

 72 Copyright 1999, Health Level Seven Version CM-1.0

Provides
description of
why context
change is
only
conditionally
accepted.

User Application AAA ContextManager Application BBB Application CCC

User is told that
Application CCC
might lose work in
progress. User is
provided with a
description of
consequences of a
context change at
this time.

I choose "Sam Smith"
CM::StartContextChanges

CM::JoinCommonContext(CP iface to AAA, surveyYes)

CD::SetItemValues

CM::EndContextChanges

survey results: Application
CCC conditionally accepted

with this reason.
"Are you sure you want to

change?"

Break link
CM::PublishChangesDecision("cancel")

CM::JoinCommonContext(CP iface to BBB, surveyYes)

CP::ContextChangesCanceled

CP::ContextChangesPending

"accept"

CM::JoinCommonContext(CP iface to CCC, surveyYes)

CP::ContextChangesCanceled

CP::ContextChangesPending

"conditionally accept" and consequence

CM::SuspendParticipation

Selected patient is "Sam Smith" Selected patient is previously chosen patient.

 Interaction Diagram 10: An application conditionally accepts the changes; user breaks link with common context

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 73

 1

7.11.3 Abnormal Termination of Common Context Use Case 2

 The Abnormal Termination of Common Context Use Case involves a system administrator forcing the 3

termination of the context manager through some action. The common context participants are notified of the 4

termination of the common context. 5

 Figure 16 illustrates the abnormal termination use case while Interaction Diagram 11 captures an instance of 6

this case. 7

 8

System
Administrator

Healthcare
Application

Abnormal Termination of Common
Context

aborts common
context

Is Notified of

Context Manager

Coordinates

 9

 Figure 16: Abnormal Termination of Common Context Use Case 10

 Context Management Specification, Technology and Subject-Independent Component Architecture

 74 Copyright 1999, Health Level Seven Version CM-1.0

CM::JoinCommonContext(CP iface of AAA, surveyYes)

User Application AAA ContextManager Application BBB

Possibly
several
transactions.

CM::JoinCommonContext(CP iface of BBB, surveyYes)

Some event
causes/tells to

exit

CP::CommonContextTerminated

CP::CommonContextTerminated

 Interaction Diagram 11: Abnormal Termination of Common Context

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 75

7.12 Stat Admissions 1

 A stat admission occurs when an application needs to enable the user to record information 2

about a patient even if an identifier for the patient is not known. In this case, the application 3

should indicate to the user that it is breaking its participation in the patient context, and then 4

break its participation upon user confirmation. This is because it is not possible for the 5

application to identify the patient, which is needed in order to change the common context. The 6

only reasonable recourse is for the application to break its participation in the common context. 7

7.13 Optimizations 8

 There are several optimizations that have been designed into the specification. These 9

optimizations are reflected in the interface specifications described in Chapter 0: 10

• An application can indicate that it never wants to participate in the survey conducted 11

by the context manager when the context data changes. The context manager will 12

assume that such applications always accept the changes. Read-only data displays 13

represent a class of applications for which this capability is useful. 14

• An application can selectively suspend its participation in the surveying process 15

without actually leaving the common context. This enables an application to perform 16

computational tasks without being interrupted by context changes. This also enables 17

an application to minimize its use of computational resources if it is in a state (e.g., 18

minimized) in which responding to context changes provides no benefit to the user. 19

The application can subsequently resume its participation in the common context. The 20

capability to suspend and resume is an optimized alternative to joining and leaving the 21

common context. 22

• An application can obtain just the context items from the subjects that were altered by 23

the most recent change transaction. This capability will become increasingly useful as 24

additional common context data items are defined. 25

• Multiple common context items can be accessed by an application in a single 26

invocation of a context manager method. This optimizes performance by reducing the 27

number of calls an application needs to make to access context items. 28

• When an application is notified about a context change, it is also provided with the 29

context coupon value that it needs in order to access the context data. This simplifies 30

the design of applications because they do not necessarily need to keep track of context 31

coupon values. 32

 Context Management Specification, Technology and Subject-Independent Component Architecture

 76 Copyright 1999, Health Level Seven Version CM-1.0

• Context managers can be implemented to conduct the change survey and the 1

subsequent change notifications in a concurrent manner, thereby decreasing the 2

amount of time it takes to complete these computations. 3

 Additional optimizations, such as enabling applications to indicate their interest in only being 4

notified when specific context data items change are candidates for future enhancements. 5

7.14 The Simplest Application 6

 The responsibilities that an application must implement in order to behave properly as a 7

participant in a common context system depends upon the application’s functionality. 8

Applications that need to participate in the context change survey must implement 9

straightforward but non-trivial behaviors. However, for many applications it will suffice to 10

implement a very small set of behaviors. Specifically, the simplest participants are those that 11

do not participate in the survey, do not set the context data, and only want to be informed when 12

context changes have been accepted. These applications only need to do the following: 13

1. Join the common context system via the context manager’s ContextManager interface. 14

2. Implement the ContextParticipant method that enables the application to be informed 15

about accepted context changes. 16

3. Access the context data via the context manager’s ContextData interface. 17

4. Leave the common context system upon termination, via the context manager’s 18

ContextManager interface. 19

 As Interaction Diagram 12 illustrates below, this amounts to implementing one method for 20

ContextParticipant. (The others can be stubbed with trivial default behaviors.) It also requires 21

using two ContextManager methods: one to join and one to leave a common context system. 22

Finally, it requires using one ContextData method to access the context data. The application 23

does not necessarily need to keep track of the value of the context change coupon, as the 24

context manager each time a change occurs provides the correct coupon value to the notified 25

application. The result is that simple applications are not penalized for being co-participants 26

with applications that have more sophisticated needs. 27

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 77

User Application AAA ContextManager Application BBB

I choose "Sam Smith"

CM::StartContextChanges

CM::JoinCommonContext(CP iface to AAA, surveyYes)

CD::SetItemValues

CM::EndContextChanges

survey results: all applications accept

CM::PublishChangesDecision("accept")

CM::JoinCommonContext(CP iface to BBB, surveyNo)

CP::ContextChangesAccepted

CM::LeaveCommonContext

"Sam Smith"

CD::GetItemValues

item values

 Interaction Diagram 12: Simplest Application

 Context Management Specification, Technology and Subject-Independent Component Architecture

 78 Copyright 1999, Health Level Seven Version CM-1.0

8 Mapping Agents 1

 A mapping agent in a common context system provides a means to automatically supply 2

multiple synonymous identifiers for the same real-world entity or concept even when only one 3

identifier is known to the application used to instigate a context change. This mapping is 4

performed in a manner that is transparent to the user and to the applications in the context 5

system. 6

 For example, multiple medical record numbers within a healthcare enterprise might identify a 7

patient. However, each application might only be able to denote a particular patient via just 8

one of these identifiers. When the user selects a patient using such an application, the 9

application sets the new patient context using the patient identifier it knows. The context 10

manager automatically delegates the task of mapping the provided identifier to additional 11

identifiers to a mapping agent. A master patient index system might serve as the basis for 12

implementing a mapping agent capable of mapping patient identifiers. 13

 Mapping agents are not necessarily needed in order to realize a useful and correctly 14

functioning common context system. Specifically, mapping agents are not needed when each 15

real-world entity or concept has a single identifier that is already known to all of the 16

applications in the common context system. For example, there are healthcare enterprises that 17

have a uniform way to identify their patients. 18

 The specification contained in this chapter is for a Patient Link mapping agent. However, other 19

kinds of mapping agents are envisioned for other types of common clinical context data. 20

Therefore, an attempt has been made to specify the mapping agent in a way that will enable 21

forward compatibility with future CMA capabilities, such as additional context subjects. 22

8.1 Assumptions and Assertions 23

 It is not an objective of the CMA to define how mapping agents should work or to prescribe or 24

assume a particular mapping agent implementation. Instead, a mapping agent is treated as an 25

abstraction. Interfaces are defined that enable mapping agents to be connected to context 26

managers for the purpose of aiding in the mapping of context identifiers between multiple 27

identifier spaces. 28

 Additional assumptions and assertions include: 29

• When present, the mapping agent is the authority within a common context system on 30

the mapping between context identifiers. 31

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 79

• A mapping agent does not allow an identifier to map to more than one real-world 1

entity or concept (e.g., a patient mapping agent does not allow a patient identifier to 2

map to more than one patient). 3

• There is at most one mapping agent per context subject per clinical desktop. (Behind 4

the “scenes” mapping agents may work together, or may be implemented using a single 5

common service. However, this is not visible to the context manager or the context 6

participants.) 7

• A context manager does not know about the mapping agent implementation; a context 8

manager only “sees” a mapping agent through its CMA-defined interface. 9

• Context participant applications do not “know” about the mapping agent (or even if 10

there is one); the mapping agent does not “know” about context participant 11

applications. 12

• The mapping agent may reside on a computer that is remote from the computer (s) 13

upon which the context manager(s) they serve reside; however, these computers must 14

be connected by a LAN or WAN whose performance is LAN-equivalent. 15

• Mapping agents are an optional component of a CMA context management system. 16

8.2 Interfaces 17

 The following interfaces are defined for and implemented by mapping agents: 18

• Mapping Agent (MA) - used by a context manager to inform a mapping agent that the 19

clinical context has changes pending and that the mapping agent should perform its 20

context data mapping responsibilities 21

• Implementation Information (II) - used by a context manager to obtain details about 22

who implemented the mapping agent, when it was installed, etc., for the purpose of 23

creating detailed error reports 24

 In addition, mapping agents to set/get context data items uses the context manager 25

ContextData interface. 26

 The mapping agent interfaces are modeled and illustrated in Figure 11: Patient Link 27

Component Architecture. 28

 Context Management Specification, Technology and Subject-Independent Component Architecture

 80 Copyright 1999, Health Level Seven Version CM-1.0

8.3 Theory of Operation 1

 Assume, first, that one or more context participants have already joined the same common 2

context and that they are connected to the context manager. Further, assume that the context 3

manager already has an interface reference to a mapping agent’s Mapping Agent interface. 4

How these references are obtained is described in Section 8.3.1, Initializing a Context System 5

When a Mapping Agent is Present. 6

 Given these conditions, a context participant instigates a context change transaction via the 7

context manager’s Context Manager interface, sets the new context data via context manager’s 8

Context Data interface, and then indicates it is done setting the data via the context manager’s 9

Context Manager interface. 10

 At this point, before the other context participants are surveyed, the manager informs the 11

mapping agent that the context data has changes pending, via the mapping agent’s Mapping 12

Agent interface (which is similar to an application’s Context Participant interface). The 13

mapping agent blocks the context manager’s method return until the mapping agent has 14

completed its mapping tasks. The proposed context data items that are available to the 15

mapping agent are exactly as the instigating participant set them. 16

 The mapping agent reads the proposed context data via the context manager’s ContextData 17

interface, and may set one or more additional context data identifier or corroborating items via 18

this same interface. The objective is for the mapping agent to enhance the proposed context by 19

providing additional identifier or corroborating data in a manner that is transparent to the 20

application that instigated the transaction. 21

 Applications (including the instigating application) are not allowed to set context item values 22

after the instigating application has completed its changes. However, the context allows the 23

mapping agents to make changes because it knows it is a mapping agent that is setting the item 24

values. How the context manager knows that it is a mapping agent will be described later. 25

 Once the mapping agent has completed its mapping tasks, the context manager surveys the 26

context participants and processing of the context change transaction is performed as usual. 27

With this approach, all of the synonymous values for an identifier will be set before the other 28

applications are informed via a context manager-initiated survey that the context has been set. 29

 However, if the instigating application has set multiple values for a context identifier, and the 30

mapping agent detects an inconsistency among these values, then it informs the context 31

manager that the context change transaction has been invalidated. This is because the mapping 32

agent is the authority in a context system when it comes to mappings between identifiers. 33

Allowing the transaction to proceed could create confusion about the context among the other 34

context participants. 35

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 81

 The details about the conditions under which a mapping agent can invalidate a context change 1

transaction are described in 8.3.5 Conditions for Mapping Agent Invalidation of Context 2

Changes. 3

 When the mapping agent invalidates a context change transaction, the context manager does 4

not survey the participating applications. Instead, the context manager informs the instigating 5

application that the transaction has been invalidated. The instigating application then asks the 6

user to intervene to decide how to proceed. 7

 The user can decide (via a dialog presented by the application that was used to instigate the 8

context change) whether to cancel the context change or to break the instigating application 9

away from the common context system. In either case, the context change transaction is 10

terminated and the context changes are discarded. Additional identifiers are not mapped and 11

the other applications are not surveyed. 12

 This approach gives the user the option of applying the context changes to just the application 13

used to instigate the context change while also preventing the other applications from becoming 14

confused about the context. 15

 The details of this situation are described in 8.3.6 Treatment of Mapping Agent Invalidation of 16

Context Changes. 17

8.3.1 Initializing a Context System When a Mapping Agent is Present 18

 A mapping agent and the context manager it serves must be connected to each other. There are 19

two ways in which this can be accomplished. Either the context manager connects to the 20

mapping agent, or the mapping agent connects to the context manager. The order in which this 21

connection occurs has significant impact on complexity and computing resource utilization. 22

 The mapping agent could conceivably locate and connect to a context manager the same way a 23

context participant does. This requires that the connection be made before the first time a 24

context participant application sets the context. This is so that the mapping agent can be 25

instructed by the context manager to perform its mapping tasks. 26

 A consequence of this approach is that a context manager will execute even if it is not actively 27

servicing any context participants. Further, the requirement that the connection be made before 28

the first time a context participant application sets the context introduces initialization- 29

sequencing complexities. 30

 In general there is no way to know when the first context participant will connect to a context 31

manager, so the only prudent recourse would be to launch the context manager and the 32

mapping agent as part of the boot-up process for the desktop they serve. This would 33

complicate the installation process for context managers and mapping agents. 34

 Context Management Specification, Technology and Subject-Independent Component Architecture

 82 Copyright 1999, Health Level Seven Version CM-1.0

 The alternative is for the context manager to connect to the mapping agent. This approach 1

enables the connection to be deferred until the mapping agent is needed to service a context 2

participant. However, a means by which context managers can locate the necessary mapping 3

agent must be established. 4

 Fortunately, the fact that there is only one mapping agent per context subject per clinical 5

desktop enables the location process to be easily implemented using the desktop’s technology- 6

specific desktop interface reference registry. Specifically, a reference to a mapping agent’s 7

principal interface is entered into the desktop’s interface reference registry. The symbolic name 8

and/or description of the interface within the registry indicates the context subject that the 9

mapping agent maps. The context manager obtains this reference and uses it to interrogate the 10

mapping agent to obtain references to its other interfaces, such as MappingAgent. 11

 An additional benefit of the manager-connects-with-agent approach is that it is not even 12

necessary for distinct connect/disconnect methods to be defined. Instead, the context manager 13

simply informs the mapping agent whenever the context manager has changes pending. The 14

context manager explicitly provides a reference to its principal interface to the mapping agent. 15

The mapping agent then interrogates the context manager via its principal interface to obtain a 16

reference to other context manager agent interfaces, such as the interface ContextData. 17

 The sequence of events is shown in Interaction Diagram 13: Context Change Transaction with 18

Mapping Agent. 19

8.3.2 Terminating a Context System When a Mapping Agent is Present 20

 To enable the orderly termination of the context system, the context manager shall implicitly or 21

explicitly dispose of any mapping agent interface references that it possesses prior to 22

terminating. The mapping agent shall dispose of any context manager interface references that 23

it possesses when it has completed its mapping actions for a context change transaction. The 24

means by which these disposals are effected is technology-specific. 25

 The consequence of these disposals is that at the end of a context change transaction, only 26

context participant applications will possess context manager interface references. If there are 27

no participants, then the context manager can properly terminate. (Participants dispose of any 28

context manager interface references that they possess prior to terminating. See Section 6.1.5, 29

Interface Reference Management.) This also means that once the context manager terminates, 30

the mapping agent can also properly terminate. 31

 32

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 83

 Interaction Diagram 13: Context Change Transaction with Mapping Agent 1

 2

8.3.3 Distinguishing Between Mapping Agents and Context Participants 3

 When a mapping agent is informed that a context change is pending, the context manager 4

provides it with two coupons. One coupon denotes the context change transaction; the other 5

denotes the mapping agent. The mapping agent coupon is not the same as any of the coupons 6

assigned by the context manager to the context participants. 7

 The mapping agent shall use the coupon that denotes it whenever it sets context data via the 8

ContextData interface. The context manager uses this coupon to determine that a mapping 9

agent, and not a context participant, is setting the context data. Only a mapping agent is 10

 Context manager Context participant Mapping Agent

 ContextManager::JoinCommonContext() ContextManager::JoinCommonContext()

 ContextManager::StartContextChanges()

 ContextData::SetItemValues()

 ContextManager::EndContextChanges()

 MappingAgent::ContextChangesPending(Principal iface to context manager)

 ContextData::GetItemValues()

 ContextData::SetItemValues()

 Return from ContextChangesPending

 Return from EndContextChanges()

 Surveying the other context participants
occurs here

 Mapping agent locates context
manager’s ContextData interface

 Context Management Specification, Technology and Subject-Independent Component Architecture

 84 Copyright 1999, Health Level Seven Version CM-1.0

allowed to set context data after the instigator of the context change has indicated that it has 1

completed the context changes. 2

8.3.4 Mapping Agent Updates to Context Data 3

 A mapping agent only adds data to the context. A mapping agent can add additional context 4

identifier items. It can also add additional corroborating data items. These updates are 5

primarily for the benefit of the context participants other than the application that instigated the 6

context change. 7

 This is because it cannot be assumed that the instigating application will re-read the context 8

data once it has completed its context changes. In contrast, the other applications do not read 9

the new context until they are surveyed, which occurs after the mapping agent has added data 10

to the context. 11

 If a mapping agent was allowed to change the values for context items that have been set by 12

the instigating application, it could be confusing to the user. This is because the user might see 13

differences between the context data as displayed by the instigating application and as 14

displayed by the other context participant applications. 15

 Given this concern, a mapping agent shall not alter the values of any of the context data items 16

that have already been set by the instigating participant as part of the proposed context. Any 17

attempt to alter existing context data items by the mapping agent shall result in the context 18

manager raising an exception. 19

 A mapping agent shall not delete any of the context data items. Any attempt to delete context 20

data items by the mapping agent shall result in the context manager raising an exception. 21

8.3.5 Conditions for Mapping Agent Invalidation of Context Changes 22

 A context subject is comprised of multiple identifier and corroborating data items, each of 23

which is represented as name/value pairs (see Section 5.4, Context Data Representation, and 24

Section 5.6, Context Data Interpretation). It is the responsibility of every application that sets 25

these items to ensure that they are self-consistent. However, there are a variety of potential 26

item name and/or item value inconsistencies that a mapping agent must be able to detect. 27

 Specifically, if an application has set multiple values for a context identifier item, and the 28

mapping agent determines that these values do not all identify the same real-world entity or 29

concept (e.g., patient), the mapping agent shall invalidate the context change transaction. 30

 Specifically, a mapping agent shall invalidate a context change transaction when: 31

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 85

• The instigating application sets more than one value for the same context identifier 1

item, but the mapping agent determines that at least two of these values identify 2

different patients. 3

• The instigating application sets more than one value for the same context identifier 4

item, but the mapping agent knows that at least one of these values conflicts with a 5

value known to identify the patient. 6

 There are situations in which the mapping agent must not invalidate a context change 7

transaction even though there are apparent context item inconsistencies. A mapping agent must 8

not flag what it believes to be inconsistencies when in fact the suspect items might represent 9

reasonable application behaviors. 10

 The following scenarios illustrate the desired mapping agent behaviors. Assume that there are 11

two patients, each with identifiers for two sites, and the mapping agent is able to map the 12

patient identifiers for both sites: 13

Patients and Their Site-Specific Identifiers

Institution John Doe Jim Smith

St. Elsewhere Hospital 123-456-789Q36 155-213-424Y82

St. Elsewhere Clinic 2888-91922-W928 18291-81293-D812

 14

 The first two scenarios represent inconsistencies that the mapping agent must respond by 15

invalidating the context change transaction. The last three scenarios represent inconsistencies 16

that the mapping agent must ignore: 17

 Context Management Specification, Technology and Subject-Independent Component Architecture

 86 Copyright 1999, Health Level Seven Version CM-1.0

What the instigating
application does …

Example … What the mapping agent
does …

1 Sets two identifier values,
both with the intent of
denoting John Doe, but the
values erroneously denote
John Doe and Jim Smith.

Item identifies John Doe:

[Patient.Id.MRN.St_Elsewhere_Hospital,
123-456-789Q36]

Item erroneously identifies Jim Smith:

[Patient.Id.MRN.St_Elsewhere_Clinic,
18291-81293-D812]

Invalidates the context change
transaction because the first identifier
value denotes John Doe, while the
second denotes Jim Smith.

Mapping is not performed.

2 Sets more than one identifier
pair, both with the intent of
denoting John Doe. The first
value is John Doe’s hospital
identifier, but the second
value is not John Doe’s clinic
identifier.

Item identifies John Doe:

[Patient.Id.MRN.St_Elsewhere_Hospital,
123-456-789Q36]

Item does not identify John Doe:

[Patient.Id.MRN.St_Elsewhere_Clinic,
0000-00000-0000]

Invalidates the context change
transaction because while the first
identifier value is John Doe’s hospital
identifier, the second value is known not
to be John Doe’s clinic identifier.

Mapping is not performed.

3 Sets only one context
identifier item and the name
of the item is not known to the
mapping agent.

Item name not known to mapping agent:

[Patient.Id.MRN.General_Hospital,
6668-3923-987122]

Ignores this situation and does not
inform the context manager about
inconsistencies.

Mapping is not performed.

4 Sets more than one value for a
context identifier item, and
one or more of the item names
are not known to the mapping
agent.

Item name known to mapping agent:

[Patient.Id.MRN.St_Elsewhere_Hospital,
123-456-789Q36]

Item name not known to mapping agent:

[Patient.Id.MRN.General_Hospital,
6668-3923-987122]

Ignores this situation and does not
inform the context manager about
inconsistencies.

Mapping is performed.

5 Sets the corroborating data to
values that are different (or
incomplete) as compared to
the corroborating data known
to the mapping agent

Application sets corroborating data containing
the identified patient’s name to “Jack Doe”
but mapping agent knows the identified
patient as “John Doe”.

Ignores this situation and does not
inform the context manager about
inconsistencies.

Mapping is performed.

 1

 In summary, detectable inconsistencies between identifier values are the only reason that a 2

mapping agent should invalidate a transaction. Transactions must not be invalidated when 3

unknown identifier names are used by an application or because of corroborating data 4

inconsistencies. 5

8.3.6 Treatment of Mapping Agent Invalidation of Context Changes 6

 Applications that instigate context change transactions and then explicitly set more than one 7

identifier during a context change transaction shall explicitly handle the situation in which a 8

mapping agent invalidates a context change transaction. (Applications that set only one 9

identifier do not need to handle this situation.) 10

 An instigating application is not provided with a means to distinguish between the invalidation 11

of a context change transaction and the presence of a busy application. These are clearly 12

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 87

different situations, but are to be handled by an instigating application in the same way. The 1

application shall present a dialog that clearly indicates that a problem has been encountered 2

while attempting to change the common context. 3

 The dialog shall include a description of the problem that was encountered. The dialog shall 4

also enable the user to cancel the context change or to break the link between the instigating 5

applications and the other applications. 6

 When the mapping agent has invalidated a transaction it shall not be possible for the user to 7

force a common context change. If the user decides to break the link between the instigating 8

application and the other applications, instigating application shall only apply the context 9

change to itself. This application shall break away from the common context and shall clearly 10

indicate to the user that it is not participating in the common context. 11

 If the user cancels the context change, then the instigating application shall indicate this fact to 12

the context manager. Both the instigating application and the context manager shall discard the 13

current transaction. The context manager shall not survey the other applications. 14

 Independent of the reason for which the mapping agent invalidated the transaction, the context 15

manager shall always provide to the instigating application the same user-friendly description 16

of the problem that was encountered. This is in order to keep things simple for the user, who is 17

unlikely to be concerned about the details of what went wrong. This description shall be 18

included in the dialog by the instigating application. 19

 The appearance of the dialog and the commands that the user can choose from are specified in 20

each of the HL7 context management technology-specific user interface specification 21

documents. The wording for the user-friendly description that is included in the dialog is also 22

specified in these documents. This will ensure a consistent and familiar set of interactions for 23

users across CMA-conformant applications. 24

 The sequence of events that occur when a mapping agent invalidates a context change 25

transaction is shown in Interaction Diagram 14: Mapping Agent Invalidates Context Change 26

Transaction. 27

8.3.7 Mapping Null-Valued Identifiers 28

 A mapping agent shall not perform any mapping when the context subject is empty (See 29

Section 5.6.8, Representing an Empty Context). The net effect is that the context subject 30

remains empty, and all of the applications see the context as such. 31

 32

 Context Management Specification, Technology and Subject-Independent Component Architecture

 88 Copyright 1999, Health Level Seven Version CM-1.0

Authorized User Instigating
Application

Context Manager Mapping Agent Participating
Application

CM::JoinCommonContext(surveyYes)

CM::JoinCommonContext(surveyYes)

I chose "Sam Smith"

CM::StartContextChanges()

CD::SetItemValues()

CM::EndContextChanges()

MA::ContextChangesPending()

CD::GetItemValues()

"invalid", "ID conflict detected"

noContinue=TRUE, "MappingAgent: IDs map to two different patients"

Dialog
presented to
user. User
informed of
invalidation of
context change.
Allowed cancel
or break link.

cancel or break link

CM::PublishChangesDecision("cancel")

Discard proposed context

Other participants not
informed of cancellation of
context change because
they were not surveyed.

 1
 2

 Interaction Diagram 14: Mapping Agent Invalidates Context Change Transaction 3

 4

8.3.8 Initializing Mapping Agents 5

 Different mapping agent implementations may require different initialization methods. For 6

example, a mapping agent might need to authenticate the current user in order to enforce 7

security policies. Other than being automatically launched by a context, the additional steps 8

needed to initialize a mapping agent are implementation issues and are not addressed by this 9

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 89

specification. (Future versions of the CMA specification may provide standardized ways of 1

initializing mapping agents.) 2

 It can be the case that different mapping agent implementations will require different explicit or 3

implicit actions on the part of the user to complete their initialization tasks. An example of an 4

explicit user action is signing on to the mapping agent via a mapping agent-supplied dialog. An 5

example of an implicit user action is signing on to a context participant application that relays 6

its authentication of the user to the mapping agent; this obviously implies a relationship with 7

the mapping agent that goes beyond this specification. 8

8.3.9 Handling Mapping Agent Failures 9

 A context manager must be able to detect and handle the failure of a mapping agent. 10

Specifically, a context manager shall behave in a robust manner even if its calls to a mapping 11

agent’s MappingAgent interface do not return in a timely manner. 12

 The recourse, after a timeout has occurred, is for the context manager to continue with the 13

normal processing of the context change transaction. If the mapping agent has indeed failed, 14

then some of the context participants may not be able to interpret the next context. However, 15

this fail-soft approach still enables the user to perform useful work until the mapping agent 16

failure is corrected. 17

 Finally, even if a mapping agent has failed, a context manager shall continue to try to access 18

the mapping agent during subsequent transactions on the prospect that the failure has been 19

corrected. In doing so, the context manager may need to obtain a new interface reference for 20

the mapping agent (because the old reference may no longer be valid). 21

 Note that this policy of continually attempting to access a failed mapping agent also applies 22

even when a context manager is first launched. It may be the case that a mapping agent 23

becomes available after the context manager has begun executing. (See Section 8.3.8, 24

Initializing Mapping Agents, for one explanation of why this might happen.) A context 25

manager that does not locate and initiate a mapping agent when it is launched shall 26

nevertheless keep trying between and/or during context change transactions. It is an 27

implementation decision as to how the performance impact of this policy is minimized. 28

8.4 Mapping Agent Effect on Application Security Policies 29

 Mapping agents may implement their own security policies in terms of what context data it will 30

map for a particular user. Mapping agent security policies can differ from the policies of the 31

participating applications. A mapping agent’s policies might effect what patients a user can, or 32

cannot, access. 33

 Context Management Specification, Technology and Subject-Independent Component Architecture

 90 Copyright 1999, Health Level Seven Version CM-1.0

 When the mapping agent’s policy is more restrictive than one or more of the participating 1

application’s, a mapping agent might elect to not map an identifier because doing so would 2

violate the security rules known to the mapping agent. When the mapping agent’s policy is less 3

restrictive than one or more of the participating applications, each application’s own security 4

policy will be the predominating policy for the current change transaction. 5

 A mapping agent that elects to not map an identifier because of security concerns shall not 6

indicate this fact to the user. The user will simply observe that access to the selected patient is 7

not possible through one or more of the participating applications. These applications do not 8

know that the identifier for the selected patient has not been mapped because of the mapping 9

agent’s security policy. Instead, it looks to the applications as though a patient has been 10

selected but the identifier(s) by which the patient is known to the applications has not been 11

provided. These applications behave as specified for in 6.5.1 Application Behavior When it 12

Cannot Cancel Context Changes. 13

8.5 Identifying Mapping Agent Implementations 14

 Context managers use a mapping agent’s ImplementationInformation interface to provide 15

system administrators with a description of the mapping agent implementation it is using. This 16

information can help system administrators diagnose run-time problems that involve mapping 17

agents. 18

 The ImplementationInformation interface shall be supported by all mapping agent 19

implementations. A context manager shall not interact with a mapping agent that does not 20

support this interface. 21

8.6 Performance Costs and Optimizations 22

 When present, a mapping agent will be involved in every context change transaction. This adds 23

an overhead to the context change transaction in the form of the added communication between 24

the context manager and the mapping agent, and for the time it takes for the mapping agent to 25

validate the identifiers and provide any additional mappings for the identifiers. However, these 26

costs are viewed as being worth the benefits of the semantic integrity that a mapping agent 27

brings to a context system. 28

 In some cases, a mapping agent will be implemented using an underlying application that 29

provides its own user interface for patient selection. This type of mapping agent is, in effect, 30

both a mapping agent and a context participant application. In the case in which this 31

underlying application is used to instigate a context change, performing identifier validations 32

and mappings is superfluous. It is possible to optimize the mapping agent implementation so 33

that it does not perform identifier validations and mappings when it knows that it was 34

essentially itself that instigated a context change. 35

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 91

 However, the only information that is readily available to the mapping agent that could help it 1

determine this fact is the context change coupon. This coupon is provided by the context 2

manager to an application when the application starts a context change transaction. This 3

coupon is also provided by the context manager to the mapping agent via its MappingAgent 4

interface during each context change transaction. 5

 It is an implementation decision as to how the portion of an application that implements a 6

mapping agent obtains the value of the context coupon from the portion of the application that 7

instigates a context change transaction. 8

 9

 10

 Context Management Specification, Technology and Subject-Independent Component Architecture

 92 Copyright 1999, Health Level Seven Version CM-1.0

9 User Link Theory of Operation 1

 This chapter describes CMA support for User Link. With User Link, a user can securely sign 2

on to any User Link-enabled application on a desktop using just one logon name and one 3

means of authentication (such as a password) in order to securely sign on to all User Link- 4

enabled applications on the desktop. 5

 User Link extends CMA support for Patient Link in several ways: 6

• It introduces another context subject. Managing multiple subjects requires additional 7

context management policies beyond those defined for Patient Link. 8

• It introduces the user subject as the second foundational CMA context subject. 9

• It introduces security capabilities that not only enable the creation of secure User Link 10

context management systems, but that also serve as a foundation for future subjects 11

that require security. 12

 In order to accomplish this, the Patient Link architectural approach is leveraged (i.e., context 13

manager, context participants, and mapping agent) to create a single context per desktop. The 14

context is extended to include the user subject in addition to the patient subject. 15

 The Patient Link interfaces ContextManager, ContextParticipant, MappingAgent, and 16

ImplementationInformation interfaces are used. Two additional security-related interfaces are 17

defined: SecureContextData, which is modeled upon the Patient Link ContextData interface, 18

and SecureBinding, which enables a trusted relationship to be established between User Link- 19

enabled applications and components. 20

 Additional User Link capabilities include: 21

• The provider institution decides which applications are to be trusted to authenticate 22

users. 23

• There can be multiple ways to authenticate users, including passwords, biometrics, 24

etc. 25

• In keeping with the CMA philosophy, the User Link approach is conceived for low re- 26

engineering costs. 27

 The architecture that supports these capabilities is described next. 28

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 93

9.1 User Link Terms 1

 The following terms are used to describe the User Link theory of operation: 2

• User Link-enabled application - an application that implements the CMA User Link 3

capability. 4

• Sign on – the act of identifying oneself to an application, prior to initiating a user 5

session, in a manner that can be authenticated by the application, typically involving a 6

secret password or a biometric reading (such as a thumb-print scan). 7

• Log-off – the termination of a user’s session with an application. 8

• Empty context – a context is not defined for a particular subject, either because no 9

context identifier items are present in the context data (as is the case when a context 10

manager is first initialized) or because the values of all of the identifier items for the 11

subject that are present in the context data are null (as is the case when an application 12

explicitly indicates that the context is empty). 13

9.2 Desktop Assumptions 14

 The following assumptions are made about the clinical desktop upon which User Link-enabled 15

applications are deployed: 16

• Logging-off from an application does not require user authentication. 17

• The desktops upon which User Link-enabled applications are deployed may reside in 18

physically unsecured locations. 19

• While recommended, it may not be the case that appropriate security precautions have 20

been taken to restrict the types of operating system-level actions, such as installing 21

new programs, that users can perform on desktops that reside in physically unsecured 22

locations. 23

 In summary, the CMA is intended to be no less secure than the User Linked applications would 24

be were they not User Linked. In general, User Linked applications will be substantially more 25

secure. 26

9.3 User Subject 27

 The context subject of User is defined for User Link. The context data identifier item for this 28

subject is the user’s logon name. A logon name denotes a user to an application. A user’s logon 29

name is generally different from their given name. 30

 Context Management Specification, Technology and Subject-Independent Component Architecture

 94 Copyright 1999, Health Level Seven Version CM-1.0

 This identifier is unlikely to be universally unique. However, it is assumed that a population of 1

users across which each logon name is unique can be established. Each such population is 2

referred to as an application, as it is typical that within an overall healthcare institution each 3

population of users corresponds to a particular application. 4

 Consequently, a single user may be identified using multiple user subject identifier items. Each 5

item is differentiated by a different application-specific suffix. An application shall be 6

configurable such that it can be instructed on-site as to which suffix (or suffices) it is to use 7

when it interacts with the context manager to set or get user context data. 8

 The format of a user subject identifier item name includes an application-specific suffix. Use 9

of this suffix, and the values that may be assigned to this suffix, is at the discretion of each 10

healthcare institution at which a context management system is deployed. 11

 In addition to identifier items, the user subject also supports corroborating data items. The 12

actual names, meaning, and data types used to represent the values for both user subject 13

identifier items and corroborating data items are defined in the document Health Level-Seven 14

Standard Context Management Specification, Data Definition: User Subject. 15

 An example of a user subject identifier item appears below: 16

 User Subject Identifier

 Example Item Name Format: Example Item Name: Example Item Value:

 User.Id.Logon.application_name User.Id.Logon.3M_Clinical_Workstation robs

 17

9.4 User Authentication Data Is Not Part of the User Context 18

 The data used to authenticate a user is not included as part of the user context data. This data 19

is typically a password, but it can be any data that is used to authenticate a user, such as a 20

biometric sample. Instead, each application is expected to be able to sign on a user given just 21

the application-specific logon name for the user. 22

 This approach substantially reduces security risks because the data used by an application to 23

authenticate the user remains private to the application. If this data were part of the user 24

context, it would be vulnerable to undesired access. However, in order for applications to tune 25

to the user context, they must trust that the context data is authentic. The means by which this 26

is accomplished is referred to as the “chain of trust” and is described below. 27

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 95

9.5 User Link Common Context System Description 1

 Consistent with the CMA, on each desktop there are applications that are user context 2

participants, and there is a context manager. The applications perform context change 3

transactions to indicate who the user is. 4

 However, in contrast to the way in which patient context is communicated in a Patient Link 5

system, the user context is communicated throughout the common context system in a secure 6

manner. This is to prevent people from accidentally or maliciously gaining access to 7

applications that are User Linked. 8

 The necessary security is achieved by adding capabilities to the CMA that enable the 9

realization of a “chain of trust” among the User Link-enabled applications and User Link 10

components. With the chain of trust, User Link-enabled applications and User Link 11

components work together to ensure that only authorized users are allowed access to a 12

common context system. 13

 The chain of trust not only simplifies the overall solution, but results in a system that is more 14

secure than would be the case if authentication data were part of the common context, and 15

were therefore vulnerable to security attacks directed against the context manager or mapping 16

agent. 17

 The chain of trust is specified in Chapter 10. 18

9.5.1 User Mapping Agent 19

 An optional user mapping agent is also part of the common context system, The user mapping 20

agent maps the logon names for users. The user mapping agent is similar to, but distinct from, 21

the patient mapping agent (although a single mapping agent implementation could fulfill both 22

roles). 23

 Whenever an application sets the user context, the context manager instructs the user mapping 24

agent (if present) to provide any additional logon names it knows for the user. The application 25

suffix for each of the mapped identifier items denotes the application for which the mapped 26

logon name is valid, for example: 27

 Examples Item Names: Example Item Values:

 User.Id.Logon.3M_Clinical_Workstation

User.Id.Logon.Medicalogic_Logician

User.Id.Logon.HP_CareVue

 robs

rob_seliger

r_seliger

 28

 Context Management Specification, Technology and Subject-Independent Component Architecture

 96 Copyright 1999, Health Level Seven Version CM-1.0

9.5.2 Context Management Interfaces 1

 The context management interfaces defined for User Link are similar to the ones defined for 2

Patient Link. A context participant still implements ContextPartcipant (CP). The context 3

manager still implements ContextManager (CM), but it also implements the following new 4

interfaces: 5

• SecureContextData (SD) - Similar to the ContextData interface defined for Patient 6

Link, this interface is used by applications to securely set/get the values for the items 7

(logically represented as name-value pairs) that comprise the clinical context. 8

• SecureBinding (SB) - Used by applications to establish a secure communications 9

binding with the context manager before using the SecureContextData interface. 10

• ImplementationInformation (II) – Originally defined for the patient mapping agent, this 11

interface is added to the context manager so that applications, other components, and 12

tools, can obtain details about the context manager implementation, including its 13

revision, when it was installed, etc. 14

 The interfaces implemented by the user mapping agent are MappingAgent (MA) and 15

ImplementationInformation (II). These are the same interfaces as defined for the patient 16

mapping agent. 17

9.5.3 Authentication Repository 18

 In order to make it practical to re-engineer existing applications to support the chain of trust, 19

the CMA authentication repository component is defined. This repository enables applications 20

to securely store and retrieve application-specific user authentication data. The repository is 21

used by applications that do not have a built-in means to easily sign on a user given only a 22

logon name. 23

 The authentication repository implements the following interfaces: 24

• Authentication Repository (AR) - Used by applications to securely interact with the 25

repository to store and retrieve user authentication data. 26

• Secure Binding (SB) – Used by applications to establish a secure communications 27

binding with the repository before using the AuthenticationRepository interface. This 28

is the same interface that the context manager implements. 29

• Implementation Information (II) – Originally defined for the patient mapping agent, 30

this interface is added to the authentication repository so that applications, other 31

components, and tools, can obtain details about the authentication repository, 32

including its revision, when it was installed, etc. 33

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 97

9.5.4 Overall User Link Component Architecture 1

 The overall User Link architecture (including the Patient Link Architecture) is illustrated in 2

Figure 17: User Link Component Architecture. (A description for how to interpret the notation 3

used in this diagram appears in the Appendix: Diagramming Conventions.) 4

MA

II

CP

Application #N
Implementation

CP

Application #1
Implementation

CM SD

Context Manager
Implementation

Common
Context
Data

Optional Mapping
Agent Implementations

Optional External
Authentication
Repository
Implementation

AR

SB

II

II

Tool, etc.

Tool, etc.

Tool, etc.

SB

Component Interfaces
AR = AuthenticationRepository II = ImplementationInformation
CD = ContextData MA = MappingAgent
CM = ContextManager SB = SecureBinding
CP = ContextParticipant SD = SecureContextData

CD

User Patient

 5

 Figure 17: User Link Component Architecture 6

 7

 Context Management Specification, Technology and Subject-Independent Component Architecture

 98 Copyright 1999, Health Level Seven Version CM-1.0

9.6 User Link Sign-On Process 1

 The process for performing a context change transaction to set the user context is essentially 2

the same as defined for Patient Link for setting the patient context: 3

• An instigating application initiates a context change transaction and sets the user 4

context within the context manager. This context contains just the identity of the user. 5

It does not include the data used to authenticate the user. 6

• The context manager consults the user mapping agent (if present) and it adds data to 7

the context manager’s user context. This data includes additional logon names by 8

which the user is known. 9

• The context manager surveys the other applications, and if the transaction completes, 10

they obtain pertinent user context data from the context manager. 11

 The high-level events that transpire when a user signs-on are summarized in Figure 18: User 12

Link Sign-On Process. This description assumes that a user mapping agent is present. The user 13

mapping agent is presumed to know the logon names for all users for all applications. (See 14

Section 9.19, Populating the User Mapping Agent.) The description omits most of the details 15

pertaining to the surveying of the participant applications by the context manager. This process 16

is identical to the process defined for Patient Link. (See Chapter 7.) 17

 Figure 18: User Link Sign-On Process 18

9.7 Designating Applications for User Authentication 19

 Any User Link-enabled application can serve as the means by which a user signs-on to all of 20

the User Link-enabled applications on a desktop. To serve in this capacity, the User Link- 21

enabled application shall provide a mechanism for establishing and authenticating the user’s 22

identity. 23

Application
trusted to
authenticate
users

(1) User signs-
on (e.g., enters
logon name and
password;
swipes security
card, etc.).

Context
Manager

Application
YY

Application
ZZ

(4) Context manager tells
other applications that
there is a new user
context.

(5) Each applications gets user’s
application-specific logon name from
the context manager.

(2) Application authenticates the user and
tells context manager the user’s logon
name; authentication data is not passed
on to the context manager.

Chain of Trust

User
Mapping
Agent
(Optional)

(3) Context manager tells mapping agent
context change is occurring; mapping
agent supplies the context manager with
other logon names for the user as known
to each application.

(6b) An application
optionally consults external
authentication data repository
to get application-
specific authentication data
for the new user and
automaticaly signs-on the
user.

External Authentication
Repository (Optional)

(6a) An application optionally
consults internal authentication
data repository to get application-
specific authentication data for the
new user and automatically signs-
on the user.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 99

 The CMA does not specify an application’s user authentication mechanism, visual appearance, 1

or implementation. The authentication mechanisms can vary among applications. Applications 2

can be created whose sole purpose is to enable user authentication for desktops comprised of 3

User Linked applications. 4

 However, even though any User Link-enabled application has the potential to be used for 5

signing on to a desktop of User Linked applications, the provider institution designates the 6

specific application or applications it trusts for this task. Only the designated applications shall 7

be allowed by a context manager to complete a context change transaction that involves a 8

change to the user subject. 9

 The one exception to this rule is that any application can set the user subject to empty. This is 10

so that any application can be used to log-off from a desktop of User Linked applications. (See 11

Section 9.14, Logging-Off and Application Termination.) 12

 A context manager implementation-specific configuration process is used for indicating the 13

designated applications for a particular desktop. One, several, or all of the User Link-enabled 14

applications on a desktop can be designated for this purpose. The designated applications for a 15

desktop can differ among desktops. It is recommend that a healthcare institution analyze the 16

use cases for their clinical applications to determine how to best deploy User Link. 17

 The decision criteria for a provider institution’s choice of whether to designate an application 18

for authenticating users is based upon whether they trust the application’s security capabilities 19

as it pertains to user authentication. For example, it might not be a good choice to designate an 20

application that maintains user passwords in plain text (which can easily be read by 21

unauthorized users). 22

9.8 Signing on to Applications Not Designated for Authenticating 23

Users 24

 A User Link-enabled application that has not been designated for authenticating users on a 25

particular desktop shall not allow the user to sign on to the application or the desktop. The user 26

must sign on to a designated application in order to sign on to a linked but non-designated 27

application. The user must break a non-designated application’s link with the common context 28

in order to sign on to just the application. 29

 If the application has not been designated for authenticating users and it is the first to be 30

launched on the desktop, the user must either launch an application that has been designated 31

for authenticating users, or the user must break the link of the non-designated application. The 32

user can then sign on to just the non-designated application. 33

 The CMA does specify a means by which an application can determine whether it has been 34

designated for authenticating users. See Section 11.3.7, SecureBinding (SB). This enables an 35

 Context Management Specification, Technology and Subject-Independent Component Architecture

 100 Copyright 1999, Health Level Seven Version CM-1.0

application to determine whether it has been designated before a user attempts to sign on to the 1

application. An application can use this information to present or hide its user interface user 2

sign on controls accordingly. 3

9.9 Application Behavior When Launched 4

 When a User Link-enabled application is launched on a desktop, it should join the common 5

context system established for the desktop. The application should set its user context to match 6

the current user context. If the application is Patient Link-enabled, it should also set its patient 7

context to match the current patient context. 8

9.10 Multiple Context Subjects 9

 User Link introduces user as an additional common context subject. This creates the need to 10

define what happens to one context, such as the user context, when another context, such as 11

patient context, changes. The simplest approach is to assume that there are no dependencies 12

between subjects. 13

 With this assumption, it should be possible for an application to independently set the context 14

data items for just one subject or for both subjects during the course of a single context change 15

transaction. For example, at the end of the transaction the application has set the user context, 16

the patient context, or both contexts. A context subject whose items have not been set by the 17

application shall remain as it was prior to the transaction. The details of managing multiple 18

context subjects are described in the following sections. 19

9.10.1 The Effect of Multiple Subjects on the Meaning of “Link” 20

 Even though there are multiple subjects in a common context system (e.g., patient and user), 21

there is only one link that coordinates the CMA-compliant applications on a desktop. This 22

means that when an application is linked, it must “tune” to all of the subjects it is capable of 23

dealing with. For example: 24

• An application that is only Patient Link-enabled tunes to just the patient context. 25

• An application that is only User Link-enabled tunes to just the user context. 26

• An application that is both Patient Link-enabled and User Link-enabled tunes to both 27

the patient context and the user context. 28

 Conversely, when the user breaks an application’s link, then the application shall no longer be 29

tuned to any context subject. 30

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 101

 Independent of the number of context subjects it supports, a single visual cue is provided by an 1

application to indicate whether or not it is linked. The appearance of this cue is defined in the 2

each of the HL7 context management technology-specific user interface specification 3

documents. 4

9.10.2 Context Manager Support for Multiple Context Subjects 5

 Even though context subjects such are logically independent, there are nevertheless 6

relationships between subjects. These relationships require that context manager 7

implementations have an understanding of multiple subjects and potentially the inter- 8

relationships between the subjects. Further, some applications may need to be aware that they 9

are dealing with multiple context subjects. There are two basic ways to address these issues: 10

• Maintain a context manager per subject. 11

• Support multiple context subjects within a single context manager. 12

 The first approach has the advantage that context manager implementations can be specialized 13

to support a single subject. For example, this would enable a Patient Link context manager 14

from one vendor to be used with a User Link context manager from another vendor. The 15

disadvantages are that applications would need to deal with two context managers. 16

 Further, the context managers would need some way to cooperate in order to coordinate 17

transactions that affect multiple subjects (such as a user context change). This coordination 18

would probably require the definition of additional context manager interfaces. This 19

coordination would also increase the complexity of the failure scenarios because of the 20

increased opportunity for partial failures (e.g., one context manager fails while the other 21

context manager continues to function). 22

 The second approach has the advantage that it enables the complexities of dealing with 23

multiple subjects to be hidden within the implementation of the context. Additional context 24

manager interfaces are not required, and partial failure scenarios are avoided. 25

 This approach also has the advantage that applications only need to deal with a single context 26

manager. 27

 The second approach has the disadvantage that context manager vendors would need to 28

support all subjects within their context managers. However, it the CMA philosophy to push 29

complexity into the context manager whenever it simplifies the creation of new applications 30

and the reengineering of existing applications. The second approach is the one that shall be 31

pursued in this document because, from the perspective of an application, it is simpler than the 32

first approach. 33

 Context Management Specification, Technology and Subject-Independent Component Architecture

 102 Copyright 1999, Health Level Seven Version CM-1.0

9.10.3 Effect of Multiple Subjects on Context Change Transaction 1

 For application flexibility and backwards compatibility, it is highly desirable that: 2

• An application does not have to know about both the user and patient subjects in order 3

to set the context pertaining to just one subject. 4

• Either or both the user and patient subjects can be updated within a single context 5

change transaction. 6

 However, these desires raise the question of how to treat context data for a subject that is not 7

“touched” during a transaction by the instigating application? There are two approaches: 8

1. At the completion of the transaction, the untouched subject is empty, meaning that it 9

does not contain any context items. 10

2. At the completion of the transaction, the untouched subject is unaffected, meaning that 11

it contains the same items and item values as it did before the transaction. 12

 The first approach is essentially consistent with the existing behavior defined for Patient Link. 13

Specifically, the context manager ensures that each context change transaction begins with an 14

empty context (i.e., no context items). With two subjects, only the subject that is touched 15

during a transaction will contain items at the completion of the transaction. 16

 However, a problem arises with this approach. An application that is only Patient Link-enabled 17

might be co-resident with applications that are Patient Link and User Link-enabled. If the 18

application that is only Patient Link-enabled changes the patient context, the user context 19

shared by the other applications will be lost (i.e., it will be empty). 20

 Applications could be required to know about both subjects and to explicitly copy the subject 21

that is not to be set from the current context to the new context. However, this creates a burden 22

on the application developers. It is also a substantial impediment to backward compatibility. 23

 The second approach avoids this problem, but requires changes to the behavior of applications 24

or to the behavior of the context manager. To ensure backward compatibility, changing the 25

behavior of applications is ruled out. This eliminates the option of requiring applications to 26

indicate which context subject or subjects it intends to set. (Further this would require changes 27

to the context manager’s interfaces.) 28

 A simpler solution involves a change to the context manager’s behavior that is nevertheless 29

backwards compatible with applications that are only Patient Link-enabled. This solution is 30

described in Section 9.10.4, Context Manager Treatment of Multi-Subject Context Data. 31

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 103

9.10.4 Context Manager Treatment of Multi-Subject Context Data 1

 As is currently the case with Patient Link, when a context change transaction is started, the 2

context manager creates a transaction-specific version of the context data. This version of the 3

context data is initially empty and does not contain any user subject or patient subject context 4

items. 5

 The application that instigated the transaction then establishes the new context by setting 6

context data item values for the user and/or the patient subjects. The application then informs 7

the context manager that it has completed its context changes. The context manager shall then 8

copy the items from the previous context to the new context for any subject that the instigating 9

application did not touch. This shall occur before the context manager surveys the context 10

participants. 11

 The net effect is that the instigating application sets context items for whichever subject(s) it 12

knows about. If a subject was “untouched” by the application, then the items for the subject 13

are automatically post-filled by the context manager to reflect the values as they were before 14

the context change transaction. 15

 For applications that are only Patient Link-enabled, this post-filling behavior emulates the 16

existing behavior defined for Patient Link. For applications that are User Link as well as 17

Patient Link-enabled, this behavior enables the user and patient subjects to be managed 18

independently. 19

 With these new rules, an application can just set subjects based upon the user’s explicit 20

gestures, such as selecting a patient, signing on, or both. As with Patient Link, an application 21

only needs to set the user (or patient) subject context items that it is capable of setting. For 22

example, an application may not be able to set all of the corroborating data for a subject. 23

Similarly, a participant application does not have to deal with all subjects, or show all of the 24

context data items defined for a subject. 25

9.10.5 Effect of Multiple Subjects on Mapping Agents 26

 For simplicity, each context subject (e.g., patient, user) shall have at most one corresponding 27

mapping agent. 28

 When a context change transaction reaches the phase during which the context manager 29

instructs mapping agents to map the context data (i.e., context changes are pending), the 30

context manager shall do so in a sequential manner. Each mapping agent shall be informed 31

only once per transaction that context changes are pending. 32

 The order in which a mapping agent is informed that context changes are pending is not 33

specified. A mapping agent shall not assume the existence of other mapping agents and shall 34

not assume that any subject other than the one it is responsible for mapping has been mapped. 35

 Context Management Specification, Technology and Subject-Independent Component Architecture

 104 Copyright 1999, Health Level Seven Version CM-1.0

9.10.6 Application Treatment of Multiple Subjects 1

 An application can change either or both the patient and user subjects in a single context 2

change transaction. However, unless the user expects multiple subjects to change as a result of 3

a gesture, it is recommended that an application generally change only one subject at a time. 4

This enables the user to relate changes in the common context to gestures that they have 5

explicitly performed. Cause-and-effect between a user’s gesture and a change in application 6

state is an important element in creating systems that are easy for people to use. 7

9.11 Access Control Lists 8

 Access control lists (ACL), which determine the privileges and capabilities a particular user 9

has, are presumed to be maintained by each application. While it is desirable that there be only 10

one centrally administered ACL, achieving this is beyond the scope of the CMA. However, 11

before central or distributed ACL’s can be properly used it is essential that the user be 12

authenticated. This is precisely the capability that User Link supports. 13

9.12 Empty Contexts 14

 With multiple independent subjects, applications need a way to explicitly indicate that the user 15

context, patient context, or both are empty. The reasons include: 16

• Enabling applications to change the user context without necessarily carrying over the 17

existing patient context. 18

• Enabling applications to log-off users by indicating that there is no user context. 19

 The capability to explicitly indicate that a context is empty is already defined in Section 5.6.8, 20

Representing an Empty Context Subject. The stated rules are extended to apply to User Link. 21

This means that the context can identify both a user and a patient, just a user, just a patient, or 22

neither. 23

 When one or both context subjects are empty, all of the applications in the context system shall 24

clearly indicate to the user that this is the case. The appearance of this indication is specified in 25

each of the HL7 context management technology-specific user interface specification 26

documents. 27

9.13 Changing Users 28

 With User Link, it is advantageous for applications to support a change-user capability. This 29

capability enables a new user to sign on without explicitly requiring that the current user first 30

log off. There are two ways in which this can be implemented by an application: 31

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 105

• The application performs a single user context change transaction to establish the new 1

user as the current user. 2

• The application performs a two-step process. In the first step, the current user is 3

logged off and the user context is set to empty (to indicate that there is no user). In the 4

second step, the new user is signed on, and the user context is set to indicate who the 5

new user is. 6

 The first approach is recommended because it is the simplest and the most efficient from the 7

perspective of the context system (e.g., only one context change transaction per user change). 8

The second approach is acceptable, however the two step process should be invisible to users. 9

 The gestures needed to change the user, and the appearance of the application as it pertains to 10

this capability, are not specified by the CMA. 11

9.14 Logging-Off and Application Termination 12

 User Link provides applications with an easy way to enable users to: 13

• Terminate a specific User Linked application on the clinical desktop6. 14

• Log off from a specific User Linked application on the clinical desktop. 15

• Log off from all of the User Linked applications on the clinical desktop. 16

 There are many possible ways in which these capabilities can be realized in a common context 17

system. The approach described in Table 1: User Link-Enabled Application Behavior for 18

Termination and Log-Off is defined because it is simple for users to understand, yet enables 19

design flexibility for application developers. 20

 The basic idea is that each User Link-enabled application optionally supports gestures that 21

enable the user to terminate the application, log off from just the application, or log off from 22

all of the User Linked applications that are resident on the same desktop. 23

 24

 6 Terminating all of the applications on a desktop is not supported because there is no way to indicate
this event via a change to the user context subject.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 106 Copyright 1999, Health Level Seven Version CM-1.0

 Table 1: User Link-Enabled Application Behavior for Termination and Log-Off 1

 2

 All User Link-enabled applications must behave properly as participants in a context change 3

transaction, as described in Table 1. All User Link-enabled applications must be able to 4

properly deal with the context when the user context is empty. 5

 However, the CMA does not specify the user gestures that are needed to initiate the actions 6

described in Table 1. The gestures may be different among applications. Further, an 7

application may chose which action gestures, if any, it will support. For example, a particular 8

application might not enable the user to terminate it, log off from it, or log off from the User 9

Linked desktop. 10

 An application that enables the user to log off shall clearly indicate that in doing so, the user 11

will cause the application to break its link with the common context system. 12

 There are several subtleties involved with the behaviors described in Table 1: 13

• Any application can set the user context to empty, including applications that have not 14

been designated for authenticating users. This enables any application to be used for 15

logging off from all of the User Linked applications on a desktop. 16

User Action Effect on Application
That User’s Action Is

Directed At

Effect on the Common
Context

Effect on Other User
Linked Applications on

the Desktop
Terminate a specific User
Linked application.

Application leaves the
common context, ceases
execution, and exits

None. None.

Log-off from a specific
User Linked application.

See Interaction Diagram
15: User Logs Off From
One Application.

Application:
• continues to run,
• logs the user off,
• visually indicates that

it has no user,
• leaves common

context (i.e., breaks
link)

None. None.

Log-off from all of the
User Linked applications
that are resident on the
same desktop.

See Interaction Diagram
16: User Logs-Off From
Desktop.

Application:
• continues to run,
• instigates a context

change transaction to
set the user context to
empty,

• visually indicates that
it has no user,

• continues to be a
context participant.

User subject set to empty. When the context change
is completed, each
application:
• continues to run,
• logs the user off,
• visually indicates that

it has no user,
• continues to be a

context participant.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 107

• A user might terminate the application(s) designated for authenticating users. The next 1

user will need to relaunch one of the designated applications before being able to sign 2

on to the User Linked desktop. 3

• It is conceivable that the collective capabilities of a particular set of User Link-enabled 4

applications on a desktop result in a system that does not provide any way for the user 5

to log off from the desktop. A site must be mindful in its choice of applications in 6

order to prevent this from happening. 7

 One issue with desktop log off is the treatment of “busy” applications. Busy applications affect 8

single sign on as well as desktop log-off, and is dealt with in Section 9.17, Busy Applications. 9

 10

User Context
Manager

Participating
Application YY

Participating
Application ZZ

User chooses log-off

User logged off
application AA

ONLY

Leave common context

Participating
Application AA

 11

 Interaction Diagram 15: User Logs Off From One Application 12

 13

User Context
Manager

Participating
Application YY

Participating
Application ZZ

User logged off from

desktop

User chooses desktop
 log-off

Set user context to empty

User context has changed

User context has changed

empty

empty

Get user context

Get user context

Participating
Application AA

 14

 Interaction Diagram 16: User Logs-Off From Desktop 15

 Context Management Specification, Technology and Subject-Independent Component Architecture

 108 Copyright 1999, Health Level Seven Version CM-1.0

9.15 Automatic Log-Off 1

 An automatic log-off logs the current user off of the User Linked applications on a desktop 2

when the user has not interacted with the applications for an appreciable period of time. 3

 Any application can initiate an automatic log-off by performing a context change transaction 4

that sets the user context to empty. This will have the effect of causing all of the other User 5

Linked applications on the desktop to also log the user off. Once an automatic log-off has 6

completed, the next user signs-on via one of the designated applications. 7

 In contrast to a user-initiated log-off, an automatic log-off is initiated automatically by an 8

application. The CMA does not specify an automatic log-off policy or implementation. It is an 9

application decision as to how and when to initiate an automatic log-off. 10

 For example, an application might monitor user interactions with the mouse and keyboard to 11

determine whether or not the user is actually engaged in using any of the applications on the 12

desktop. The capability to do this depends upon the application’s implementation and the 13

underlying desktop technology. 14

 An application that initiates a context change transaction to affect an automatic log-off must 15

be prepared to handle the condition in which surveyed applications are busy, or have responded 16

with a conditional accept of the transaction. In this case the instigating application shall cancel 17

the context change transaction. It shall not present a dialog to the user, as this could be 18

disruptive or confusing to the user. The application may elect to initiate an automatic log-off 19

again in the future. 20

 It is necessary that the administrator is able to configure the behavior of automatic log-off as it 21

pertains to a clinical desktop. Otherwise, the administrator has no control over an application 22

whose policy for initiating an automatic log-off interferes with the users’ work. 23

 Therefore, any application that initiates an automatic log-off shall provide a means for 24

controlling this capability. Specifically, it shall be possible to configure that application in 25

terms of whether the log-off it initiates is desktop-wide (and therefore affects all of the context 26

participants), or is limited to just the application. If the automatic log-off is limited to just the 27

application, then the application shall not perform a context change transaction when the 28

automatic log-off interval transpires. Instead, it shall just log the user off from itself. 29

9.16 Reauthentication Time-out 30

 A reauthentication time-out requires the currently signed-on user to reauthenticate herself 31

before being allowed to continue using the applications on a clinical desktop. The time-out 32

occurs when the user has not interacted with the desktop for an appreciable period of time. 33

Applications maintain their internal state as the user left it prior to the time-out, but interaction 34

with the applications cannot resume until the user has been reauthenticated. 35

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 109

 The time-out often manifests as a screen that overlays the entire display and that provides a 1

mechanism with which the user can reauthenticate herself. However, the CMA does not specify 2

a reauthentication time-out policy, visual appearance, or implementation. 3

 Any application can initiate a reauthentication time-out. However, a User Link-enabled 4

application that does so shall be: 5

• responsible for enabling the user to re-authenticate herself 6

• configurable such that a systems administrator can enable or disable the time-out 7

capability. 8

 These requirements enable sites to practice the following CMA recommendation: only a User 9

Link-enabled application that has been designated for authenticating users should be allowed to 10

initiate a reauthentication time-out. This enables the user to reauthenticate herself using an 11

application that is also normally used for signing on to the clinical desktop. 12

 This recommendation avoids the problem of forcing the user to be reauthenticated by an 13

application not normally used for signing on, and therefore having to remember their logon 14

name and password for the application. 15

 Once the current user is reauthenticated, then the User Link-enabled applications resume as 16

they were. If a different user signs on, then the User Link-enabled applications handle this as 17

they do whenever there is a change of user. 18

9.17 Busy Applications 19

 When a context change transaction is conducted, it is possible that an application is unable to 20

participate because it is busy. For example, a single-threaded application that has a modal 21

dialog open will not be able to respond until the dialog is closed. 22

 User Link deals with busy applications the same way as for Patient Link. Specifically, a busy 23

application effectively prevents a context change transaction from occurring. The only option 24

for the application that instigated the transaction is to ask the user if they want to break the 25

link. 26

 Breaking the link has the potential to compromise user security. With a broken link, multiple 27

users would effectively be logged on to different applications on the same desktop. 28

 However, this situation is not substantially different from breaking the Patient Link, which 29

results in different applications on the same desktop being tuned to different patients. Further, 30

without the option to break the link, CMA support for some important use cases, such as 31

“stat” admissions (see Section 7.12, Stat Admissions), would be lost. 32

 Context Management Specification, Technology and Subject-Independent Component Architecture

 110 Copyright 1999, Health Level Seven Version CM-1.0

9.18 Co-Existence with Applications Not User Link-Enabled 1

 User Link-enabled applications will co-exist with applications that are not User Link-enabled. 2

Users will still need to manually sign on to and log-off from each of the applications that are 3

not User Link-enabled. 4

 Co-existence can create confusion among users, as they might assume that all of the 5

applications on a desktop are User Link-enabled. Training, plus visual cues documented in the 6

HL7 context management technology-specific user interface specification documents are 7

partial solutions. Ultimately, users will come to learn which applications are User Link- 8

enabled, and which are not, and will adjust their use of these applications accordingly. 9

9.19 Populating the User Mapping Agent 10

 The user mapping agent is conceptually similar to the patient mapping agent defined for a 11

Patient Link common context system. For example, both types of mapping agents implement 12

the same interface specification, MappingAgent. However, the behavior and management of 13

the user mapping agent is substantially influenced by security considerations. Several of these 14

considerations are described in this section. The role of the user mapping agent is illustrated in 15

Figure 19: User Subject Context Data Mapped for Different Applications. 16

Application
“BBB”

Application
“AAA”

User.Id.Logon.AAA robs
User.Id.Logon.BBB robert_seliger
User.Id.Logon.CCC rseliger

Mapped User Context Data Within Context
Manager:

GetItemValues(…,
“User.Id.Logon.AAA”, …)

Application
“CCC”

GetItemValues(…,
“User.Id.Logon.CCC”, …)

GetItemValues(…,
“User.Id.Logon.BBB”, …)

Three applications, each of which knows the signed-
on user by a different logon name.

 17

 Figure 19: User Subject Context Data Mapped for Different Applications 18

 19

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 111

 In order for the user mapping agent to be able to provide additional logon names for users, it 1

must be populated with the necessary logon names. However, unlike the patient mapping 2

agent, for which there exists healthcare standards that can be used to obtain the necessary 3

patient data (e.g., HL7’s Admission/Discharge/Transfer messages), an equivalent means does 4

not exist for user data. In the absence of applicable standards, the means by which a user 5

mapping agent is populated depends upon the user mapping agent implementation. 6

9.20 Authentication Repository 7

 The chain of trust has the potential to maximize the overall security of a common context 8

system because the data used to authenticate a user is never passed between applications and 9

therefore cannot be easily intercepted or spoofed. However, not passing around this data 10

creates a problem when there are applications that require user authentication data to perform 11

a user sign on. For example, many existing healthcare applications require the user’s password 12

to establish sessions with their underlying databases. 13

 The common context system therefore includes a user authentication data repository as an 14

additional context management component. This repository enables applications to securely 15

maintain application-specific user authentication data. The repository is used by applications 16

that do not have a built-in means to easily sign on a user given only a logon name. The 17

repository may be implemented as a distributed or centralized service. 18

 For example, some applications obtain the user’s password from the user and then hand it off 19

to an underlying database. The database does the actual authentication. The security 20

capabilities of the database prevent these applications from retrieving user passwords. 21

Therefore, it is not possible for these applications to sign on a user knowing only the user’s 22

logon name. For these applications, an external means of maintaining user logon names and 23

associated authentication data is required. 24

 The authentication repository provides a way of doing this that is minimally invasive to the 25

application. The repository is not used for authenticating users. Rather, it enables existing 26

applications that need user authentication data to sign on the user to have a means for 27

obtaining this data when participating in a User Link common context system. 28

 The User Link user authentication data repository provides the capability to securely store the 29

data that an application uses to authenticate its users. The application can use a user’s logon 30

name to retrieve the user’s authentication data from the repository. The application can then 31

use the authentication data to establish a user session with a database or other underlying 32

application services. 33

 In keeping with the spirit of the CMA, the interfaces to the authentication repository, but not 34

its implementation, are defined. These interfaces enable an application to securely retrieve a 35

 Context Management Specification, Technology and Subject-Independent Component Architecture

 112 Copyright 1999, Health Level Seven Version CM-1.0

user’s authentication data and to update this data when necessary (for example, if the 1

application periodically requires that users change their passwords). 2

9.20.1 Repository Implementation Considerations 3

 The repository can be implemented as a central or distributed service that services multiple 4

applications. However, the repository shall always appear as a private service to each 5

application. This means that an application should never be aware that there are other 6

applications using the repository. 7

 The user authentication data stored in the repository on behalf of an application shall be 8

encrypted by the application prior to being communicated to the repository. The encryption 9

technique that is used is determined by the application. The authentication data shall remain 10

encrypted within the repository, as the repository never has the need to interpret or use this 11

data. 12

 The interface AuthenticationRepository enables an application to put tuples comprised of a 13

logon name and a corresponding bit stream (representing the user’s authentication data) into 14

the repository. This interface also enables an application to retrieve a user’s authentication 15

data using the user’s logon name. 16

 The means by which the repository maintains its data must be secure and shall guard against 17

security attacks. However, the security mechanisms that are employed to achieve these 18

objectives are an authentication repository implementation decision. 19

9.20.2 Populating the Repository 20

 The authentication repository needs to be populated with the authentication data for each user 21

for each application that it services. One way to do this is to create a batch process that loads 22

the necessary data. However, in many cases the necessary data is inaccessible. For example, 23

most database management systems do not provide a means for accessing the user passwords 24

that they store. 25

 A simpler alternative is to incrementally populate the repository. This can be accomplished by 26

involving each of the applications that use the repository in the process of populating the 27

repository, as follows: 28

• When the context manager informs the application that the user context has been set, 29

the application obtains the logon name for the new user from the context manager. 30

• The application then accesses the repository to securely retrieve the user’s 31

authentication data. The user’s logon name is supplied as the search parameter. 32

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 113

• If the repository cannot find the user logon name, which will be the case if the 1

repository has not yet been populated with data for the user, then it informs the 2

application that the logon is not known. 3

• The application then prompts the user to enter his/her authentication data by whatever 4

means the application normally uses (e.g., a password dialog box). 5

• The application attempts to sign-on the user using whatever underlying mechanism 6

(e.g., database) it normally uses to do this. 7

• If the user is successfully signed on, then the application updates the authentication 8

repository with the user’s authentication data, using the user’s logon as the update key. 9

The application shall encrypt the user’s authentication data prior to putting the data in 10

the repository. 11

 This scheme is relatively easy to implement for almost any application. It is essential, though, 12

that the repository and its interfaces are secure, as detailed in Chapter 0. 13

 Context Management Specification, Technology and Subject-Independent Component Architecture

 114 Copyright 1999, Health Level Seven Version CM-1.0

10 Chain of Trust 1

 This chapter defines the behaviors, algorithms, policies, and protocols that User Link-enabled 2

applications and components must adhere to in order to properly realize the chain of trust. 3

10.1 User Context Change Transactions and the Chain of Trust 4

 The major difference between a context change transaction that involves the user subject and a 5

transaction that involves only the patient subject is support in the former for the chain of trust. 6

Additional application and component behaviors are defined to prevent the chain of trust from 7

being violated. 8

 Two types of defenses are required: 9

• The applications and components that participate in the chain of trust must be able to 10

authenticate each other’s identity. The objective is to prevent rogue applications or 11

components from impersonating a real application or component as a means to 12

manipulate the user context. Such manipulations could result in an unauthorized user 13

gaining access to the User Link-enabled applications. 14

• The applications and components that participate in the chain of trust must be able to 15

validate the integrity of user context data that they communicate to each other. The 16

objective is to prevent a rogue program from modifying the data as it is passed 17

between applications and components as a means to manipulate the user context. Such 18

manipulation could result in an unauthorized user gaining access to the User Link- 19

enabled applications. 20

 Techniques for creating the chain of trust using passcodes, message authentication codes, and 21

digital signatures are described next. 22

10.2 Creating the Chain of Trust 23

 There are three general sources of mechanisms for creating the chain of trust: 24

• Mechanisms incorporated into existing commercially available object infrastructures, 25

such as those based upon CORBA or COM. 26

• Mechanisms based upon existing commercially available secure communications 27

infrastructures, such as the Secure Socket Layer service (SSL) or the Secure Hyper- 28

Text Transfer Protocol (S-HTTP). 29

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 115

• Mechanisms based upon existing widely available security building blocks, such as 1

public key / private key encryption. 2

 These alternatives are discussed next. 3

10.2.1 Object Infrastructures 4

 It is conceivable that the chain of trust could be realized using the security mechanisms built 5

into commercially available object infrastructures such as those based upon CORBA or COM. 6

Unfortunately, these infrastructures currently employ security models that are fundamentally 7

different from what is needed for User Link: 8

• Security for these infrastructures is based upon keeping track of who the user is and 9

their respective access privileges. 10

• To do this requires that the user has signed on to the underlying operating system. 11

• However, signing on at the operating system level takes too much time. This is the 12

very problem that User Link is trying to solve. 13

 For example, security in Microsoft’s COM-based infrastructure is based upon tracking who 14

the user is and what their permissions are. This means that when security is enabled for a 15

COM interface, a COM server accepts or rejects a COM client’s access attempts based upon 16

the privileges of the user on whose behalf the COM client is working. This does not work for 17

User Link because a COM server (specifically, the context manager) needs to accept or reject 18

accesses based upon which application is the COM client. The user is not relevant in this case. 19

 It may be possible to establish a stylized approach for adapting object infrastructure security 20

mechanisms to realize the chain of trust. However, this could make it particularly difficult to 21

define a technology-neutral specification for the chain of trust. This could result in different 22

User Link architectures for different technologies. This is counter to the overall CMA objective 23

of technology-neutrality. 24

10.2.2 Secure Communications Protocols 25

 User Link-enabled applications and the various CMA components could communicate using a 26

secure communications protocol, such as the Secure Sockets Layer (SSL) service. SSL enables 27

secure (i.e., encrypted) transmission of data between a client and a server. It also enables a 28

client to authenticate a server (and a server to authenticate a client). 29

 SSL uses the RSA public key encryption system for authentication and for data integrity and 30

confidentiality. Of interest for the chain of trust is the SSL capability for clients and servers to 31

authenticate each other. An SSL server uses its private key to create a digital signature. Public 32

keys are issued to prospective clients. The public key is used by the client to authenticate the 33

 Context Management Specification, Technology and Subject-Independent Component Architecture

 116 Copyright 1999, Health Level Seven Version CM-1.0

server by decoding the server’s signature. Only a signature that has been encoded using the 1

server’s private key can be (easily) decoded via the server’s public key. 2

 For example, in the chain of trust, an SSL connection would be established between an 3

application that has been designated for authenticating users and the context manager. In this 4

scenario, the application is an SSL server, while the context manager is an SSL client. 5

 SSL and its secure communications counterparts, such as S-HTTP, provide off-the-shelf 6

mechanisms for implementing the chain of trust. However, this technology has not been 7

integrated with popular object infrastructures, such as those based upon COM or CORBA. 8

 While secure communication services could provide a means for implementing the chain of 9

trust, the practical implications of using multiple communications technologies within the User 10

Link architecture are a cause for concern. For example, it could become overly complicated to 11

have some communications be via COM or CORBA interfaces, while other communications 12

use SSL or S-HTTP. 13

 Further, the chain of trust generally does not require confidentiality. For example, the User 14

Link architecture does not require that sensitive data, such as a user’s password, be 15

communicated between applications. Secure communication channels are overkill and are not a 16

good fit for User Link. 17

10.2.3 Security Building Blocks 18

 The security building blocks that are available on most popular operating systems can form the 19

basis for realizing the chain of trust. The two building blocks of particular interest are: 20

• Digital signatures. 21

• Secure (or one-way) hashing. 22

 Digital signatures, which cannot be easily forged, are typically used by people as a means to 23

authenticate each other’s identity whenever they communicate electronically. However, a 24

digital signature also enables an application or component to identify itself in a way that can be 25

authenticated whenever it communicates with another application or component. 26

 Digital signatures are formed using public key / private key encryption techniques. While these 27

techniques enable encryption, they also enable the formulation of digital signatures. An 28

application or component formulates its digital signature using its private key and sends the 29

signature along with the data that it wants to share. The recipient of a signed message applies 30

the sender’s public key to the signature to authenticate the sender and to verify the integrity of 31

the data that was sent. 32

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 117

 There are several public key / private key algorithms and related standards. Commercial 1

implementations of many of these algorithms are available in a variety of technologies. RSA is 2

an example of an algorithm that has been widely implemented. 3

 A secure hash function is used for producing a unique numeric surrogate from an arbitrary 4

data stream. It is improbable that two different data streams will yield the same hash value. A 5

secure hash function is an essential part of the infrastructure needed to support the use of 6

digital signatures. 7

 Specifically, a secure hash function enables the efficient computation of a digital signature. A 8

secure hash function also plays a role in enabling public keys to be reliably distributed. It is 9

essential that the holder of a public key is able to determine who (or what) the key belongs to. 10

Otherwise an impostor could present its own public key while claiming to be someone or 11

something that it is not. The holder of the public key would mistake subsequent 12

communications as coming from a valid source when in fact it came from an impostor. 13

 There are several secure hashing algorithms and related standards. Commercial 14

implementations of many of these algorithms are available in a variety of technologies. MD5 is 15

an example of an algorithm that has been widely implemented. 16

 Taken together, digital signatures and secure hashing could be used in the chain of trust as the 17

means for User Link-enabled applications and User Link components to authenticate each 18

others’ identity each time they communicate. This capability is fundamental to the 19

establishment and maintenance of the chain of trust. 20

 To accomplish this, a digital signature would be explicitly included as a method parameter for 21

each CMA-specified interface that requires this level of security. The use of digital signatures 22

enables the specification of a system that has the desired User Link semantics and that can be 23

readily implemented using existing security standards and technology. 24

 Creating a system that employs digital signatures for applications and components is simpler 25

than creating a signature-based system for users. This is because the population of applications 26

and User Link components that requires signatures is small compared to the number of users of 27

the system. Further, the population of applications and User Link components does not change 28

nearly as often as the user population. The result is that the work required to create and 29

maintain the chain of trust is substantially less than would be the case if user signatures were 30

required. 31

 Another advantage of digital signatures is that they can be used to ensure the integrity of any 32

data communicated during interactions among and between User Link components and User 33

Link-enabled applications. The recipient of the data can use the signature to determine if the 34

data has been tampered with between the time it was sent and the time it was received. 35

 Context Management Specification, Technology and Subject-Independent Component Architecture

 118 Copyright 1999, Health Level Seven Version CM-1.0

 Method-based digital signatures fit well with the component-based Context Management 1

Architecture. For example, realizing the chain of trust in this manner enables a technology- 2

neutral specification for the chain of trust. This is because the approach can exploit 3

capabilities common to public key / private key implementations that are commercially 4

available in multiple technologies. Further, the ways in which digital signatures are used can be 5

arranged to achieve the desired security behaviors needed for User Link. 6

 The trade-off is that more effort is required to architect the chain of trust than would be the 7

case if a standard “off-the-shelf” component-based solution was available. This trade-off is 8

viewed as acceptable. Therefore the approach pursued in the CMA is to use method-based 9

digital signatures as the basis for the chain of trust. 10

10.2.4 Security Attacks On the Chain Of Trust 11

 The primary challenge for realizing the chain of trust is minimizing the likelihood that an 12

intruder is able to violate the chain of trust to obtain access to a User Link-enabled application. 13

This violation could occur if a rogue program was able to set the user context to represent a 14

user who either has not been authenticated, or who is different from the user who has been 15

authenticated. 16

 The chain of trust based upon the security building blocks described in Section 10.2.3, 17

Security Building Blocks, defends against the security attacks described in the table below, all 18

of which are directed at manipulating the user context. Refer to Figure 18: User Link Sign-On 19

Process for the specific trust relationships: 20

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 119

 Table 2: Chain of Trust Attacks and Defenses 1

 The chain of trust does not necessarily need to defend against every type of attack, including 2

attacks to gain access to the user’s logon name (i.e., Step #4). A user’s logon name is easy to 3

guess or obtain, and in the absence of user authentication data (e.g., a password) a logon name 4

does not provide a means for gaining access to a system. 5

 The chain of trust also does not defend against applications that do a poor job of authenticating 6

users (i.e., Step #1). Provider institutions must ensure that the applications they designate for 7

authenticating users meet their security needs. 8

Attack Defense

Attempt to impersonate an application in order to set
the user context (Step #2).

An application presents its signature to the context
manager in order to set the user context. The context
manager uses the signature to authenticate the
application to ensure that has been designated for
authenticating users.

Attempt to impersonate the context manager so that
the user context that the user mapping agents sees,
and therefore maps, is bogus (Step #3).

The context manager presents its signature to the
mapping agent when the mapping agent gets the user
context data from the context manager. The mapping
agent uses the signature to authenticate the context
manager.

Attempt to impersonate the user mapping agent as a
means to set bogus user logon names within the user
context (Step #3).

The mapping agent presents its signature to the
context manager when it sets user context data. The
context manager uses the signature to authenticate the
mapping agent.

Attempt to impersonate the context manager so that
the user context that a participant application sees is
bogus (Step #5).

The context manager presents its signature to the
participant application when the application gets the
user context data from the context manager. The
application uses the signature to authenticate the
context manager.

Attempts to impersonate the authentication repository
as a means to obtain user authentication data from an
application (Step #6b).

The application encrypts the user authentication data
using the authentication repository’s public key before
providing the data to the repository. Only the real
authentication repository can decrypt this data.
Further, the application pre-encrypts the data using an
application-specific encryption scheme. The data
remains encrypted even when stored inside the
repository.

Attempt to impersonate an application as a means to
obtain user authentication data from the
authentication repository (Step #6b).

An application must present its signature to the
authentication repository when it gets user
authentication data from the repository. The
repository uses the signature to authenticate the
application. Further, the application encrypts the
authentication data before storing it in the repository.
Only the application that encrypted the data can
subsequently decrypt it.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 120 Copyright 1999, Health Level Seven Version CM-1.0

 Other types of attacks that are not defended by the chain of trust can result in a denial of 1

service, which may cause a common context system to function improperly. For example, a 2

rogue program might continually invoke context manager methods, causing the context 3

manager’s performance to degrade while it services these invocations. 4

 These programs do not breach security in terms of enabling unauthorized access to User Link- 5

enabled applications, but they do result in inconveniences for users of the system. In general it 6

is extremely hard, and can be quite costly, to defend against denial of service attacks. 7

 The most effective preventatives for denial of service attacks begin with physical security, in 8

which a malicious user is denied access to any of the computers within a system. Without 9

access to the system, a malicious user will have a much harder time installing rogue programs. 10

Physical security is strongly encouraged, but it is beyond the scope of the CMA to specify the 11

necessary measures. 12

 Additional potential limitations of the chain of trust are described in Section 10.2.5, Chain of 13

Trust Implementation Limitations. 14

10.2.5 Chain of Trust Implementation Limitations 15

 A secure implementation of the chain of trust requires that the User Link components (i.e., 16

context manager applications, mapping agent, authentication repository) all have a robust way 17

of authenticating each other’s identity. Providing this capability requires the use of underlying 18

operating systems primitives, including file access privileges and memory protection 19

mechanisms. 20

 Not all operating systems implement these security primitives to the same degree of robustness. 21

The approach for implementing the chain of trust described below is therefore fundamentally 22

limited by the capabilities (or lack thereof) of the underlying operating system upon which a 23

User Link system is deployed. 24

 In particular, Windows NT and most Unix-based operating systems provide the necessary 25

primitives. User Link systems deployed on these operating systems will offer robust security 26

capabilities. In contrast, Windows 95 and Windows 98 lacks many of the necessary primitives. 27

User Link systems deployed on this operating system will offer useful capabilities, but the 28

systems will not be any more secure than native Windows 95/98. 29

10.3 Digital Signatures and CMA Components 30

 Digital signatures created using a public key / private key encryption system are incorporated 31

into the component interfaces defined for User Link-enabled applications and components. In 32

the chain of trust these signatures (and corresponding keys) are not associated with a user, but 33

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 121

rather with an application or component. The signatures and keys for a particular application 1

are the same independent of who the user is. 2

 Several of the methods defined for the existing context manager interfaces already require that 3

applications identify themselves (e.g., ContextData::SetItemValues). The participant coupon, 4

which is an integer, is assigned by the context manager to an application when it joins a 5

common context system (via ContextManager::JoinCommonContext). This coupon is 6

subsequently used by the application to identify itself when it calls a context manager method 7

that requires application identification. 8

 The methods requiring applications to identify themselves do so to enforce the correct behavior 9

of a common context system. For example, only the application that instigated a context 10

change transaction or a mapping agent can set context data. Similarly, only the instigating 11

application can end the transaction in progress. 12

 However, the use of a participant coupon is not intended to be a security mechanism. For 13

example, a rogues application can impersonate a valid application by obtaining (or even 14

guessing) the value of the valid application’s coupon. Coupons are simply to enable the context 15

manager to identify the applications it is dealing with. 16

 An elaboration of the coupon approach is to use digital signatures as a means for applications 17

to identify themselves in a manner that can be authenticated. It is relatively straightforward to 18

use digital signatures in addition to coupons whenever it is necessary to authenticate an 19

application or component. 20

 Based on this approach, CMA interfaces are defined that enable the establishment of the 21

necessary signature-based security relationships among and between applications and context 22

management components. Additional CMA-defined interfaces subsequently enforce these 23

security relationships as applications and components interact during the course of a context 24

change transaction. 25

10.3.1 Public Key / Private Key Encryption as a Means for Generating Signatures 26

 Providing applications with digital signatures requires that each application or component that 27

is to be trusted is assigned a public key and private key based upon an algorithm such as RSA. 28

The private key is used to create a digital signature. The corresponding public key is used to 29

verify the signature. 30

 For example, an application supplies its participant coupon and its signature to the context 31

manager whenever it performs a context manager method that requires the context manager to 32

authenticate the identity of the application and validate the integrity of the data sent by the 33

application. 34

 Context Management Specification, Technology and Subject-Independent Component Architecture

 122 Copyright 1999, Health Level Seven Version CM-1.0

 A digital signature is formed by applying a secure hash function (alternatively known as a one- 1

way hash function) to the data that is to be transmitted. The resulting hash value is referred to 2

as the message digest, as it is a numeric surrogate for the plain-text message. It is 3

computationally improbable that two messages will produce the same hash value7. 4

 The message digest is then encrypted by the sender using its private key8. The digest can only 5

be decrypted using the sender’s public key. In other words, any party holding the sender’s 6

public key can authenticate that the message came from the sender and that the data sent was 7

received in tact9. 8

 The encrypted hash value enables the sender of the data to ensure that the receiver of the data 9

can authenticate the sender’s identity. The receiver uses the same secure hash function as the 10

sender to perform its own computation of a hash value using the data it received. Note that the 11

data was not encrypted. Just the hash value computed from the data was encrypted. 12

 The receiver compares the hash value it computed with the value it decrypted. The encrypted 13

hash value can only be successfully decrypted using the public key that matches the sender’s 14

private key. If the hash values match, then the data sender’s identity has been confirmed, and 15

the integrity of the data has been validated. 16

 If the hash values do not match, then either the data was tampered with between the time it was 17

sent and was received, or the sender is not who it claims to be. 18

 The algorithm for creating the hash value must be compatible with the public key / private key 19

scheme that is employed. For example, if RSA is the public key / private key scheme that is 20

used, then an RSA-supported hashing algorithm (e.g., MD5, SHA-1) must be employed to 21

create the hash value. When the signature is computed in this manner, authenticity and data 22

integrity can be verified. 23

 The specific secure hash algorithm and the public key / private key scheme that is employed is 24

technology-specific. Each of the HL7 Context Management Technology Mapping 25

Specifications indicates the secure hash algorithm public key / private key scheme that is 26

needed for a particular technology-specific implementation. 27

 7 When a secure hash function is used, it is also computationally infeasible to invert the computed
hash value. Specifically, given the secure hash function f and input value x, f(x) is relatively easy to
compute. However, even knowing f it is infeasible to compute x given f(x).

 8 The signing of a message digest rather than of the plain-text message is a performance expediency.
A digest is typically several bytes in size, whereas the message represented by a digest can be of
arbitrary size. It is generally faster to encrypt the digest rather than the entire message.

 9 This is the inverse of the process used to send a secret message, in which the sender encrypts data
with the intended recipient’s public key. Only the holder of the private key can decrypt the data.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 123

 The overall process for signing a message is illustrated Figure 20: Signing A Message. 1

Secure Hash

Secure Hash

Value

Encrypt Value

Value

COMPARE

By private key By public key

ReceiverSender
Original message

Signed message

Value
Decrypt

Copyright ©Jung Joo-won, 1996, http:// simac .kaist .ac.kr/~jwjung/seminar/ ssl-ca-inst/slides.en 2

 Figure 20: Signing A Message 3

 4

10.3.2 Incorporation of Signatures into the Context Management Architecture 5

 Digital signatures are incorporated in the Context Management Architecture to enable 6

authentication between User Link-enabled applications and User Link components. For 7

example, digital signatures enable the context manager to authenticate the identity of any 8

application that performs a context manager method. The context manager can also ensure the 9

integrity of the parameter values that it received from the application. 10

 The context manager accomplishes this by computing a hash value from the input parameters 11

it receives from the application. To obtain the application-computed hash value from the 12

signature the context manager must use the same public key / private key scheme as the 13

application. The context manager must also use the same hash algorithm as the application. 14

 The context manager compares the hash value it computes to the hash value it has obtained by 15

decrypting the application’s digital signature. If the two hash values match, then the method 16

invocation is authentic and data integrity is ensured. 17

 Otherwise, there has been a breach of security: either the method was invoked by an impostor 18

of the application, and/or the parameter values provided by the application were tampered with 19

after they were sent but before they were received by the context manager. The context 20

manager rejects the method invocation. 21

 Context Management Specification, Technology and Subject-Independent Component Architecture

 124 Copyright 1999, Health Level Seven Version CM-1.0

 To be more specific, for the context manager method Secure Context Data:: Set Item Values, 1

the hash value would be computed using the value of the participant application’s coupon (i.e., 2

input parameter participantCoupon), current context change transaction coupon10 (i.e., input 3

parameter contextCoupon), the names of the items whose values are to be set (i.e., input 4

parameter itemNames), and the values for these items (i.e., input parameter itemValues). 5

 The use of a hash in forming a signature is illustrated Figure 21: Forming Signature Using 6

Method Parameters. 7

 8

SetItemValues(
 participantCoupon = 172,
 itemNames = [“User.id.logon.3M_Clinical_Workstation”],
 itemValues = [“robs”]
 ContextCoupon = 9789,
 Signature = 0110101000100010011…0011
)

Authenticating
Application XXX

Context Manager

SD

Private key for XXX

Public key for XXX

Context manager uses XXX’s public key to decrypt the
hash value encrypted in the signature. The context
manager uses the same algorithm as XXX to compute a
has value from the parameter values provided in the call
to SetItemValues. The context manager compares to two
hash values. If they match, the call is valid.

XXX’s signature is the result of XXX using its private key
to encrypt a hash value computed using the parameter values
it provides in the call to SetItemValues … all of the
applications and the context manager use the same public
key/private key scheme for generating signatures. They must
also use the same hash algorithm.

 9
 10

 Figure 21: Forming Signature Using Method Parameters 11

 12

 10 This coupon denotes the current context change transaction, not the application. Each context
change coupon is unique over the execution lifetime of a particular context manager.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 125

10.3.3 Computing a Digital Signature 1

 Secure hash algorithms use a character string as the representation of the data value upon 2

which a hash value is to be computed. Therefore, parameter values that are to be protected 3

from tampering during a method invocation must be converted to character strings. These 4

strings must then be concatenated to form a single string. It is the concatenated string that is 5

used to compute the hash value. 6

 The rules for concatenation are as follows. These rules take into account the fact that the 7

mapping of CMA interfaces to specific technologies may alter the order in which method 8

parameters are declared and/or may require additional technology-specific parameters. The 9

rules ensure that the process for creating signatures is invariant across technologies: 10

• The architectural specification for each method that is to be signed will define which 11

method parameters must be protected from tampering, and are therefore to be used in 12

formulating the signature. 13

• The architectural specification for each method that is to be signed will define the 14

order in which the string representations of the parameters are to be concatenated. 15

• The string representation of an array parameter starts with the first element in the 16

array and ends with the last element in the array. 17

• A parameter or array element whose value is null or empty is omitted from the string. 18

• An array that does not contain any elements (i.e., the array length is zero) is omitted 19

from the string. 20

• Delimiters are not required because there is no need to parse the string. 21

 For example, the concatenated string that might be produced based upon the example in Figure 22

21: Forming Signature Using Method Parameters would look like: 23

 172User.id.logon.3M_Clinical_Workstationrobs9789 24

 25

 In another example, where the value of the context item “logon” is null, the concatenated string 26

would look like: 27

 172User.id.logon.3M_Clinical_Workstation9789 28

 29

 In a final example, where the context items are: 30

• User.id.logon.3M_Clinical_Workstation = “robs” 31

• User.co.GivenName = “Robert Seliger” 32

 Context Management Specification, Technology and Subject-Independent Component Architecture

 126 Copyright 1999, Health Level Seven Version CM-1.0

 The concatenated string would look like: 1

 172User.id.logon.3M_Clinical_WorkstationUser.co.GivenNamerobsRober 2
t Seliger9789 3

 4

 The rules for representing various data types as character strings are specified in Section 5

11.2.9, Representing Basic Data Types as Strings. 6

 Finally, once the hash value has been computed, encrypting the hash value with the sender’s 7

private key generates the digital signature. 8

10.3.4 Public Key Distribution 9

 Public key distribution is the process by which an entity, such as the context manager, makes 10

its public key available to the other entities, such as an application, that need to use the key. 11

This process must ensure that a receiving entity can reliably establish the identity of the entity 12

that created the key. If this is not accomplished then it is possible for a rogue entity to 13

impersonate a valid entity by representing the valid entity’s public key as its own. 14

 In contrast, private keys are not distributed, but remain the secret of the owner of the 15

corresponding public key. A discussion about protecting private keys appears in Section 16

10.3.4.3, Protecting Private Keys. 17

 There are a variety of ways that keys can be distributed, including via a certificate authority. 18

However, the approach chosen for the CMA minimizes the amount of infrastructure that is 19

required to create a User Link solution, yet is upwards compatible with more elaborate 20

approaches. 21

 Specifically, public keys are exchanged as part of a dynamic process that occurs each time a 22

User Link-enabled application11 or User Link component is launched. This approach enables a 23

high-degree of security while minimizing the effort and cost to develop and deploy User Link 24

solutions. 25

 A two-step binding process is used to dynamically distribute an application’s public key. The 26

process depends upon the use of secret passcodes that are assigned to user Link-enabled 27

applications (specifically, applications that are capable of being designated for authenticating 28

users) and User Link components. An application or component uses its passcode to prove its 29

identity when it presents its public key. A passcode is a complex, arbitrary alphanumeric 30

string. 31

 11 Not all applications need a public key. Applications that need public keys are those that are
designated for authenticating users, and those that use the authentication repository.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 127

 A passcode is not actually transmitted when a secure binding is established. Instead, a secure 1

hash function is used to produce a message authentication code. A message authentication 2

code is a secure hash value produced from a data stream that consists of data that is openly 3

communicated between two parties, and “secret” data that they both know but do not openly 4

communicate. In the CMA, a passcode serves as the shared secret. 5

 The binding process involves a “bindee” and a “binder.” In order to bind, a bindee must have a 6

passcode. Both the bindee and the binder must have knowledge of the passcode. The means for 7

providing the bindee and binder with a pass code are not specified in the CMA. However, 8

requirements and guidelines are described in Section 10.3.4.1, Passcode Generation 9

Requirements. 10

 The following table describes the relationships between User Link-enabled applications and 11

User Link components in terms of the secure binding process: 12

 13

 Bindee Binder

 Context Participant Application Context Manager

 Context Participant Application Authentication Repository

 Mapping Agent Context Manager

 14

 The bindee initiates the binding process with the binder. The bindee assumes it knows the 15

identity of the binder, but will prove the binder’s identity as part of the binding process. 16

Similarly, the binder will establish the identity of the bindee as part of the binding process. 17

 The following interactions then occur: 18

1. The bindee symbolically identifies itself to the binder. The binder uses this information 19

to locate the binder’s copy of the bindee’s passcode. The passcode is not transmitted 20

by the bindee. 21

2. The binder sends back its public key, and a message authentication code. This code is 22

a secure hash value computed from a data stream formulated from the binder’s public 23

key and the binder’s copy of the bindee’s passcode. 24

3. The bindee uses the public key it has received and its copy of its passcode to formulate 25

a data stream from which it also computes a secure hash value. (The hash algorithm it 26

uses must be the same as the one that the binder used.) The bindee compares the 27

resulting hash value to the message authentication code. If the two match, then the 28

 Context Management Specification, Technology and Subject-Independent Component Architecture

 128 Copyright 1999, Health Level Seven Version CM-1.0

binder is who it claims to be and the public key received by the bindee indeed belongs 1

to the binder. 2

4. The bindee again identifies itself to the binder and sends its public key, along with a 3

new message authentication code. This code is a secure hash value computed from a 4

data stream formulated from the bindee’s public key and the bindee’s copy of its 5

passcode. 6

5. The binder uses the public key it has received and its copy of the bindee’s passcode to 7

formulate a data stream from which it also computes a secure hash value. (The hash 8

algorithm it uses must be the same as the one that the bindee used.) The binder 9

compares the resulting hash value to the message authentication code. If the two 10

match, then the bindee is who it claims to be and the public key received by the binder 11

indeed belongs to the bindee. 12

 An application requires a passcode for binding with the context manager. This passcode is a 13

secret known only to the application and the context manager. 14

 An application also requires a passcode for binding with the authentication repository. This 15

passcode is a secret known only to the application and the authentication repository. An 16

application that binds to both the context manager and the authentication repository shall use 17

different passcodes for each binding. 18

10.3.4.1 Passcode Generation Requirements 19

 Passcodes are similar to passwords used by people. However, because passcodes are only used 20

by computer programs, they can be much longer and complex than passwords typically are. 21

This makes passcodes extremely hard to guess, even when brute force techniques are 22

employed. 23

 An application passcode shall be a character string comprised of no less than one hundred 24

(128) characters and no greater than two-hundred fifty-six (256) characters. A passcode shall 25

only be comprised of alphanumeric characters, as well as the underscore (_) and dash (-) 26

characters. A passcode shall not contain white space (e.g., tabs, spaces). A passcode shall be 27

arbitrary but shall not contain any words or phrases. 28

 An application’s passcode may be generated such that the same passcode is used for every 29

instance of the application everywhere. This is the least secure means of generating passcodes, 30

because a security breach affects every instance of the application. 31

 An application’s passcode may be generated such that the same passcode is used for every 32

instance of the application at a particular site. This is a moderately secure means of generating 33

passcodes, because a security breach is at least limited to a particular site. 34

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 129

 An application’s passcode may be generated such that a unique passcode is used for each 1

desktop upon which the application is used. This is the most secure means of generating 2

passcodes because a security breach is limited to a single desktop. This is the recommended 3

approach. 4

10.3.4.2 Protecting Passcodes 5

 Passcodes must remain secret. There are numerous ways in which this can be achieved. The 6

specific approach is left as an implementation decision for applications and the various context 7

management components. 8

 However, the following approach is recommended for applications. The assumption is that any 9

application that is used to authenticate users probably uses a server to maintain user account 10

and authorization information. The application might be organized using a client/server 11

architecture, or a web server architecture. 12

 The principle challenge is how to create an application such that the portion of the application 13

that serves as a context participant has a secure means to store and retrieve its passcode. In the 14

case of client/server systems, an approach could be to store the passcode on each clinical 15

desktop upon which the client has been loaded. In web systems, an approach could be to 16

transmit the passcode from the web server to the desktop. Both of these approaches introduce 17

substantial security risks that would require great effort to defend against. 18

 An alternative is for an application to store its passcode in a server, where it can be more 19

readily protected (including literally placed under lock and key). This could be the 20

application’s database server, or it could be a separate server whose specific role is to securely 21

maintain passcodes. 22

 The server would never actually transmit the passcode. Rather, it would be responsible for 23

verifying message authentication codes received by the application. It would also be 24

responsible for computing the application’s message authentication code. 25

 In this approach, the server must be able to authenticate the identity of the application. The 26

server must also be sure that the data it sends and receives from the application is not tampered 27

with while it is in transit. This implies that the application must have the means for 28

establishing a trusted relationship with the server in a manner somewhat akin to the 29

relationship the application establishes with the context manager or authentication repository. 30

 There are many ways in which the necessary relationship can be implemented. However, 31

because this relationship does not involve interoperation between applications, and because the 32

optimal approach depends heavily upon the architecture and design of the application, a single 33

approach is not specified. Instead, the approach for the server-based maintenance of an 34

application’s passcode is left as an application design exercise. 35

 Context Management Specification, Technology and Subject-Independent Component Architecture

 130 Copyright 1999, Health Level Seven Version CM-1.0

10.3.4.3 Protecting Private Keys 1

 The key distribution process described in Section 10.3.4, Public Key Distribution, does not 2

prescribe when keys are created. However, once created, a private key must remain the secret 3

of its owner for as long as it is in use. 4

 It is possible to statically create a public key / private key pair for an application or 5

component. However, this approach requires the use of a persistent store within which the 6

public key / private key pair are housed when the application or component is not executing. If 7

such a store were used, it would need to be defended against security attacks. This can be 8

accomplished, but at the cost of adding complexity to applications or components. 9

 The recommended alternative approach is for an application or component to dynamically 10

create its key pair when launched. This enables the keys to be kept in memory, and avoids the 11

complexity of using a persistent store. While it is conceivable that an in-memory private key 12

could be accessed by an intruder, most contemporary operating systems enable a process to 13

prevent other processes from reading its memory. 14

10.3.5 System Configuration Requirements 15

 The system configuration capabilities necessary in order to deploy a User Link system are 16

summarized as follows: 17

• The context manager shall provide a means for entering the symbolic names of the 18

applications that have been designated for authenticating users. It shall be possible to 19

establish these names on a per-desktop basis for each site. It shall not be possible for 20

anyone but the site’s system administrator to modify the names known to a context 21

manager. 22

• The context manager shall provide a means for entering the symbolic name and 23

corresponding passcode for each application that has been designated for 24

authenticating users at a particular site. This process shall be performed such that the 25

passcode remains a secret known only to the application, the context manager, and 26

perhaps the system administrator who conveys the information from the application to 27

the context manager. 28

• The context manager shall provide a means for entering the symbolic name and 29

corresponding passcode for the user mapping agent used at a particular site. This 30

process shall be performed such that the passcode remains a secret known only to the 31

user mapping agent, the context manager, and perhaps the system administrator who 32

conveys the information from the application to the context manager. 33

• The authentication repository shall provide a means for entering the symbolic name 34

and corresponding passcode for each application that uses the authentication 35

repository at a particular site. This process shall be performed such that the passcode 36

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 131

remains a secret known only to the application, the authentication repository, and 1

perhaps the system administrator who conveys the information from the application to 2

the authentication repository. 3

• Applications capable of being designated for authenticating users, and the user 4

mapping agent, shall provide a means of either obtaining a passcode or for entering a 5

passcode. This process shall be performed such that the secret passcode remains a 6

secret known only to the application or user mapping agent, the context manager, and 7

perhaps the system administrator who conveys the information from the application or 8

user mapping agent to the context manager. 9

 There are numerous ways in which these capabilities can be implemented. It is beyond the 10

scope of the CMA to specify these capabilities. The specific approaches are left as an 11

implementation decision for applications and the various context management components. 12

10.3.6 Defending Against Replay Attacks 13

 In a replay attack, an intruder captures valid messages that have been previously 14

communicated and retransmits them at a later time in the hope of violating a system. 15

 For example, an intruder might capture a message that enables a user to log on. Even though 16

the intruder might not be able to read the message (it might be encrypted), the intruder might 17

be able to “replay” the message at later time in order to gain access to the system. In this case, 18

the intruder would be able to log on as the user whose actions resulted in the transmission of 19

the original message. 20

 The general approach for defending against replay attacks is to include a “nonce” in each 21

message. The nonce is simply a number that is different each time a message is sent, and is 22

used in computing the hash value for a message. The recipient of a message can keep track of 23

nonces it has seen, and simply reject messages that contain previously seen nonces. 24

 In the CMA, context change coupons in conjunction with the recommend approach of 25

dynamically-generated public key/private key pairs (see Section 10.3.4.3, Protecting Private 26

Keys) defend against replay attacks. 27

 A context change coupon serves as a nonce whose uniqueness is ensured while a context 28

management system is active (i.e., from the time the first participant joins to the time the last 29

participant leaves). Dynamically-generated keys ensure that signed messages can only be 30

authenticated while a context management system is active. Signed messages from earlier 31

activations of the system are meaningless. Together, the use of context change coupons as 32

nonces and dynamically generated keys provide a strong defense against replay attacks. 33

 34

 Context Management Specification, Technology and Subject-Independent Component Architecture

 132 Copyright 1999, Health Level Seven Version CM-1.0

10.4 Trust Relationships 1

 This section specifies application and component behaviors for realizing the chain of trust. 2

10.4.1 Trust Between Applications and Context Manager 3

 A User Link-enabled application shall obtain a reference to the context manager’s principal 4

interface from the interface reference registry. The application shall interrogate this interface to 5

obtain a reference to the context manager’s SecureBinding interface. 6

 A User Link-enabled application shall establish a secure binding with the context manager, per 7

Section 10.3.4, Public Key Distribution, after it has joined the common context system but 8

before it instigates any user context change transactions. This ensures that the application: 9

• is communicating with the real context manager, 10

• has obtained the real context manager’s public key, 11

• has provided the context manager with its public key. 12

 A User Link-enabled application shall create a digital signature to sign the context manager 13

methods it invokes in order to set context data that includes user subject context items. This 14

enables the context manager to authenticate the application, and to ensure the integrity of the 15

communicated context data items. 16

 The context manager shall create a digital signature to sign return values it communicates to an 17

application whenever these values include user subject context items. This enables the 18

application to authenticate the context manager, and to ensure the integrity of the 19

communicated context data items. 20

 All other interactions between applications and the context manger do not need to follow these 21

rules. 22

10.4.2 Trust Between Context Manager and User Mapping Agent 23

 The user mapping agent shall obtain a reference to the context manager’s principal interface 24

from the interface reference registry. The user mapping agent shall interrogate this interface to 25

obtain a reference to the context manager’s SecureBinding interface. 26

 The user mapping agent shall establish a secure binding with the context manager, per Section 27

10.3.4, Public Key Distribution, before it maps any user context data. This ensures that the 28

user mapping: 29

• is communicating with the real context manager, 30

• has obtained the real context manager’s public key, 31

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 133

• has provided the context manager with its public key. 1

 The user mapping agent shall create a digital signature to sign the context manager methods it 2

invokes in order to set context data that includes user subject context items. This enables the 3

context manager to authenticate the user mapping agent, and to ensure the integrity of the 4

communicated context data items. 5

 The context manager shall create a digital signature to sign return values it communicates to 6

the user mapping agent whenever these values includes user subject context items. This enables 7

the user mapping agent to authenticate the context manager, and to ensure the integrity of the 8

communicated context data items. 9

 All other interactions between the context manager and the user mapping agent do not need to 10

follow these rules. 11

10.4.3 Trust Between Applications and Authentication Repository 12

 A User Link-enabled application shall obtain a reference to the authentication repository’s 13

principal interface from the secure registry. The application shall interrogate this interface to 14

obtain a reference to the authentication repository’s SecureBinding interface. 15

 A User Link-enabled application shall establish a secure binding, with the authentication 16

repository, per Section 10.3.4, Public Key Distribution, after it has joined the common context 17

system but before it instigates any user context change transactions. This ensures that the 18

application: 19

• is communicating with the real authentication repository, 20

• has obtained the real authentication repository’s public key, 21

• has provided the authentication repository with its public key. 22

 A User Link-enabled application shall create a digital signature to sign the authentication 23

repository methods it invokes in order to set user authentication data. This data shall also be 24

encrypted by a means chosen by the application, and then encrypted again upon 25

communication using the authentication repository’s public key. The repository shall decrypt 26

the data using its private key only when it needs to service a valid application request to 27

retrieve the data. The repository shall never decrypt the data from its application-specific 28

encrypted form. 29

 This enables the authentication repository to authenticate the application, to ensure the 30

integrity of the communicated authentication data, to keep the authentication data confidential 31

when it is communicated, and to defend against intrusions into the repository to obtain user 32

authentication data. 33

 Context Management Specification, Technology and Subject-Independent Component Architecture

 134 Copyright 1999, Health Level Seven Version CM-1.0

 The authentication repository shall create a digital signature to sign user authentication data it 1

communicates to an application. User authentication data that is communicated back to an 2

application shall remain encrypted as it was when provided by the application. This data shall 3

be encrypted again upon communication using the application’s public key. 4

 This enables the application to authenticate the authentication repository, to keep the 5

authentication data confidential when it is communicated, and to ensure the integrity of the 6

communicated user authentication data. 7

 All other interactions between applications and the authentication repository do not need to 8

follow these rules. 9

10.5 Chain of Trust Interactions 10

 The detailed interactions for several use cases involving the chain of trust are illustrated below. 11

A description for how to interpret the notation used in these diagrams appears in Appendix I. 12

The following additional notation is used: 13

• The character “|” indicates the concatenation of two strings, for example, “qrs|xyz” to 14

form “qrsxyz”. 15

• XXSignature(a|b|c)indicates the digital signature for XX. The signature is formed by 16

applying a one-way hash function to the parameter values a, b, and c, and then 17

encrypting the resulting hash value using XX’s private key. 18

• XXPublicKey(abcd) indicates that the data “abcd” is encrypted using the public key 19

for XX. 20

• XXEncrypt(abcd) indicates that the data “abcd” is encrypted using an encryption 21

scheme chosen by XX. 22

• Hash(abcd) indicates a value produced by applying a one-way hash function to the 23

data “abcd” . 24

• The abbreviation ZZ represents application ZZ, CM represents the context manager, 25

AR represents the authentication repository, and MA represents the user mapping 26

agent. 27

 28

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 135

Repository has no
user data for “robs” so
Application ZZ
queries user for his
authentication data.
Application ZZ then
populates
repository with
encrypted
user authentication
data.

Participating
Application ZZ

 Authentication
Repository

InitiateBinding(ZZConnectionCoupon)

publicKey= ARPublicKey
mac = Hash(ARPublicKey|ZZPasscode)

SetAuthenticationData(ZZConnectionCoupon, "robs", "password", ARPublicKey(ZZEncrypt(robs_password)),
 ZZSignature((Hash(ZZConnectionCoupon|robs|password|ARPublicKey(ZZEncrypt(robs_password))))

GetAuthenticationData(ZZConnectionCoupon, "robs", "", ZZSignature(Hash(ZZConnectionCoupon|robs)))

Logon “robs” not found!

FinalizeBinding(ZZConnectionCoupon, ZZPublicKey, Hash(ZZPublicKey|ZZPasscode))

 1
 2

 Interaction Diagram 17: Populating Authentication Repository with User Authentication Data 3

 Context Management Specification, Technology and Subject-Independent Component Architecture

 136 Copyright 1999, Health Level Seven Version CM-1.0

User logged-on

User Application AA
trusted to

Context
Manager

User Link
Mapping Agent

Participating
Application YY

Participating
Application ZZ

User
enters"robs" and

password

User authenticated

StartContextChanges()

SetItemValues(98765,<"user.id.logon.3M_Clinical_Workstation">, <"robs">, 45678, AASignature(Hash(98765|user.id.logon.3M_Clinical_Workstation|robs|45678)))

EndContextChanges()

ContextChangesPending()

ContextChangesPending()

PublishChangesDecision()

ContextChangesAccepted()

GetItemValues("User.*", 45678)

GetItemValues("User.*", 45678)

Chain of Trust: Participating applications trust user was authenticated by a trusted application

Is this one of the designated
user authenication

applications?

Yes, do the set.

SetItemValues(90092, <"user.id.logon.HP_CareVue">, <"Rob_Seliger">, 45678, MASignature(Hash(90092|user.id.logon|Rob_Seliger|45678)))

Is this the
authentic user

mapping agent?

Yes, do the SetItemValues.

contextcoupon=45678

User has
access to

application.

GetItemValues("User.*")

ContextChangesPending()

ContextChangesAccepted()

itemValues = <“robs”>,
signature = CMSignature(Hash(45678|robs))

itemValues = <”robs”><”Rob_Seliger”>
signature = CMSignature(Hash(robs|Rob_Seliger|45678))

itemValues = <”robs”><”Rob_Seliger”>
signature = CMSignature(Hash(robs|Rob_Seliger|45678))

 1
 2

 Interaction Diagram 18: User Link Context Change Transaction 3

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 137

 1

 Context Management Specification, Technology and Subject-Independent Component Architecture

 138 Copyright 1999, Health Level Seven Version CM-1.0

11 Interface Definitions 1

 It is assumed that an underlying technology infrastructure that supports distributed objects is 2

used to implement a common context system, although a specific technology is not assumed. 3

However, the capabilities of Microsoft’s COM-based Automation technology are considered as 4

a baseline. This implies that the architecture must work well within the constraints of 5

Microsoft Automation, including issues that pertain to performance and supported data types. 6

 An abstract set of CMA component interface definitions is described below. These interfaces 7

are defined using a precise and concise interface definition language (IDL) created for 8

specifying the CMA. This IDL is not meant to be a comprehensive interface specification 9

language. Only the capabilities that are required for specifying CMA component interfaces are 10

included in the IDL. 11

 A CMA-specific IDL is used because existing interface specification languages have direct or 12

indirect ties to specific technologies. For example, OMG’s IDL implies that the interfaces are 13

implemented using CORBA-based technology. Microsoft’s MIDL requires that the interfaces 14

are implemented using COM/DCOM technology. The use of these specification languages 15

confuses and possibly compromises the technology-neutrality of the CMA specification. 16

 Experience has shown that the interface constructs represented in IDL defined below can be 17

easily mapped to interfaces that can be implemented using a specific technology such as 18

ActiveX, CORBA, Java, or HTTP. The mapping for each specific technology appears in a 19

separate Context Management specification document. 20

11.1 Interface Definition Language 21

 The interface definition language (IDL) used in this document enables specifying the following 22

facts about a component interface: 23

• The interface’s symbolic name. 24

• The set of component properties and methods that can be accessed via the interface. 25

• The name and data type of each property, and optional restrictions (e.g., read-only). 26

• The names and data types for each method’s input and outputs. 27

• The names and data content for each method’s exceptions. 28

 The IDL also defines a set of simple data types and the capability to represent sequences of 29

these types. 30

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 139

 In the following sections, IDL reserved words are shown in bold font. Identifiers are shown in 1

italics. An identifier is an alphanumeric string that starts with an alphabetic character. 2

11.1.1 Interface Definition Body 3

 The body of an interface definition creates a lexical scope distinct from all other interface 4

definitions. The body of an interface is specified as: 5

 interface interfacename { ... } 6
 7

 Interfacename is the symbolic name of the interface. The curly brackets delimit the scope of 8

the interface’s body. 9

 The body of an interface begins with the declaration of any exceptions that can be raised by 10

methods defined for the interface. The details of declaring exceptions are discussed later. 11

 The properties that can be accessed through the interface are listed next. A property is a data 12

value that can be read or set via the interface: 13

 datatype propertyname 14
 15

 Datatype is the data type for the property. The type is one of the simple types defined below, 16

as denoted by the appropriate IDL reserved word. 17

 Propertyname is the symbolic name of the property. A property’s name must be distinct as 18

compared to the names of other properties, methods, and exceptions defined within the same 19

lexical scope. 20

 Properties can also be sequences. Sequences are described below. 21

 Properties can be restricted to read-only: 22

 readonly datatype propertyname 23
 24

 The value of a read-only property can be read, but not set, via the interface. 25

 Finally, the methods are listed: 26

 methodname inputs (...) outputs (....) exceptions (...) 27
 28

 Methodname is the symbolic name of the method. A method’s name must be distinct as 29

compared to the names of other properties, methods, and exceptions defined within the same 30

lexical scope. 31

 The method’s inputs, outputs, and exceptions follow the method’s name. If a method does not 32

have any inputs, outputs, or exceptions, then only white space should appear between the 33

appropriate set of parentheses. 34

 Context Management Specification, Technology and Subject-Independent Component Architecture

 140 Copyright 1999, Health Level Seven Version CM-1.0

 Each input and output is defined as: 1

 datatype name 2
 3

 Datatype is the data type for the input or output. The type is one of the simple types defined 4

below, as denoted by the appropriate IDL reserved word. In an actual interface definition, the 5

appropriate IDL reserved word is used to indicate the type. Inputs and outputs can also be 6

sequences. Sequences are described below. 7

 Name is the symbolic name of the input or output. The name of inputs for a method must be 8

distinct for the method. The name of each output for a method must be distinct for the method. 9

 Multiple inputs and outputs are separated by a comma. 10

 Exceptions are listed only by their name. Multiple exceptions are separated by a comma. 11

11.1.2 Simple Data Types 12

 The following simple data types are supported. The reserved words used to indicate each type 13

are shown: 14

 byte Eight uninterpreted bits

 short 16-bit signed integer

 long 32-bit signed integer

 float 32-bit floating point number

 double 64-bit floating point number

 boolean Indicates true, or false

 string A string of characters

 date A specific year/month/day/time, with a precision of one second, and including
the time zone

 type An enumeration that denotes each of these data types (except type) as well as
the special types null (valid value not known) and empty (data type not known)

 variant A tagged union of all of these data types (including type and variant)

 15

 The concrete representations of these data types are not defined. They depend upon the 16

interface implementation technology. 17

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 141

11.1.3 Exception Declaration 1

 An exception declaration introduces an exception that can be raised by one or more of the 2

methods defined for the interface within whose lexical scope the exception declaration appears. 3

Each exception declaration indicates the exception name and an optional set of data values. 4

The name denotes the exception and the data values provide additional run-time information 5

about the reason for the exception. 6

 An exception declaration is specified as: 7

 exception name { ... } 8
 9

 Name is the symbolic name of the exception. An exception’s name must be distinct as 10

compared to the names of other properties, methods, and exceptions defined within the same 11

lexical scope. 12

 Exception data values are specified as: 13

 datatype name ; 14
 15

 Datatype is the data type for the exception value. The type is one of the simple types defined 16

above, as denoted by the appropriate IDL reserved word. In an actual interface definition, the 17

appropriate IDL reserved word is used to indicate the type. Exception values can also be 18

sequences. Sequences are described below. 19

 Name is the symbolic name of the exception value. The name of each value for an exception 20

must be distinct for the exception. 21

11.1.4 Sequences 22

 A sequence is a single-dimensional vector of sequential data values. Each data value is denoted 23

by an index whose type is long. The values for these indices are sequential. The value of the 24

first index is not specified; this value depends upon the interface implementation technology. 25

 A sequence with no restrictions on the quantity of values it can contain is specified as: 26

 datatype[]name 27
 28

 Datatype is the data type of the values in the sequence. The type is one of the simple types 29

defined above, as denoted by the appropriate IDL reserved word. Name is the name of the 30

property, input or output, or exception data value. 31

 Context Management Specification, Technology and Subject-Independent Component Architecture

 142 Copyright 1999, Health Level Seven Version CM-1.0

 A sequence with restrictions on the quantity of values it can contain is specified as: 1

 datatype[quantity] name 2
 3

 Quantity is a numeric value that indicates the maximum quantity of values that the sequence 4

can contain. A sequence may contain less than this quantity. The means by which the quantity 5

of values in a sequence is determined depends upon the interface implementation technology. 6

11.1.5 Interface References 7

 An interface reference enables access to a specific interface to a specific instance of a 8

component that implements the interface. The interface reference data type represents an 9

interface reference. The type of a property, method input, method output, and exception data 10

value can be an interface reference: 11

 interfacename name 12
 13

 Interfacename is the name of the interface that the reference represents. Name is the name of 14

the property, input or output, or exception data value. 15

11.1.6 Principal Interface 16

 The reserved word Principal is the interface name for a component’s principal interface. The 17

role of a component’s principal interface is discussed in Section 6.1, Component and 18

Interface Concepts. The type of a property, method input, method output, and exception data 19

value can be an interface reference to a principal interface: 20

 Principal name 21
 22

 Name is the name of the property, input or output, or exception data value. 23

11.1.7 Qualifying Names 24

 In the IDL there is never a case in which the names of properties, methods, and exceptions 25

defined in one lexical scope are referenced in another lexical scope. However, when 26

documenting the interfaces it can be useful to indicate the scope within which a particular 27

property, method, or exception name has been defined. 28

 The convention for doing so is to formulate a qualified name comprised of the name of the 29

interface within whose scope the property, method, or exception of interest was defined, 30

followed by a pair of colons (::) followed by the name of the property, method, or exception, 31

for example: 32

 ContextManager::JoinCommonContext 33
 34

 denotes the method JoinCommonContext as defined for the interface ContextManager. 35

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 143

11.2 Interface Implementation Issues 1

 This section describes requirements that all CMA interface implementations must respect. 2

11.2.1 NotImplemented Exception 3

 In the event that a method is not implemented, the exception NotImplemented shall be raised. 4

This exception can be raised, for example, when a method has been deprecated and is no longer 5

implemented by a CMA component. This exception can implicitly be raised by any method 6

defined using CMA IDL and need not be explicitly declared. 7

11.2.2 GeneralFailure Exception 8

 In the event that a method cannot be properly performed due to an error or failure condition, 9

and an explicitly defined exception does not appropriate represent the situation, then the 10

exception GeneralFailure shall be raised. This exception might be raised, for example, when a 11

CMA component is unable complete a computation due to an internal error. This exception can 12

implicitly be raised by any method defined using CMA IDL and need not be explicitly 13

declared. 14

11.2.3 Coupon Representation 15

 A participant coupon is a 32-bit integer, represented as the CMA IDL data type long, that is 16

assigned by a common context manager to denote each application that joins a common 17

context system. An application is assigned a participant coupon when it joins a common 18

context system. It subsequently uses the coupon to identify itself when performing methods on 19

the context manager. 20

 A context coupon is a 32-bit integer that is assigned by a common context manager to denote 21

each context change transaction. Each time a new transaction is started a new coupon is 22

assigned by the context manager to denote the transaction. Applications use a context coupon 23

to denote the transaction of interest. 24

 Participant coupons shall have unique values for the duration of a common context session 25

(i.e., from the time the first application joins to the time the last application leaves). Context 26

coupons shall also have unique values for the duration of a common context system. 27

 The distinguished value of 0 shall never be assigned as a participant coupon value or as a 28

context coupon value. 29

11.2.4 Format for Application Names 30

 Several interfaces require that an application provide a CMA IDL string that contains a 31

symbolic name for the application. This string is generally used to distinguish one application 32

from another. 33

 Context Management Specification, Technology and Subject-Independent Component Architecture

 144 Copyright 1999, Health Level Seven Version CM-1.0

 This string shall only be comprised of alphanumeric characters, blank spaces (no tabs), the 1

underscore (_) and period (.) characters. The string shall neither begin nor end with a blank 2

space. 3

 Additionally, an application that is capable of allowing multiple instances of itself to execute 4

on the same desktop shall append to the end of its symbolic name the number-score character 5

(#) followed by a string that distinguishes one instance of the application from another. 6

 The composition of the appended string is not specified, as long as no two running instances of 7

the application running on a particular desktop use the same appended string at the same time. 8

The appended string shall only be comprised of alphanumeric characters, blank spaces (no 9

tabs), as well as the underscore (_) and period (.) characters. The appended string shall neither 10

begin nor end with a blank space. 11

 Character case is not considered when comparing application names. 12

 An example of this convention is: 13

 “3M Clinical Workstation#0” 14
 “3M Clinical Workstation#1” 15
 “3M Clinical Workstation#2” 16
 17

 Application names formed as such shall be interpreted as representing the same logical 18

application (e.g., “3M Clinical Workstation”) while also representing distinct running 19

instances of the application (i.e., three instances of “3M Clinical Workstation”). 20

11.2.5 Extraneous Context Items 21

 Context participants shall robustly deal with the situation in which context data items that they 22

do not recognize are nevertheless part of the common context. This might occur, for example, 23

in a system comprised of context participants that have been implemented using different 24

versions of the CMA data definition specifications. A participant implemented using an earlier 25

version of these specifications might not recognize context items defined in subsequent versions 26

of the specifications. Context participants shall simply ignore context data items whose names 27

they do not recognize. 28

 Similarly, context managers shall allow any context data item for any CMA-defined subject to 29

be part of the context, as long as the name for the item is properly formatted. 30

11.2.6 Forcing the Termination of a Context Change Transaction 31

 The context manager may need to force the termination of a context change transaction when it 32

appears that the instigator of the transaction has failed before completing the transaction. 33

Specifically, it is recommended that any context manager method that can result in the 34

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 145

ContextManager::TransactionInProgress exception being thrown should first explicitly confirm 1

that the transaction instigator is still alive. 2

 Most context manager implementations will employ a timer to monitor the activity of a 3

transaction instigator. If the instigator does not perform the necessary operations on the context 4

manager’s interfaces in a timely manner, it can be inferred that the instigator has failed. The 5

method ContextParticipant::Ping is defined to enable the context manager to probe a context 6

participant to determine its liveliness. The context manager may additionally confirm the 7

liveliness of a context participant using technology-specific mechanisms. 8

 The duration of these timers, and the use of confirmation techniques, are implementation- 9

dependent. 10

 The context manager shall clean up after the failure of the instigator by performing the 11

following actions: 12

1. The coupon assigned by the manager for the transaction is invalidated. 13

2. The transaction-specific version of the context data is discarded. 14

3. The coupon and context data associated with the most recently committed transaction 15

are unaffected. 16

4. The context manager’s internal state is set to indicate that there is no longer a 17

transaction in progress. 18

 Additional actions depend upon when the context manager determines that the instigator has 19

failed, as described in Table 3: Handling Transaction Instigator Failure. 20

 21

Instigator fails … Leaving systems in the
following state …

Context manager cleans-up
by …

before ending the transaction (see
ContextManager::EndContext
Changes)

a context change transaction is
in progress, although surveying
has not yet been performed

performing the actions
described above

after ending the transaction but
before publishing its decision to
accept or cancel the changes (see
ContextManager::Publish
ChangesDecision)

a context change is in progress
and the surveyed participants
are waiting for the survey
decision

publishing the fact that the
context changes have been
canceled and then performing
the actions described above

 Table 3: Handling Transaction Instigator Failure 22

 Context Management Specification, Technology and Subject-Independent Component Architecture

 146 Copyright 1999, Health Level Seven Version CM-1.0

11.2.7 Character-Encoded Binary Data 1

 Several of the CMA component interfaces use CMA IDL string parameters that contain 2

character-encoded binary data. The following representation of character-encoded binary data 3

shall be applied for all such parameters12. 4

 Each byte of data shall be represented by two printable characters. The four high bits of the 5

byte (i.e., the high octet) shall be represented by the left character. The four low bits of the 6

byte (i.e., the low octet) shall be represented by the right character. 7

 An array of bytes shall be represented by character-encodings such that the left most character- 8

encoded byte in the string represents the data byte at lowest array index. The encoding follows 9

sequentially, such that the right most character-encoded byte in the string represents the data 10

byte at the highest array index. 11

 Each four bits of data (i.e., an octet) is represented by an alphanumeric character as follows: 12

 Data
(Octet)

 Character

 0000 0
 0001 1
 0010 2
 0011 3
 0100 4
 0101 5
 0110 6
 0111 7
 1000 8
 1001 9
 1010 A or a
 1011 B or b
 1100 C or c
 1101 D or d
 1110 E or e
 1111 F or f

 13

 The actual character set that is employed is technology-specific. Each of the HL7 context 14

management technology mapping specification documents indicates the character set that is 15

used for a particular technology-specific implementation. 16

 12 Base64 encoding was not selected as a character-encoding scheme for binary data, as the added
compression offered by the scheme is of minimal advantage for the CMA, wherein only relatively
small quantities of binary data are transmitted.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 147

 Binary data that is character-encoded as a string shall not include white space or any other 1

characters other than the ones shown in the table above. The character-encoded string is not 2

case sensitive. An example of binary data character-encoded per these conventions is: 3

 Binary Data: 00000001 11101001 11000111 1000010

 Character-Encoded String: 01E9C782

 4
 5

11.2.8 Representing Message Authentication Codes, Signatures and Public Keys 6

 Message authentication codes, digital signatures, public keys are used as input or output 7

parameters for several of the methods defined for CMA component interfaces. The CMA IDL 8

data type for each of these parameters is string. Each string contains character-encoded 9

binary data, encoded per Section 11.2.7, Character-Encoded Binary Data. 10

 The binary data that is encoded is technology-specific. Each of the HL7 context management 11

technology mapping specification documents indicates the binary data types needed for a 12

particular technology-specific implementation. It is necessary that both the sender and receiver 13

of a message authentication code, digital signature, or public key agree upon the format of the 14

underlying binary data type, and the algorithms used to create the data. The method 15

SecureBinding::InitiateBinding, defined in 11.3.7.1, enables this agreement to be established. 16

11.2.9 Representing Basic Data Types as Strings 17

 Several of the CMA component interfaces use input or output parameters whose values are 18

computed from the string representations of data values of various types. For example, digital 19

signatures are computed from a one-way hash value, which is, in turn, computed from a string 20

formed by concatenating a list of data values, each of which is represented as a string. 21

 The following data types shall be represented as character strings using the formats described 22

in Table 4: Character Representations for Basic Data Types. 23

 Context Management Specification, Technology and Subject-Independent Component Architecture

 148 Copyright 1999, Health Level Seven Version CM-1.0

 1

 Type String Representation Comments

 boolean 0, if false
1, if true

 short dddd, where d is a numeric character
representing a decimal digit and the
number of characters depends upon
the value of the number.

 Leading minus sign (-dddd) if
number is negative. No plus
sign if positive.

 long Same as for short.

 date yyyy/mm/dd hh:mm:ss

 string As is. Case is preserved.

 float dddd.dddd, where d is a numeric
character representing a decimal
digit. The number of digits before
the decimal point depends on the
magnitude of the number, and the
number of digits after the decimal
point depends on the precision.

 Leading minus sign
(-dddd.dddd) if number is
negative. No plus sign if
positive.

 double Same as float, except that there can
be more digits.

 byte bb, where b is a hexadecimal digit.
The byte is represented as unsigned.

 Lower case for alphabetic
characters that represent hex
digits (i.e., a, b, c, d, e, f).

 Table 4: Character Representations for Basic Data Types 2

 3

 The actual character set that is employed is technology-specific. Each of the HL7 context 4

management technology mapping specification documents indicates the character set that is 5

used for a particular technology-specific implementation. 6

11.2.10 Pre-Defined Mapping Agent Coupons 7

 A participant coupon value is pre-defined for each type of mapping agent. In general, a 8

negative coupon value denotes a mapping agent, as opposed to a context participant 9

application. The following values are currently allocated: 10

 Mapping Agent Coupon Value

 Patient -1

 User -2

 Reserved for future -3 through -500

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 149

 1

 Pre-defined coupon values are used for mapping agents because they do not explicitly join the 2

context system. Instead, a mapping agent is implicitly “pulled” into the context system each 3

time a context change transaction occurs, when the context manager performs the mapping 4

agent method MappingAgent::ContextChangesPending. See Section 11.3.6, MappingAgent 5

(MA). 6

 However, agents such as the user mapping agent need to know their participant coupon values 7

prior to the first context change transaction. For example, the user mapping agent needs to 8

establish a secure binding with the context manager before it can set user context items. In 9

order to establish this binding, the user mapping agent must present the context manager with 10

its coupon (see Section 11.3.6, MappingAgent (MA)). By having a priori knowledge of its 11

coupon value, the user mapping agent can establish its secure binding whenever it decides to, 12

up until the time it actually attempts to set the context. 13

 Context Management Specification, Technology and Subject-Independent Component Architecture

 150 Copyright 1999, Health Level Seven Version CM-1.0

11.3 Interfaces 1

 This section specifies the methods for each of the CMA interfaces. 2

11.3.1 AuthenticationRepository (AR) 3

 4
 interface AuthenticationRepository { 5
 exception AuthenticationFailed { string reason; } 6
 exception UnknownApplication {} 7
 exception UnknownConnection {} 8
 exception LogonNotFound { string logonName; } 9
 exception UnknownDataFormat { string dataFormat; } 10
 11
 Connect 12
 inputs(string applicationName) 13
 outputs(long connectionCoupon) 14
 raises(UnknownApplication) 15
 16
 Disconnect 17
 inputs(long connectionCoupon) 18
 outputs() 19
 raises(UnknownConnection) 20
 21
 SetAuthenticationData 22
 inputs(long connectionCoupon, string logonName, string dataFormat, 23
 string userData, string appSignature) 24
 outputs() 25
 raises(UnknownConnection, AuthenticationFailed) 26
 27
 DeleteAuthenticationData 28
 inputs(long connectionCoupon, string logonName, string dataFormat, 29
 string appSignature) 30
 outputs() 31
 raises(UnknownConnection, AuthenticationFailed, LogonNotFound, 32
 UnknownDataFormat) 33
 34
 GetAuthenticationData 35
 inputs(long connectionCoupon, string logonName, string dataFormat, 36
 string appSignature) 37
 outputs(string userData, string repositorySignature) 38
 raises(UnknownConnection, AuthenticationFailed, LogonNotFound, 39
 UnknownDataFormat) 40
 } 41

11.3.1.1 Synopsis 42

 This interface enables a context participant to securely maintain the data it uses to authenticate 43

its users in an external repository. 44

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 151

11.3.1.2 Connect 1

 This method enables an application to establish a connection with the authentication 2

repository. An application must have a connection before it can set or get user authentication 3

data. 4

 The value of the input applicationName is a succinct string that contains the application’s 5

symbolic name. The output connectionCoupon is the value of a connection coupon that the 6

application can subsequently use to denote itself when performing other authentication 7

repository methods. 8

 The value of input applicationName is used by the authentication repository to determine the 9

passcode for an application. The passcode is needed when an application establishes a secure 10

binding with the authentication repository (see Section 11.3.7 SecureBinding (SB)). Multiple 11

instances of an application can connect to the authentication repository using the same name. 12

Each instance of the application will be assigned a unique connection coupon. Each instance of 13

the application will need to establish a secure binding with the repository. 14

 The value of the input applicationName is also used by the authentication repository to 15

store/retrieve the user authentication data within the repository. 16

 The exception UnknownApplication is raised if the input applicationName does not represent 17

an application currently known to the authentication repository. 18

11.3.1.3 Disconnect 19

 This method enables an application to disconnect from the authentication repository. An 20

application shall disconnect before it terminates. The value of the input connectionCoupon 21

denotes the application. 22

 The exception UnknownConnection is raised if the input connectionCoupon does not denote an 23

application currently connected to the authentication repository. 24

11.3.1.4 SetAuthenticationData 25

 This method enables an application to store authentication data for a particular user’s logon 26

name within the authentication repository. This method also enables an application to update 27

authentication data for a particular user’s logon name that it has already stored in the 28

repository. 29

 The value of the input connectionCoupon denotes the application, the value of the input 30

logonName is a user’s logon name, the value of the input userData is the application-specific 31

data used to authenticate the user, and the value of the input appSignature is the application’s 32

digital signature. This signature enables the authentication repository to authenticate that the 33

request to set the authentication data came from the application denoted by the value of 34

 Context Management Specification, Technology and Subject-Independent Component Architecture

 152 Copyright 1999, Health Level Seven Version CM-1.0

connectionCoupon, and that the values of connectionCoupon, logonName, dataFormat, and 1

userData, were not tampered with between the time they were sent and were received. 2

 Concatenating the string representations of the following inputs in the order listed shall form 3

the data from which a message digest is computed by the application: 4

• connectionCoupon 5

• logonName 6

• dataFormat 7

• userData 8

 An application shall compute its digital signature by encrypting the message digest with its 9

private key. 10

 The value of the input dataFormat is an application-defined string that is used when an 11

application needs to maintain multiple forms of authentication data for a user (e.g., password, 12

thumbprint image, etc.). If only one form of authentication data is needed, this string can be 13

empty (“”). Multiple calls of SetAuthenticationData are required to set different forms of 14

authentication data for a particular user. The value of dataFormat for each call should indicate 15

the form of authentication data to be stored. 16

 The value of the input userData contains user authentication data that has been encrypted by 17

the application using an encryption technique chosen by the application. This data is character- 18

encoded per Section 11.2.7, Character-Encoded Binary Data. The structure of the encoded 19

binary data is application-dependent and is not specified. 20

 The exception UnknownConnection is raised if the input connectionCoupon does not denote an 21

application that is currently connected to the repository. 22

 The exception AuthenticationFailed is raised if the process of authentication determines that 23

the signature is not the signature for the application denoted by the input connectionCoupon or 24

that the input parameter’s values have been tampered with. 25

11.3.1.5 DeleteAuthenticationData 26

 This method enables an application to delete from the authentication repository some or all of 27

the authentication data that it previously stored for a particular logon name. Both the logon 28

name and the associated authentication data are deleted. 29

 The value of the input connectionCoupon denotes the application and the value of the input 30

logonName is the logon name to be deleted. 31

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 153

 The value of the input dataFormat is an application-defined string that is used when an 1

application maintains multiple forms of authentication data for a user (e.g., password, 2

thumbprint image, etc.) within the repository. If this string is empty, then all of the forms of 3

authentication data stored for the user are deleted. If this string is not empty, then just the 4

denoted form of authentication data is deleted. 5

 The value of the input appSignature is the application’s digital signature. 6

 Concatenating the string representations of the following inputs in the order listed shall form 7

the data from which a message digest is computed by the application: 8

 connectionCoupon 9

 logonName 10

 dataFormat 11

 An application shall compute its digital signature by encrypting the message digest with its 12

private key. 13

 This signature enables the authentication repository to authenticate that the request to delete 14

the authentication data came from the application denoted by the value of connectionCoupon, 15

and that the values of coupon, logonName, and dataFormat were not tampered with between 16

the time they were sent and were received. 17

 The exception UnknownConnection is raised if the input connectionCoupon does not denote an 18

application that is currently connected to the repository. 19

 The exception AuthenticationFailed is raised if the process of authentication determines that 20

the signature is not the signature for the application denoted by the input connectionCoupon or 21

that the input parameter values have been tampered with. 22

 The exception LogonNotFound is raised if user authentication data corresponding to the logon 23

name denoted by the input logonName does not reside in the repository. 24

 The exception UnknownDataFormat is raised if the form of authentication data denoted by the 25

input dataFormat is not found in the repository. 26

11.3.1.6 GetAuthenticationData 27

 This method enables an application to retrieve from the authentication repository the 28

authentication data previously stored for a particular user’s logon name. The value of the input 29

connectionCoupondenotes the application, the value of the input logonName is a user’s logon 30

name, and the value of the input appSignature is the application’s digital signature. 31

 Context Management Specification, Technology and Subject-Independent Component Architecture

 154 Copyright 1999, Health Level Seven Version CM-1.0

 This signature enables the authentication repository to authenticate that the request to get the 1

authentication data came from the application denoted by the value of connectionCoupon, and 2

that the values of coupon, logonName, and dataFormat were not tampered with between the 3

time they were sent and were received. 4

 Concatenating the string representations of the following inputs in the order listed shall form 5

the data from which a message digest is computed by the application: 6

• connectionCoupon 7

• logonName 8

• dataFormat 9

 An application shall compute its digital signature by encrypting the message digest with its 10

private key. 11

 The value of the input dataFormat is an application-defined string that is used when an 12

application needs to maintain multiple forms of authentication data for a user (e.g., password, 13

thumb-print image, etc.). If only one form of data is used, this string can be empty. Multiple 14

calls of GetAuthenticationData are required to get different forms of authentication data for a 15

particular user. The value of dataFormat for each call should indicate the form of 16

authentication data to be retrieved. 17

 The value of the output userData is the application-specific data used to authenticate the user. 18

The output userData remains encrypted, as it was when it was stored by the application using 19

SetAuthenticationData. 20

 The output userData shall be used as the data from which a message digest is computed by the 21

application. The authentication repository shall compute its digital signature by encrypting the 22

message digest with its private key. 23

 This signature enables the application to authenticate that the authentication data returned by 24

this method came from the authentication repository and that the value of userData was not 25

tampered with between the time it was sent and was received. 26

 The exception UnknownConnection is raised if the input connectionCoupon does not denote an 27

application that is currently connected to the repository. 28

 The exception AuthenticationFailed is raised if the process of authentication determines that 29

the signature is not the signature for the application denoted by the input connectionCoupon or 30

that the input parameter values have been tampered with. 31

 The exception LogonNotFound is raised if user authentication data corresponding to the logon 32

name denoted by the input logonName does not reside in the repository. 33

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 155

 The exception UnknownDataFormat is raised if the form of authentication data denoted by the 1

input dataFormat is not found in the repository. 2

 Context Management Specification, Technology and Subject-Independent Component Architecture

 156 Copyright 1999, Health Level Seven Version CM-1.0

11.3.2 ContextData (CD) 1

 2
 interface ContextData { 3
 exception UnknownParticipant { long participantCoupon; } 4
 exception UnknownItemName { string itemName; } 5
 exception BadItemNameFormat { string itemName; string reason } 6
 exception BadItemType { string itemName; type actual; 7
 type expected; } 8
 exception BadItemValue { string itemName; variant itemValue; 9
 string reason; } 10
 exception NameValueCountMismatch {long numNames; long numValues } 11
 exception ChangesNotPossible {} 12
 exception ChangesNotAllowed {} 13
 exception InvalidContextCoupon {} 14
 15
 GetItemNames 16
 inputs(long contextCoupon) 17
 outputs(string[] names) 18
 raises(InvalidContextCoupon) 19
 20
 DeleteItems 21
 inputs(long participantCoupon, string[] itemNames, 22
 long contextCoupon) 23
 outputs() 24
 raises(NotInTransaction, UnknownParticipant, InvalidContextCoupon, 25
 BadItemNameFormat, UnknownItemName, ChangesNotPossible, 26
 ChangesNotAllowed) 27
 28
 SetItemValues 29
 inputs(long participantCoupon, string[] itemNames, 30
 variant[] itemValues, long contextCoupon) 31
 outputs() 32
 raises(NotInTransaction, UnknownParticipant, InvalidContextCoupon, 33
 NameValueCountMismatch, BadItemNameFormat, BadItemType, 34
 BadItemValue, ChangesNotPossible, ChangesNotAllowed) 35
 36
 GetItemValues 37
 inputs(string[] itemNames, boolean onlyChanges, long contextCoupon) 38
 outputs(variant[] itemValues) 39
 raises(InvalidContextCoupon, BadItemNameFormat, UnknownItemName) 40
 } 41

11.3.2.1 Synopsis 42

 This interface enables a context participant to get and set context data for subjects for which 43

secure access is not required. The data is represented as a set of items, each of which is 44

structured as a name/value pair. 45

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 157

11.3.2.2 GetItemNames 1

 This method enables a participant in a common context system to obtain the names of the 2

common context items. 3

 This method can be performed outside the scope of a context change transaction. In this case, 4

the value of the input contextCoupon must denote the most recently committed transaction. 5

The output itemNames is a sequence containing the item names that represent the state of the 6

common context as it was when the most recently committed transaction was completed. 7

 This method can also be performed within the scope of a context change transaction that is 8

currently in progress. In this case, the input contextCoupon must denote the current 9

transaction. The output itemNames contains the item names that represent the state of the 10

common context as it has been established so far by the transaction. The output itemNames is 11

empty (i.e. zero elements) until a participant explicitly sets item values via the 12

ContextData::SetItemValues method within the scope of the transaction. 13

 The exception InvalidContextCoupon is raised if the input contextCoupon does not denote the 14

most recently committed transaction or the transaction currently in progress. 15

11.3.2.3 DeleteItems 16

 Note: This method has been deemed extraneous and is being deprecated. In a future version 17

of this specification context managers may chose to not implement this method even though it 18

remains part of the ContextData interface definition. 19

 This method enables an application in a common context system to remove an item from the 20

set of common context items. The application or mapping agent denotes itself with its 21

participant coupon as the value of the input participantCoupon. The value of the input 22

contextCoupon must denote the current context change transaction, as obtained by the 23

instigator of the transaction when it performed the ContextManager::StartContextChanges 24

method. 25

 The exception NotInTransaction is raised if there is no change transaction currently in 26

progress. 27

 The exception UnknownParticipant is raised if the input participantCoupon does not denote an 28

application or mapping agent that is currently a participant in the common context system. 29

 The exception InvalidContextCoupon is raised if the context coupon parameter does not denote 30

the transaction currently in progress. 31

 The exception BadItemNameFormat is raised if the format of an item named for deletion does 32

not conform to the specification for the item in the relevant HL7 context management data 33

definition specification document. 34

 Context Management Specification, Technology and Subject-Independent Component Architecture

 158 Copyright 1999, Health Level Seven Version CM-1.0

 The exception UnknownItemName is raised if one or more of the items named for deletion is 1

not the name of an item in the context as it stands under the current transaction. 2

 The exception ChangesNotPossible is raised if the ContextData::DeleteItems method is 3

invoked after the ContextManager::EndContextChanges method has already been invoked for 4

the transaction currently in progress. 5

 The exception ChangesNotAllowed is raised by ContextData::DeleteItems if a mapping agent 6

attempts to delete context items. 7

11.3.2.4 SetItemValues 8

 This method enables an application or mapping agent in a common context system to set the 9

value of one or more common context items. The application or mapping agent denotes itself 10

with its participant coupon as the value of the input participantCoupon. The names of the 11

context items to be set are contained in the input sequence itemNames. The values for each of 12

these items are contained in the input sequence itemValues. The ith element in itemValues is the 13

value for the item named by the ith element in itemNames. 14

 If an item named in itemNames is not currently an item in the common context, it will be 15

added. The data type for a newly added item is the same as the data type of the element in 16

itemValues that contains the item’s value. 17

 This method can only be performed within the scope of a context change transaction. The 18

value of the input contextCoupon must denote the current transaction. 19

 The exception NotInTransaction is raised if there is no change transaction currently in 20

progress. 21

 The exception UnknownParticipant is raised if the input participantCoupon does not denote an 22

application or mapping agent that is currently a participant in the common context system. 23

 The exception InvalidContextCoupon is raised if the input contextCoupon does not denote the 24

transaction currently in progress. 25

 The exception NameValueCountMismatch is raised if the number of items in the input 26

nitemNames does not match the number of items in the input itemValues. 27

 The exception BadItemNameFormat is raised if the format of an item named for deletion does 28

not conform to the specification for the item in the relevant HL7 Context Management Data 29

Definition Specification. 30

 The exception BadItemType is raised if the data type for one or more of the items whose value 31

is to be set is not the same as the expected data type. 32

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 159

 The exception BadItemValue is raised if the data value for one or more of the items whose 1

value is to be set is determined to be unacceptable. This exception is used by context manager 2

implementations that enforce semantic constraints on the common context. Not all context 3

manager implementations will do this. 4

 The exception ChangesNotPossible is raised if the ContextData::SetItemValues method is 5

invoked by an application after the ContextManager::EndContextChanges method has already 6

been invoked for the transaction currently in progress. (This exception is not raised if a 7

mapping agent invokes ContextData::SetItemValues after ContextManager.) 8

 The exception ChangesNotAllowed is raised if a mapping agent attempts to set a value for a 9

context item for which a value has already been set by the application that instigated the 10

context change transaction. 11

11.3.2.5 GetItemValues 12

 This method enables a participant in a common context system to obtain the value of one or 13

more context items. 14

 When the value of the input contextCoupon denotes the most recently committed transaction, 15

the item values that are returned represent the state of the common context as it existed when 16

the transaction was completed. This is true even if there is currently a new transaction in 17

progress. 18

 When the value of the input contextCoupon denotes the transaction currently in progress, the 19

item values that are returned represent the state of the common context as it has been 20

established so far by the transaction. The capability to access the items for the transaction in 21

progress enables applications to use this information to determine how they want to respond to 22

the context change survey conducted by the context manager (see Sections 7.8, Context 23

Change Notification Process and 11.3.4, ContextParticipant (CP)). For example, an imaging 24

application that caches data may respond to the survey differently depending upon whether the 25

proposed context change involves a patient currently in the application’s cache. 26

 The items of interest are indicated in the input sequence itemNames. These names can be fully- 27

qualified item names, which means that the all of the fields for an item’s name are explicitly 28

specified (e.g., "Patient.Id.MRN.St_Elsewhere_Hospital"). 29

 Alternatively, a wild card represented by an asterisk (*) can be used in place of a specific 30

string for any of the item name fields except for the subject field (which is lexically the first 31

field on the left). The wild card enables a participant to obtain one or more items without 32

having to specify complete item names. 33

 If a wild card is used, it must appear in only the last field specified in the item name string 34

(which is lexically the last field on the right). Additional field names and/or wild cards must 35

 Context Management Specification, Technology and Subject-Independent Component Architecture

 160 Copyright 1999, Health Level Seven Version CM-1.0

not appear after a wild card (i.e., lexically to the right of the wild card). Examples of properly 1

formatted items names include: 2

 “Patient.*” matches all of the identifier and corroborating items for the patient subject 3

 “Patient.Id.*” matches all of the patient identifier items 4

 “Patient.Id.MRN.*” matches all of the patient identifiers that are site-specific medical 5

record numbers 6

 Conversely, “Patient.Id.*.*” and “Patient.Id.*.St_Elsewhere_Hospital” are examples of 7

improperly formatted item names. 8

 The sequence output itemValues contains the values of all of the items whose names match the 9

set of names specified in the input itemNames. A specific item’s value will be included at most 10

once in itemValues, even if its name matches more than one of the names specified in 11

itemNames. For example, even if itemNames includes the names: 12

 “Patient.Id.MRN.St_Elsewhere_Hospital” 13

 and: 14

 “Patient.Id.*” 15

 the value for the item named “Patient.Id.MRN.St_Elsewhere_Hospital” will be included only 16

once in itemValues. 17

 The elements in the sequence itemValues alternate between the complete name of an item 18

(represented as a string) and the corresponding item value (represented by the appropriate data 19

type). For example, if several context data items are returned, then the first element in the list 20

is the name of the first item, the second element in the list is the value of the first item, the third 21

element in the list is the name of the second item, the fourth element in the list is the value of 22

the second item, and so on. 23

 The input onlyChanges enables a participant to instruct the context manager to filter which 24

items it returns no matter what names were specified. When the value of onlyChanges is true, 25

then the items that are returned are limited to only the context subjects whose items were set by 26

the most recently committed context change transaction, or by the transaction in progress, as 27

indicated by the value of contextCoupon. 28

 For example, if onlyChanges is true, contextCoupon denotes the most recently committed 29

context change transaction, and itemNames includes the name: 30

 “Patient.Id.*” 31

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 161

 but items in the patient subject were not set during the transaction, then the output itemValues 1

will not contain any items pertaining to the patient subject. 2

 The exception InvalidContextCoupon is raised if the input contextCoupon does not denote the 3

most recently committed transaction or the transaction currently in progress. 4

 The exception BadItemNameFormat is raised if the format of the name of one or more of the 5

items whose value is to be set does not conform to the specification for the item in the relevant 6

HL7 context management data definition specification. 7

 The exception UnknownItemName is raised if one or more of the items named, wild cards not 8

withstanding, is not the name of an item in the context as it stands under the current 9

transaction. 10

 Context Management Specification, Technology and Subject-Independent Component Architecture

 162 Copyright 1999, Health Level Seven Version CM-1.0

11.3.3 ContextManager (CM) 1

 2
 interface ContextManager { 3
 exception AlreadyJoined {} 4
 exception UnknownParticipant { long participantCoupon; } 5
 exception TransactionInProgress { string instigatorName; } 6
 exception NotInTransaction {} 7
 exception InvalidTransaction { string reason; } 8
 exception TooManyParticipants { long howMany; } 9
 exception ChangesNotEnded {} 10
 exception AcceptNotPossible {} 11
 exception UndoNotPossible {} 12
 exception InvalidContextCoupon {} 13
 14
 readonly long MostRecentContextCoupon 15
 16
 JoinCommonContext 17
 inputs(ContextParticipant contextParticipant, 18
 string applicationName, boolean survey, boolean wait) 19
 outputs(long participantCoupon) 20
 raises(AlreadyJoined, TooManyParticipants, TransactionInProgress) 21
 22
 LeaveCommonContext 23
 inputs(long participantCoupon) 24
 outputs() 25
 raises(UnknownParticipant) 26
 27
 StartContextChanges 28
 inputs(long participantCoupon) 29
 outputs(long contextCoupon) 30

 raises(UnknownParticipant, TransactionInProgress, 31
 InvalidTransaction) 32

 33
 EndContextChanges 34
 inputs(long contextCoupon) 35
 outputs(boolean noContinue, string[] responses) 36

 raises(InvalidContextCoupon, NotInTransaction, 37
 InvalidTransaction) 38
 39
 UndoContextChanges 40
 inputs(long contextCoupon) 41
 outputs() 42
 raises(InvalidContextCoupon, NotInTransaction, UndoNotPossible) 43
 44

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 163

 PublishChangesDecision 1
 inputs(long contextCoupon, string decision) 2
 outputs() 3
 raises(NotInTransaction, InvalidContextCoupon, ChangesNotEnded, 4
 AcceptNotPossible) 5
 6
 SuspendParticipation 7
 inputs(long participantCoupon) 8
 outputs() 9
 raises(UnknownParticipant) 10
 11
 ResumeParticipation 12
 inputs(long participantCoupon, boolean wait) 13
 outputs() 14
 raises(UnknownParticipant, TransactionInProgress) 15
 } 16
 17

11.3.3.1 Synopsis 18

 This interface enables a context participant to join and leave a common context system, and to 19

perform context change transactions. 20

11.3.3.2 MostRecentContextCoupon 21

 This read-only property contains the value of the context coupon that represents the most 22

recently committed changes to the common context data. Even if there is a change transaction 23

in progress, this property’s value represents the previously committed transaction. If no 24

transactions have been committed, the value of this property is 0. 25

11.3.3.3 JoinCommonContext 26

 This method enables an application to join a common context system. The application must 27

provide a reference to its ContextParticipant interface as the value of the input 28

contextParticipant. 29

 The value of the input applicationName is a succinct string that can be used to easily and 30

clearly identify the application to the user (see Section 11.2.4, Format for Application Names). 31

This string must be unique relative to the other applications that have already joined the 32

common context system. 33

 If an application subsequently attempts to establish a secure binding with the context manager 34

(see Section 11.3.7 SecureBinding (SB)), then this string is used by the context manager to 35

determine the passcode for an application. 36

 The application can also indicate whether it wants to participate in context change surveys (the 37

value of the input survey indicates true), or that it just wants to be informed when a context 38

change has been accepted (the value of the input survey indicates false). 39

 Context Management Specification, Technology and Subject-Independent Component Architecture

 164 Copyright 1999, Health Level Seven Version CM-1.0

 An application can only join a common context system between context change transactions. If 1

no transaction is in progress, the application is able to immediately join the context change 2

system. 3

 If a transaction is in progress and the value of the input wait indicates true, this method will 4

block until the transaction completes. It is recommended that an application that is willing to 5

wait also display a message to the user indicating that it is attempting to join a common 6

context system. If a transaction is in progress and the value of the input wait indicates false, 7

this method immediately raises the exception TransactionInProgress. 8

 The output participantCoupon is the value of the participant coupon that the application can 9

subsequently use to denote itself when performing other ContextManager methods. 10

 The exception AlreadyJoined is raised if an application with the same name as the value of 11

applicationName has already joined the context. 12

 The exception TooManyParticipants is raised if the context manager is unable to accommodate 13

an additional common context participant. 14

11.3.3.4 LeaveCommonContext 15

 This method enables an application that is a participant in a common context system to leave 16

the system. The application denotes itself using its participant coupon as the value of the input 17

participantCoupon. Once this method returns, the application shall dispose of any context 18

manager interface references it possesses and the application is free to terminate. 19

 In order to avoid a deadlock condition, this method does not block. If this method was allowed 20

to block, it would be possible for an application to block while the context manager was 21

attempting to perform a method on the application’s ContextParticipant interface. For single- 22

threaded applications, this could cause a deadlock. 23

 Consequently, if a context change transaction is in progress when this method is called, the 24

application may still be notified about the context change even though it has left the common 25

context. The application is free to ignore this notification or may not even be capable of 26

responding. The context manager will robustly handle the failure of an application to respond. 27

 The exception UnknownParticipant is raised if the input participantCoupon does not denote an 28

application that is currently a participant in the common context system. 29

11.3.3.5 StartContextChanges 30

 This method enables an application to indicate that it wants to start changing the common 31

context. The application denotes itself with its participant coupon as the value of the input 32

participantCoupon. A context change transaction is initiated. Actual changes to the context 33

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 165

data are conducted via the ContextData interface. The output contextCoupon is the value of 1

the context coupon that has been assigned by the context manager to denote the change 2

transaction. 3

 The context manager will automatically terminate context change transaction if it does not 4

detect activity on its ContextData interface or if the ContextManager::EndContextChanges 5

method is not performed in a timely manner. The amount of time that the manager will wait 6

before terminating the transaction depends upon the manager’s implementation. 7

 The exception UnknownParticipant is raised if the input participantCoupon does not denote an 8

application that is currently a participant in the common context system. 9

 The exception TransactionInProgress is raised if a context change transaction is already in 10

progress. 11

 The exception InvalidTransaction is raised if a suspended application calls this method. 12

11.3.3.6 EndContextChanges 13

 This method enables the application that instigated a context change transaction to indicate that 14

it has completed its changes to the common context. The value of the input contextCoupon 15

denotes the transaction currently in progress. This method initiates the two-step change 16

notification process and returns after the first phase of the notification process is conducted by 17

the context manager. During the first phase, the applications in the common context system are 18

surveyed to determine their ability or willingness to apply the context changes. The 19

ContextParticipant::ContextChangesPending method is performed on each application in the 20

survey. 21

 The output responses is a sequence of strings that is used to convey the results of the survey to 22

the application that instigated a context change transaction. 23

 If all of the applications surveyed indicate that they are willing to accept the context changes, 24

then the output sequence responses is empty (i.e. zero elements) and the output noContinue is 25

false. The sequence is empty because there is no useful information to be conveyed about the 26

applications that have accepted, other than the fact that they all accepted. The method 27

ContextManager::PublishChangesDecision with the decision accept shall be subsequently 28

performed by the instigating application to communicate to the other applications the decision 29

to accept the context changes and to complete the transaction. 30

 If there are surveyed applications that either are unable to provide a response to the survey 31

(e.g., because they are “busy”), or that want to inform the user that work-in-progress might be 32

lost if the context is changed, then the return value contains a string for each such application. 33

The application that invoked this method is expected to display the strings to the user and to 34

obtain guidance about how to proceed. 35

 Context Management Specification, Technology and Subject-Independent Component Architecture

 166 Copyright 1999, Health Level Seven Version CM-1.0

 The output noContinue indicates true if the mapping agent invalidated the transaction, or at 1

least one of the surveyed applications is “busy”. It is not possible for the user to continue to 2

apply the context change transaction if the value of noContinue is true. The only option the 3

user has is to cancel the change or to disconnect the instigating application from the common 4

context system. For either user decision, the method 5

ContextManager::PublishChangesDecision with the decision cancel shall be performed by the 6

instigating application. 7

 If the mapping agent has not invalidated the transaction and there are no busy applications 8

(i.e., noContinue is false), but there are applications that have conditionally accepted the 9

context changes, the user can instruct the instigating application to apply the context changes 10

anyway, cancel the changes, or to disconnect from the common context system. 11

 The method ContextManager::PublishChangesDecision with the decision accept shall be 12

subsequently performed by the instigating application to complete the transaction if the user 13

decides to apply the context changes. 14

 The method ContextManager::PublishChangesDecision with the decision cancel shall be 15

subsequently performed by the instigating application to complete the transaction if the user 16

decides to cancel the context changes or to disconnect the instigating application from the 17

common context system. 18

 The exception InvalidContextCoupon is raised if the input contextCoupon does not denote the 19

transaction currently in progress. 20

 The exception NotInTransaction is raised if there is no change transaction currently in 21

progress. 22

 The exception InvalidTransaction is raised if, for each subject whose context data items have 23

been set by the transaction, the context data changes do not include at least one item that is an 24

identifier (e.g., context data for a subject cannot be comprised of just corroborating data items 25

and/or zz items). 26

11.3.3.7 UndoContextChanges 27

 This method enables an application to discard any context data changes that it has already 28

made. The context coupon parameter denotes the transaction currently in progress. The 29

current transaction is brought to a close and the context coupon is no longer valid. 30

 The exception InvalidContextCoupon is raised if the input contextCoupon does not denote the 31

transaction currently in progress. 32

 The exception NotInTransaction is raised if there is no change transaction currently in 33

progress. 34

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 167

 The exception UndoNotPossible is raised if the method ContextManager::UndoContext- 1

Changes is attempted after the ContextManager::EndContextChanges method has been 2

performed during the course of the current transaction. 3

11.3.3.8 PublishChangesDecision 4

 This method enables the application that instigated a context change transaction to inform the 5

other applications in a context system about whether the changes are to be applied or have 6

been canceled. The value of the input contextCoupon denotes the transaction currently in 7

progress. 8

 The decision to accept the changes shall be published when the context changes are to be 9

applied. The only times that context changes cannot be applied are when there were 10

applications for which it was not possible to obtain a survey response (e.g., these applications 11

were “busy”) or when a mapping agent invalidates the transaction. 12

 The decision to cancel the changes shall be published when the context changes are to be 13

discarded. 14

 If the decision is to accept the changes, the value of the output decision parameter is “accept”. 15

If the decision is to cancel the changes, the value of the output decision is “cancel”. The 16

context manager is shall treat these values in a case-insensitive manner. 17

 Once the decision has been published, the change transaction is complete. 18

 The exception InvalidContextCoupon is raised if the input contextCoupon does not denote the 19

transaction currently in progress. 20

 The exception NotInTransaction is raised if there is no change transaction currently in 21

progress. 22

 The exception ChangesNotEnded is raised if the method EndContextChanges has not yet been 23

performed during the course of the current transaction. 24

 The exception AcceptNotPossible is raised if the decision to be published is accept but there 25

were applications for which it was not possible to obtain a survey response (e.g., these 26

applications were blocked). The decision accept in this case is erroneous. This exception 27

defends against this case should it arise due to an application programming error. 28

11.3.3.9 SuspendParticipation 29

 This method enables an application to indicate that it wants to suspend its active participation 30

in a common context system while remaining registered as a participant. An application that is 31

suspended will not be informed about context changes, and does not need to remain in 32

 Context Management Specification, Technology and Subject-Independent Component Architecture

 168 Copyright 1999, Health Level Seven Version CM-1.0

synchrony with the context. The specific circumstances during which an application may 1

suspend its participation are described below. 2

 Use of this method also enables an application to ensure that the context manager does not give 3

up the application’s slot in the common context to another application. Context managers can 4

be implemented to support a maximum number of participants. If an application leaves a 5

context system, it risks not being able to rejoin. In contrast, by suspending its participation, 6

this possibility is avoided. 7

 An application may suspend its participation as an alternative to leaving the common context 8

(see Section 11.3.3.4, LeaveCommonContext). When an application suspends its participation 9

for this reason this manner, as the direct result of an explicit user command, it shall behave 10

exactly as though it has broken its link with the context system. For example, the application 11

shall clearly indicate to the user that its link is broken. An application that is suspended shall 12

still explicitly leave the context system when the application terminates. 13

 In the absence of an explicit user command, an application may still suspend its participation. 14

An application may elect to suspend its participation in order to minimize its use of 15

computational resources. This might occur when the application is in a state such that 16

responding to a context change does not provide any benefit to the user. For example, an 17

application might suspend its participation when its display is minimized and therefore cannot 18

be seen by the user. 19

 An application that is decides to suspend itself (i.e., without an explicit command from the 20

user) is still considered to be linked even though it is not tracking context changes. This is 21

because the only way an application’s link can be broken is when the user explicitly indicates 22

to the application that this be done. A self-suspended application shall continue to indicate that 23

it is linked, but it shall not display data that is context-sensitive. For example, an application 24

might ensure that its data display is not visible (i.e., the display is minimized) while it is 25

suspended. 26

 An application that wants to suspend itself denotes itself with its participant coupon as the 27

value of the input participantCoupon. 28

 A suspended application can subsequently resume its participation in the common context via 29

the ContextManager::ResumeParticipation method. The application will not be surveyed, nor 30

will it be informed of changes to the common context until the it invokes the 31

ContextManager::ResumeParticipation method. 32

 In order to avoid a deadlock condition, this method does not block. If this method was allowed 33

to block, it would be possible for an application to block while the context manager was 34

attempting to perform a method on the application’s ContextParticipant interface. For single- 35

threaded applications, this could cause a deadlock. 36

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 169

 Consequently, if a context change transaction is in progress when this method is called, the 1

application may still be notified about the context change. The application is free to ignore this 2

notification or may not even be capable of responding. The context manager will robustly 3

handle the failure of an application to respond. 4

 This method has no effect if the application has already suspended its participation. 5

 A suspended application cannot instigate a context change transaction. 6

 A suspended application will be informed about the termination of the common context system 7

should this occur while the application is suspended (see Section 11.3.4, ContextParticipant 8

(CP)). 9

 Context manager implementations are encouraged to periodically confirm that suspended 10

context participants are still running. This is to avoid the situation in which context manager 11

continues to allocate internal resources to a suspended participant that subsequently fails 12

without first informing the context manager that it is leaving the common context system. 13

 The exception UnknownParticipant is raised if the input participantCoupon does not denote an 14

application that is currently a participant in the common context system. 15

11.3.3.10 ResumeParticipation 16

 This method enables a suspended application to indicate that it wants to resume active 17

participation in a common context system. The application denotes itself with its participant 18

coupon as the value of the input participantCoupon. Upon resuming, an application must 19

automatically ensure that it has established synchrony with the current context. It can either set 20

its internal state to match the current context, or it can set the current context to match its 21

internal state. 22

 The application denotes itself with its participant coupon. This method has no effect if the 23

application did not previously invoke the method ContextManager::SuspendParticipation. 24

 An application can only resume its participation a common context system between context 25

change transactions. If no transaction is in progress, the application is able to immediately 26

resume participation in the context change system. 27

 If a transaction is in progress and the value of the input wait indicates true, this method will 28

block until the transaction completes. It is recommended that an application that is willing to 29

wait also display a message to the user indicating that it is attempting to resume participation 30

in a common context system. If a transaction is in progress and the value of the input wait 31

indicates false, this method immediately raises the exception TransactionInProgress. 32

 Context Management Specification, Technology and Subject-Independent Component Architecture

 170 Copyright 1999, Health Level Seven Version CM-1.0

 The exception UnknownParticipant is raised if the input participantCoupon does not denote an 1

application that is currently a participant in the common context system. 2

 3

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 171

11.3.4 ContextParticipant (CP) 1

 2
 interface ContextParticipant { 3
 ContextChangesPending 4
 inputs(long contextCoupon) 5
 outputs(string decision, string reason) 6
 raises() 7
 8
 ContextChangesAccepted 9
 inputs(long contextCoupon) 10
 outputs() 11
 raises() 12
 13
 ContextChangesCanceled 14
 inputs(long contextCoupon) 15
 outputs() 16
 raises() 17
 18
 CommonContextTerminated 19
 inputs() 20
 outputs() 21
 raises() 22
 23
 Ping 24
 inputs() 25
 outputs() 26
 raises() 27
 } 28

11.3.4.1 Synopsis 29

 This interface enables a context participant to be notified about context changes that it did not 30

initiate. 31

11.3.4.2 ContextChangesPending 32

 This method informs a participant in a common context system that a change to the common 33

context data is pending. The value of the input contextCoupon denotes the transaction within 34

which the context changes occurred. The participant shall respond with an indication of how it 35

wants to deal with the change: 36

• Accept the change 37

• Conditionally accept the change (e.g., because it is in the middle of a task that would 38

cause significant user work to be lost if a context change was allowed) 39

 An application that accepts the changes is willing to apply the new context data if subsequently 40

instructed to do so (by the ContextParticipant::ContextChangesAccepted or 41

ContextParticipant::ContextChangesCanceled methods). 42

 Context Management Specification, Technology and Subject-Independent Component Architecture

 172 Copyright 1999, Health Level Seven Version CM-1.0

 An application that conditionally accepts the changes is also willing to apply the changes, but 1

only after informing the user that the application might loose work that the user is in the midst 2

of performing. The output reason shall contain a succinct but informative description of the 3

work that might be lost. (The description should not identify the application as this information 4

is provided by the application when it joins the common context system.) The application 5

through which the user instigated the context changes is responsible for informing the user of 6

the situation and obtaining the user’s decision about how to proceed. 7

 An application that cannot interpret the context data (e.g., does not know who the patient is) 8

should accept the changes. However, the application should clearly indicate to the user (e.g., 9

by displaying a message) that it cannot apply the current context data. 10

 If the response is to accept the changes, the value of the output decision is “accept”. If the 11

decision is to conditionally accept the changes, the value of the output decision 12

“accept_conditional”. The context manager is shall treat these values in a case-insensitive 13

manner. 14

 If a participant does not respond in a timely manner, it will be interpreted by the context 15

manager as being busy. The amount of time that the manager will wait before determining that 16

an application is busy depends upon the manager’s implementation. This method is not 17

performed upon the application that instigated the context changes. Instead, the application is 18

blocked by the manager when it performs ContextManager::EndContextChanges. 19

11.3.4.3 ContextChangesAccepted 20

 This method informs a participant in a common context system that the result of the most 21

recent context change survey was to accept the changes and that the common context data has 22

indeed been set. The participant can access the context data via the context manager’s 23

ContextData interface to obtain the changes. The value of the input contextCoupon denotes the 24

transaction within which the context changes occurred. This coupon is needed in order to 25

access the context data. 26

 If it is not possible to perform this method on an application because it is busy, the context 27

manager will periodically keep trying until it has successfully performed the method, or until a 28

new context change transaction is initiated. The intervals at which the context manager tries to 29

retry this method is implementation-dependant. 30

11.3.4.4 ContextChangesCanceled 31

 This method informs a participant in a common context system that a context change 32

transaction has been canceled. The value of the input contextCoupon denotes the transaction 33

that has been canceled. 34

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 173

 If it is not possible to perform this method on an application because it is busy, the context 1

manager will periodically keep trying until it has successfully performed the method, or until a 2

new context change transaction is initiated. The intervals at which the context manager tries to 3

retry this method is implementation-dependant. 4

11.3.4.5 CommonContextTerminated 5

 This method informs a participant in a common context system that the system is being 6

terminated. The participant will not be subsequently informed about context changes, nor will 7

it be able to perform common context changes. The participant shall dispose of any context 8

manager interface references it holds. The participant shall not perform any other methods 9

upon the context manager prior to performing the ContextManager::JoinCommonContext to 10

establish its participation in a new instance of a common context system . 11

11.3.4.6 Ping 12

 This method provides a means for a context manager to determine whether or not a participant 13

in a common context system is still running. This method shall be implemented by all 14

participants to return immediately. The context manager can then perform this method to probe 15

a participant when its existence is in question. 16

 In performing this method, the context manager will be able to indirectly exercise the 17

underlying communications infrastructure. The infrastructure will either indicate that the 18

method was successfully performed, that the method failed because the participant no longer 19

exists, or that the method failed but it cannot be determined whether or not the participant 20

exists. In this last case, the manager shall assume that the participant still exists. 21

 Context Management Specification, Technology and Subject-Independent Component Architecture

 174 Copyright 1999, Health Level Seven Version CM-1.0

11.3.5 ImplementationInformation (II) 1

 2
 interface ImplementationInformation { 3
 readonly string ComponentName 4
 readonly string RevMajorNum 5
 readonly string RevMinorNum 6
 readonly string PartNumber 7
 readonly string Manufacturer 8
 readonly string TargetOS 9
 readonly string TargetOSRev 10
 readonly string WhenInstalled 11
 } 12

11.3.5.1 Synopsis 13

 This interface enables a component to expose information pertaining to its implementation. 14

11.3.5.2 ComponentName 15

 This read-only property is the name of the component, specifically, “Patient Link Mapping 16

Agent”. 17

11.3.5.3 RevMajorNum 18

 This read-only property is the major number for the software revision for the component, as 19

assigned by its manufacturer. For example, in the full revision number Z.32, ‘Z’ is the major 20

number and might indicate a particular functional release of the software. 21

11.3.5.4 RevMinorNum 22

 This read-only property is the minor number of the software revision for the component, as 23

assigned by its manufacturer. For example, in the full revision number Z.32, ‘32’ is the minor 24

number and might indicate a particular build of the software. 25

11.3.5.5 PartNumber 26

 This read-only property is the part number that the component’s manufacturer assigned to the 27

component. 28

11.3.5.6 Manufacturer 29

 This read-only property is the name of the organization that developed the component. 30

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 175

11.3.5.7 TargetOS 1

 This read-only property is the name of the operating system on which the component is able to 2

execute. 3

11.3.5.8 TargetOsRev 4

 This read-only property is the revision of the operating system named in target operating 5

system on which the component is able to execute. 6

11.3.5.9 WhenInstalled 7

 This read-only property is the date and time at which the component was installed on its host. 8

 9

 10

 11

 Context Management Specification, Technology and Subject-Independent Component Architecture

 176 Copyright 1999, Health Level Seven Version CM-1.0

11.3.6 MappingAgent (MA) 1

 2
 interface MappingAgent { 3
 ContextChangesPending 4
 inputs(long mappingAgentCoupon, Principal contextMgr, 5
 long contextCoupon) 6
 outputs(string decision, string reason) 7
 raises() 8
 9
 Ping 10
 inputs() 11
 outputs() 12
 raises() 13
 } 14

11.3.6.1 Synopsis 15

 This interface enables a mapping agent to be notified about context changes. 16

11.3.6.2 ContextChangesPending 17

 This method informs a mapping agent in a common context system that a change to the 18

common context data is pending. The value of the input contextCoupon denotes the transaction 19

within which the context changes occurred. The value of the input mappingAgentCoupon is a 20

predefined coupon that denotes the specific type of mapping agent. (See Section 11.2.10, Pre- 21

Defined Mapping Agent Coupons). The value of the input contextMgr is an interface reference 22

to the context manager’s principal interface. This is so that the mapping agent can easily 23

obtain the context manager interface(s) it needs. 24

 The agent shall respond with an indication of how it wants to deal with the context change: 25

• The changes are valid 26

• The changes are invalid 27

 If the changes are valid, then the value of the output decision should be “valid”. If the changes 28

are invalid, then the value of the output decision should be “invalid”. The changes should only 29

be declared invalid if the set of identifiers in the proposed context data do not all represent the 30

same patient. If the changes are invalid, then the value of the output reason will contain a 31

succinct but detailed string describing why the changes were invalid. Otherwise the value of 32

reason is an empty string (“”). 33

11.3.6.3 Ping 34

 This method provides a means for a context manager to determine whether or not a mapping 35

agent in a common context system is still running. This method shall be implemented by all 36

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 177

agents to return immediately. The context manager can then perform this method to probe a 1

mapping agent when the agent’s existence is in doubt. 2

 In performing this method, the context manager will be able to indirectly exercise the 3

underlying communications infrastructure. The infrastructure will either indicate that the 4

method was successfully performed, that the method failed because the agent no longer exists, 5

or that the method failed but it cannot be determined whether or not the agent exists. In this last 6

case, the manager shall assume that the agent still exists. 7

 Context Management Specification, Technology and Subject-Independent Component Architecture

 178 Copyright 1999, Health Level Seven Version CM-1.0

11.3.7 SecureBinding (SB) 1

 2
 interface SecureBinding { 3
 exception UnknownBindee {} 4
 exception UnknownPropertyName { string propertyName; } 5
 exception BadPropertyType { string propertyName; type actual; 6

type expected; } 7
 exception BadPropertyValue { string propertyName; 8
 variant itemValue; string reason; } 9
 exception NameValueCountMismatch {long numNames; long numValues } 10
 exception ImproperKeyFormat { string reason; } 11
 exception ImproperMACFormat { string reason; } 12
 exception BindingRejected { string reason; } 13
 exception AuthenticationFailed { string reason; } 14
 15
 InitiateBinding 16
 inputs(long bindeeCoupon, string[] propertyNames, 17
 variant[] propertyValues) 18
 outputs(string binderPublicKey, string mac) 19
 raises(UnknownBindee, NameValueCountMismatch, 20
 UnknownPropertyName, BadPropertyType, BadPropertyValue, 21
 BindingRejected) 22
 23
 FinalizeBinding 24
 inputs(long bindeeCoupon, string bindeePublicKey, 25
 string mac) 26
 outputs(string[] privileges) 27
 raises(UnknownBindee, ImproperKeyFormat, ImproperMACFormat, 28
 AuthenticationFailed) 29
 } 30

11.3.7.1 Synopsis 31

 This interface enables a component to exchange security-related credentials with another 32

component for subsequent use in interactions that need to be secure. 33

11.3.7.2 InitiateBinding 34

 This method enables a context management component (“bindee”) to initiate the process of 35

establishing a secure binding with another context management component (“binder”). The 36

bindee shall complete the process of establishing a secure binding with the binder by 37

performing the method SecureBinding::FinalizeBinding upon the binder. 38

 A secure binding shall be established by the bindee before it attempts to interact with the 39

binder via methods that entail the use of either the bindee’s or the binder’s digital signature. 40

For example, an application or user mapping agent shall establish a secure binding with the 41

context manager before it attempts to access the context manager in order to set or get context 42

item values that require the bindee’s digital signature. An application shall establish a secure 43

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 179

binding with the authentication repository before attempting to set or get user authentication 1

data from the authentication repository. 2

 This method shall be performed only after the bindee has been provided by the binder with a 3

coupon to denote itself. The value of the input bindeeCoupon is this coupon. The value of 4

bindeeCoupon depends upon the role bindee and binder, as described below: 5

 6

 Bindee Binder Value of bindeeCoupon

 Context
Participant
Application

 Context
Manager

 Participant coupon, obtained by the participant
from the context manager via
ContextManager::JoinCommonContext.

 Context
Participant
Application

 Authentication
Repository

 Connection coupon, obtained by the participant
from the authentication repository via
AuthenticationRepository::Connect.

 Mapping
Agent

 Context
Manager

 Mapping agent coupon, based upon the type of
mapping agent, as defined in Section 11.2.10, Pre-
Defined Mapping Agent Coupons.

 7

 As part of the process of establishing a secure binding, it is necessary for the bindee and the 8

binder to agree upon the properties of the underlying security algorithms that they will use in 9

subsequent secure interactions. These properties may include the public key / private key 10

scheme, the number of bits used to represent a key, and the type of one-way hash algorithm 11

that is to be used to generate message digests and message authentication codes. The specific 12

properties that must be agreed upon, and the allowed set of values for these properties, are 13

defined in the each of the HL7 context management technology-specific component mapping 14

specification documents. 15

 The value of the input sequence propertyNames contains the names of the secure binding- 16

related properties for which the bindee wishes to establish agreement. The values for each of 17

these properties are contained in the input sequence propertyValues. The ith element in 18

propertyValues is the value for the property named by the ith element in propertyNames. The 19

data type for a property is the same as the data type of the element in propertyValues that 20

contains the property’s value. 21

 The value of the output binderPublicKey is the binder’s public key, and shall be used by the 22

bindee in all subsequent secure interactions that involve the binder. The value of 23

 Context Management Specification, Technology and Subject-Independent Component Architecture

 180 Copyright 1999, Health Level Seven Version CM-1.0

binderPublicKey is character-encoded binary data formed by the binder when it computes its 1

public key / private key pair. 2

 The value of the output mac is the message authentication code. This code shall be used by the 3

bindee to prove the identity of the binder, and to ensure that the value of binderPublicKey has 4

not been tampered with. 5

 The value of mac is character-encoded binary data formed by the binder’s computation of a 6

one-way hash value. This hash value is computed using an input string formed by 7

concatenating the bindee’s passcode to the end of the character-encoded binary string 8

containing the binder’s public key. This passcode is a secret known only to the bindee and the 9

binder. Upon receipt of the output mac and binderPublicKey, the bindee independently creates 10

the same string as the binder and performs the same hash computation. If the resulting hash 11

value matches the value of mac, then the binder shall be considered authentic and the value of 12

binderPublicKey shall be considered valid. 13

 The algorithms used to compute mac and binderPublicKey are technology-specific. The format 14

of these outputs are also technology specific. 15

 The exception UnknownBindee is raised if the input bindeeCoupon does not denote a context 16

management component currently known to the binder. 17

 The exception NameValueCountMismatch is raised if the number of items in the input 18

propertyNames does not match the number of items in the input propertyValues. 19

 The exception BadPropertyType is raised if the data type for one or more of the properties 20

whose value is to be set is not the same as the expected data type. 21

 The exception BadPropertyValue is raised if the data value for one or more of the properties 22

whose value is to be set is determined to be unacceptable or incompatible. 23

 The exception BindingRejected is raised if the binder is unable to establish a secure binding 24

with the bindee. For example, the binder raises this exception if it does not know the bindee’s 25

passcode. 26

11.3.7.3 FinalizeBinding 27

 This method enables bindee to finalize the process of establishing a secure binding with a 28

context management component, and enables the bindee to determine what access privileges it 29

has. This method shall be performed by a bindee only after it has successfully performed the 30

method InitiateBinding upon a binder. The bindee denotes itself using the same value for the 31

input bindeeCoupon that it used when it performed the method InitiateBinding upon the binder. 32

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 181

 The input bindeePublicKey is the bindee’s public key, and shall be used by the binder in all 1

subsequent secure interactions that involve the bindee. The value of bindeePublicKey is 2

character-encoded binary data formed by the bindee when it computes its public key / private 3

key pair. 4

 The input mac is the message authentication code. This code shall be used by the binder to 5

prove the identity of the bindee, and to ensure that the value of bindeePublicKey has not been 6

tampered with. 7

 The value of mac is character-encoded binary data formed by the bindee’s computation of a 8

one-way hash value. This hash value is computed using an input string formed by 9

concatenating the bindee’s passcode to the end of the character-encoded binary string 10

containing the bindee’s public key. This passcode is a secret known only to the bindee and the 11

binder. Upon receipt of the inputs mac and bindeePublicKey, the binder independently creates 12

the same string as the bindee and performs the same hash computation. If the resulting hash 13

value matches the value of mac, then the bindee shall be considered authentic and the value of 14

bindeePublicKey shall be considered valid. 15

 The algorithms used to compute mac and bindeePublicKey are technology-specific. The 16

format of these inputs are also technology specific. 17

 The sequence output privileges describes the bindee’s access privileges in a manner that 18

depends upon the type of component with which the binding has been established. 19

 When implemented by the context manager, this sequence indicates on a per-subject basis 20

whether or not the bindee is allowed to get and/or set items within a subject. For each subject 21

for which the bindee has access privileges, the name of the subject appears as the ith element in 22

the sequence, and a string indicating the access privileges for this subject appears as the i+1st 23

element. The actual subject-specific access privilege is represented by one of the following 24

strings: 25

• “Get” means that the bindee can get, but not set, items in the subject. 26

• “Set” means that the bindee can set as well as get items in the subject. 27

 An example of the elements in the sequence privileges is: 28

 “Patient” 29

“Set” 30

“User” 31

“Get” 32

 The strings representing the subject name and access privileges are case insensitive. If a bindee 33

has no privileges (i.e., it neither “Get” or “Set”) then information about the subject is omitted 34

 Context Management Specification, Technology and Subject-Independent Component Architecture

 182 Copyright 1999, Health Level Seven Version CM-1.0

from the sequence. A bindee that has no privileges for any subject is presented with a zero- 1

length sequence. 2

 When implemented by the authentication repository, the output sequence privileges indicates 3

whether or not the bindee is allowed to get and/or set user authentication data for the 4

application whose user data is maintained by the repository. A sequence with at most one 5

element is returned. This element is a string that indicates whether or not the bindee is allowed 6

to get and/or set user authentication data for the application: 7

• “Get” means that the bindee can get, but not set, user authentication data. 8

• “Set” means that the bindee can set as well as get user authentication data. 9

 The strings representing access privileges are case insensitive. A bindee that has no privileges 10

relative to setting or getting user authentication data for the application is presented with a 11

zero-length sequence. 12

 The exception UnknownBinding is raised if the input bindingCoupon does not denote an 13

bindee currently known to the binder. 14

 The exception ImproperKeyFormat is raised if the input publicKey is not properly formatted. 15

 The exception ImproperMACFormat is raised if the input mac is not properly formatted. 16

 The exception AuthenticationFailed is raised if the input mac does not establish the identity of 17

the bindee and/or the integrity of the input bindeePublicKey. 18

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 183

11.3.8 SecureContextData (SD) 1

 2
 interface SecureContextData { 3
 exception UnknownItemName { string itemName; } 4
 exception BadItemNameFormat { string itemName; string reason } 5
 exception BadItemType { string itemName; type actual; 6
 type expected; } 7
 exception BadItemValue { string itemName; variant itemValue; 8
 string reason; } 9
 exception NameValueCountMismatch {long numNames; long numValues } 10
 exception ChangesNotPossible {} 11
 exception ChangesNotAllowed {} 12
 exception SignatureRequired {} 13
 exception AuthenticationFailed { string reason; } 14
 15
 GetItemNames 16
 inputs(long contextCoupon) 17
 outputs(string[] itemNames) 18
 raises(InvalidContextCoupon) 19
 20
 SetItemValues 21
 inputs(long participantCoupon, string[] itemNames, 22

 variant[] itemValues, long contextCoupon, string appSignature) 23
 outputs() 24

 raises(NotInTransaction, InvalidContextCoupon, UnknownParticipant, 25
NameValueCountMismatch, BadItemNameFormat, BadItemType, 26

 BadItemValue, ChangesNotPossible, ChangesNotAllowed, 27
 SignatureRequired, AuthenticationFailed) 28
 29

 GetItemValues 30
 inputs(long participantCoupon, string[] itemNames, 31

 boolean onlyChanges, long contextCoupon, string appSignature) 32
 outputs(variant[] itemValues, string managerSignature) 33
 raises(InvalidContextCoupon, UnknownParticipant, 34

 BadItemNameFormat, UnknownItemName, SignatureRequired, 35
 AuthenticationFailed) 36
 } 37

11.3.8.1 Synopsis 38

 This interface enables a context participant to securely get and set context data. The data is 39

represented as a set of items, each of which is structured as a name/value pair. The context 40

data for all subjects can be accessed via this interface. 41

11.3.8.2 GetItemNames 42

 This method is identical to ContextData::GetItemNames. 43

 Context Management Specification, Technology and Subject-Independent Component Architecture

 184 Copyright 1999, Health Level Seven Version CM-1.0

11.3.8.3 SetItemValues 1

 This method is similar to ContextData::SetItemValues. The primary difference is that the 2

context participant’s digital signature shall be provided as the value of the input appSignature 3

when user subject item values are among the items to be set. This signature enables the context 4

manager to authenticate that they came from a designated application or from the real user 5

mapping agent, and that the values were not tampered with between the time they were sent 6

and were received. 7

 A signature is not required when the values for the user subject items are null. This enables 8

any application to set the user context to empty. When a signature is not provided, the value of 9

the input appSignature shall be an empty string (“”). 10

 Concatenating the string representations of the following inputs in the order listed shall form 11

the data from which a message digest is computed by the participant: 12

• participantCoupon 13

• itemNames (i.e., All the elements in the order that they appear in the array.) 14

• itemValues (i.e., All the elements in the order that they appear in the array.) 15

• contextCoupon 16

 A participant shall compute its digital signature by encrypting the message digest with its 17

private key. 18

 The exception SignatureRequired is raised if the value of appSignature is not a digital 19

signature and a signature is required in order to perform this method. 20

 The exception AuthenticationFailed is raised if a digital signature is required and provided, but 21

the process of authentication determines that: the application that invoked this method did not 22

previously provide its public key via the interface SecureBinding; that the input appSignature 23

has been forged; that the input parameter values have been tampered with; that the participant 24

has not been designated for performing user context changes. 25

11.3.8.4 GetItemValues 26

 This method is similar to ContextData::GetItemValues. The primary difference is that the 27

context manager’s digital signature shall be provided as the value of the output 28

managerSignature when user subject identifier item values are among the items named for 29

retrieval. This signature enables the recipient of the item values to authenticate that they came 30

from the real context manager, and that the values were not tampered with between the time 31

they were sent and were received. 32

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 185

 Concatenating the string representations of the following inputs in the order listed shall form 1

the data from which a message digest is computed by the context manager: 2

• ItemValues (i.e., All the elements in the order that they appear in the array.) 3

• contextCoupon 4

 The context manager shall compute its digital signature by encrypting the message digest with 5

its private key. 6

 The value of the inputs participantCoupon and appSignature are not currently used and are 7

defined in anticipation of future uses of this method. In the future, the value of these inputs will 8

enable the context manager to enforce context data access rights as a function of the context 9

participant’s identity and the properties of the requested context items, as listed in the input 10

itemNames. The value of participantCoupon will denote the participant. The value of 11

appSignature will be the digital signature of the participant. 12

 Until stated otherwise in a future version of this specification, the value of the input 13

participantCoupon shall be zero (0). The value of the input appSignature input shall be an 14

empty string (“”). 15

 The exception SignatureRequired is raised if the value of appSignature is not a digital 16

signature and a signature is required to perform this method. 17

 The exception AuthenticationFailed is raised if a digital signature is required and provided, but 18

the process of authentication determines that: the application that invoked this method did not 19

previously provide its public key via the interface SecureBinding; that the input appSignature 20

has been forged; that the input parameter values have been tampered with; that the participant 21

is not allowed to access the requested context items. 22

 23

 24

 Context Management Specification, Technology and Subject-Independent Component Architecture

 186 Copyright 1999, Health Level Seven Version CM-1.0

12 Backwards Compatibility 1

 The HL7 Context Management Architecture specified in this document is fully compatible 2

with the Clinical Context Object Workgroup Patient Link 1.1 Architecture Specification. The 3

CMA is, however, a superset of the CCOW Architecture. 4

 5

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 187

 1

 188 Copyright 1999, Health Level Seven Version CM-1.0

Appendix: Diagramming Conventions 1

 There are four types of formal diagrams that are used throughout this document to describe the 2

CMA architecture: 3

• A use case diagram depicts the actors (human and/or computer-based) and the roles 4

that they play when participating in an interesting scenario. 5

• A use case interaction diagram illustrates the high-level interactions between the actors 6

that participate in the use case. 7

• A component architecture diagram depicts components and their interfaces, and 8

indicates the interfaces each component uses for communicating with other 9

components. 10

• A component interaction diagram illustrates the series of method invocations that 11

components perform on each other in order to implement a particular use case. 12

 The conventions for each of these diagrams are explained below. Many of the conventions 13

were leveraged from Ivar Jacobson’s text Object-Oriented Software Engineering.= In the 14

future, these conventions will be evolved to comply with the Unified Modeling Language 15

specification, which is still being refinedH. 16

 17

 Use Case Diagram 18

 The use case diagramming conventions are: 19

• A stick figure represents an actor, even if the actor is a computer-based entity, such as 20

an application: 21

 22

 = Object-Oriented Software Engineering, Ivar Jacobson, Addison-Wesley, 1994.

 H Unified Modeling Language Reference Manual, James Rumbaugh, Grady Booch, Ivar Jacobson,
Addison-Wesley, 1997.

 Healthcare
 Application

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 189

• An oval represents a use case. The name of the use case appears next to the oval: 1

 2

 3

• An arrow directed from an actor to the use case indicates that the actor participates in 4

the use case. A label near the arrow succinctly describes the actor’s role in the use 5

case: 6

 7

 Use Case Interaction Diagrams 8

 The use case interaction diagramming conventions are: 9

• The interacting actors are depicted by rectangles labeled with the actor’s name, 10

arranged in a horizontal row. A vertical dashed bar descends from each of these 11

rectangles: 12

 13

 14

 15

 16

• An interaction that is initiated by an actor is represented as an arrow that emanates 17

from the actor. The arrow terminates on the actor to which the interaction is directed . 18

Each arrow is labeled with a short description of the interaction it represents: 19

 20

 21

 22

 23

 24

 25

 26

 Patient Selection Change

 Participates

 Healthcare
 Application

 Patient Selection Change

 User

 Application XXX User

 I choose patient “Sam Smith”

 190 Copyright 1999, Health Level Seven Version CM-1.0

• A vertical bar indicates the start and end of the actions that an actor performs in 1

response to an interaction. These actions may include additional interactions: 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

• An actor can respond to an interaction. A response is shown as an arrow labeled with 14

an indication of the response: 15

 16

 17

 18

 19

 20

 21

 22

 23

 24

 25

• The entire set of interaction arrows is temporally ordered, from left to right, top to 26

bottom. 27

 28

 Application XXX User

 I choose patient “Sam Smith”

 Context Manager Application XXX

 I choose patient “Sam Smith”

 The selected patient is now “Sam Smith”

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 191

 Component Architecture Diagrams 1

 The component architecture diagramming conventions are: 2

• Each component is depicted as a rectangle. The name of the component appears within 3

the rectangle: 4

 5

 6

 7

 8

• Each of the interfaces implemented by a component is illustrated as a circle tangent to 9

the rectangle that depicts the component. Each circle is labeled with the name of the 10

interface it represents. Two or three letter abbreviations are typically used: 11

 12

 13

• A directed arrow connects components that communicate with each other. Arrows 14

emanate from a client component and point to the server components that it uses. Each 15

arrow terminates on the circle representing the specific server component interface that 16

is used. A distinct arrow is used for each interface for each server component that a 17

client component uses: 18

 19

 20

 21

 Context
Manager

 CM
 Context

Manager

 Context
Manager Application

 CM

 CD

 192 Copyright 1999, Health Level Seven Version CM-1.0

 Component Interaction Diagrams 1

 The component interaction diagramming conventions are: 2

• The interacting components are depicted by rectangles labeled with the component’s 3

name, arranged in a horizontal row. A vertical dashed bar descends from each of these 4

rectangles: 5

 6

 7

 8

 9

• A method that is invoked by a component is represented as an arrow that emanates 10

from the bar and that terminates on the bar for the component that services the method. 11

Each arrow is labeled with the name of the method it represents. Examples of actual 12

parameter values may be included for clarity: 13

 14

 15

 16

 17

 18

 19

 20

• A vertical bar indicates the start and end of the processing that a component performs 21

in response to a method invocation. This processing may itself include method 22

invocations: 23

 24

 25

 26

 27

 28

 29

 30

 31

 32

 33

 34

 Context Manager

 Context Manager Application XXX

 PublishChangesDecision(“accept”)

 Context Manager Application XXX

 PublishChangesDecision(“accept”)

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 193

• Method return values are indicated when this aids in understanding the use case. A 1

return value is shown as an arrow labeled with an indication of the return value: 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

• The entire set of method invocation arrows is temporally ordered, from left to right, 13

top to bottom. 14

 15

 16

 17

 18

 Context Manager Application XXX

 ContextChangesPending()

 “accept”

 194 Copyright 1999, Health Level Seven Version CM-1.0

 Accept An application’s response when it is willing to accept
the context data changes and to change its internal
state accordingly if the changes are published.

 Accept-Conditional An application’s response when it is in the midst of a
task that might cause work to be lost if the user does
not complete the task; if the changes are published it
is willing to terminate the task, accept the context
data changes and change its internal state
accordingly.

 ACL Access control lists, which determine the privileges
and capabilities a particular user has, are presumed
to be maintained by each application.

 Apply A user choice; the context data changes are applied to
all of the applications, including those that indicated
that they might loose work performed by the user;
this choice is allowed only when there are no busy
applications.

 Authentication repository Enables applications to securely maintain
application-specific user authentication data. The
repository is used by applications that do not have a
built-in means to easily sign-on a user given only a
logon name.

 AuthenticationRepository (AR) Interface used by applications to securely interact
with the repository to store and retrieve user
authentication data.

 Automatic Log-off Logs the current user off of the User Linked
applications on a desktop when the user has not
interacted with the applications for an appreciable
period of time.

Glossary

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 195

 Break Link A user choice; the context changes are applied just to
the application with which the user initiated the
context changes.

 Busy When an application is unable to apply the context
change because it is blocked (e.g., it is a single
threaded application that has a modal dialog open);
these applications are referred to as busy.

 Cancel A user choice; when the context change is canceled;
the context changes are not published.

 CCOW Clinical Context Object Workgroup.

 Centralized model In the centralized model of context management, the
responsibility for managing the common context is
centralized in a common facility that is responsible
for coordinating the sharing of the context among the
applications.

 Chain of trust With the chain of trust, User Link-enabled
applications and User Link components work
together to ensure that only authorized users are
allowed access to a common context system.

 Clinical context State information that users establish and modify as
they interact with healthcare applications. The
context is common because it establishes parameters
that should uniformly affect the behavior or operation
of multiple healthcare applications.

 Common context system Applications that share the same common context,
and have established and maintain a common context
link.

 Component architecture diagram Depicts components and their interfaces, and
indicates which interfaces each component use for
communicating with other components.

 196 Copyright 1999, Health Level Seven Version CM-1.0

 Component interaction diagram Illustrates the series of method invocations that
components perform on each other in order to
implement a particular use case.

 Conditionally accept When an application might lose work performed by
the user if it applies the context changes (e.g., the
user was in the process of entering data that would
not be applicable in the new context); these
applications are referred to as having conditionally
accepted the context changes.

 CMA Context Management Architecture.

 COM Microsoft’s Component Object Model.

 Component model The architecture of a system as described in terms of
components and the interfaces they must implement
in order to be participants in the system.

 Context change coupon Unique identifier that is assigned by the context
manager to denote each context change transaction.

 Context changes pending During the context change survey, the context
manager informs each of the applications in the
common context system (except for the application
that instigated the changes) that there are pending
context data changes. Each application decides
whether or not it wants to accept the changes. All
applications must accept in order for the context to
change.

 Context change survey In the first step of completing a context change
transaction the context manager surveys the
applications. Each application is informed that there
are a candidate set of context data changes and is
asked to indicate whether it can accept these changes.

 Context change transaction A multi-step process in that coordinates changes to
the common context data. First, an application begins
a transaction. The application sets a transaction-
specific version of the common context data. Second,

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 197

the context manager conducts a context change
survey. Third, the context manager reports the survey
results to the application that began the transaction.
Finally, the application indicates whether the changes
are to be applied or cancelled. The decision as to how
to proceed may involve the user. If changes are
applied, then the transaction-specific version of the
context data becomes the new context. Otherwise the
transaction-specific context data is discarded.

 Context manager Coordinates applications each time there is a context
change transaction. It is also the “owner” of the
authentic context data for the system.

 Context participants Applications that set and/or get context data from the
context manager. They must follow the policies
established later in this document in order to behave
as proper context management “citizens.”

 Context subject A subject represents a real-world entity or concept
that is identified as part of the overall common
clinical context.

 ContextData (CD) Interface implemented by the context manager; used
by applications to set/get the data items that comprise
the common context.

 ContextManager (CM) Interface implemented by the context manager; used
by applications to join/leave a common context
system and to indicate the start/end of a set of
changes to the common context data.

 ContextParticipant (CP) Interface implemented by an application that wants to
participate in a common context system; used by the
context manager to inform an application that the
context has changed.

 CORBA Common Object Request Broker Architecture.

 198 Copyright 1999, Health Level Seven Version CM-1.0

 Corroborating data Corroborating data can be used by applications
and/or users as a basis for checking further that the
identified context subject is what was expected.

 DCOM Distributed version of Microsoft’s Component Object
Model.

 Digital signature Formed using public key / private key encryption
techniques, a digital signatures enables

 Dispose A component performs an implicit or explicit action,
which is technology-specific, when it no longer
intends to use a particular reference. The latter action
is referred to as disposing an interface reference.

 Distributed model In the distributed model of context management, the
responsibility for managing the common context is
uniformly distributed among the applications. There
is no central point of common context management.

 Empty context A context is not defined for any subject, either
because no context identifier items are present in the
context data (as is the case when a context manager
is first initialized) or because the values of all of the
identifier items for the subject that are present in the
context data are null (as is the case when an
application explicitly indicates that the context is
empty).

 Empty context subject A context subject is empty when a real-world entity
or concept is not currently identified. For example,
for the patient subject, this means that a patient is not
currently identified.

 Identifier data Data that identifies a real-world entity or concept
(such as a specific patient or a specific encounter).
Identity information is required in order to establish a
common context between applications that involves a
real-world entity or concept. The string “id” indicates
identifier data.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 199

 IDL Interface Definition Language. IDL can specify: an
interface’s symbolic name, the set of component
properties and methods that can be accessed via the
interface, the name and data type of each property,
the names and data types for each method’s input and
outputs, and the names and data content for each
method’s exceptions.

 Instigator The application that began the current context change
transaction.

 ImplementationInformation (II) Interface implemented by the context manager and
mapping agent; used by applications, context
management components, and tools, to obtain details
about a component’s implementation, including its
revision, when it was installed, etc.

 Interface interrogation The interfaces that a component implements can be
determined by other components at run-time through
direct interrogation.

 Interface reference registry A service that contains references to component
interfaces. Components can use the registry to obtain
interface references to each other.

 Log-off The termination of a user’s session with an
application; it assumed that logging-off does not
require user authentication.

 Mapping agent A service component that from the perspective of an
application is a transparent participant in a context
change. A mapping agent’s primary role is to add
additional subject-specific context identifier items to
the context data.

 MappingAgent (MA) Interface implemented by a mapping agent and used
by a context manager to inform the mapping agent
that the clinical context has changes pending and that
the mapping agent should perform its context data
mapping responsibilities.

 200 Copyright 1999, Health Level Seven Version CM-1.0

 Message authentication code A secure hash value produced from a data stream
that consists of data that is openly communicated
between two parties, and “secret” data that they both
know but do not openly communicate.

 Message digest A digital signature is formed by applying a secure
hash function (alternatively known as a one-way hash
function) to the data that is to be transmitted. The
resulting hash value is referred to as the message
digest, as it is a numeric surrogate for the plain-text
message.

 Null item value The value of a context identifier item or
corroborating data item can be set to the
distinguished value of null to indicate that the item
does not have a valid value.

 OMA Object Management Group’s Object Management
Architecture.

 Participant coupon Unique identifier that is assigned by the context
manager to denote each context participant within a
system, including applications and mapping agents.

 Passcode Similar to passwords used by people. However,
because passcodes are only used by computer
programs, they can be much longer and complex than
passwords typically are. This makes passcodes
extremely hard to guess, even when brute force
techniques are employed.

 Patient Link Enables the user to select the patient of interest once
from any application as the means to automatically
“tune” all of the applications to the selected patient.

 Patient subject The context subject of Patient is defined for Patient
Link. The context data identifier item for this subject
is the patient’s medical record number. The patient’s
given name is not used as an identifier.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 201

 Principal interface Every component implements at least one well-known
interface, referred to as the component’s principal
interface. The principal interface enables components
to perform initial interface interrogations because the
name of the principal interface is known a priori, and
because all components implement it.

 Private key / Public key An approach for encrypting data, and for creating
digital signatures, wherein a matched set of security
keys is used. The private key remains the secret of its
owner. The matching public key can be disseminated.
X can send a message that only Y can read by
encrypting the message using Y’s public key. Y
decrypts the message using its private key.
Alternatively, Y can digitally sign its messages using
its private key. X can validate Y’s signature using
Y’s public key.

 Pull-model A shared component is used to maintain the shared
context data. Applications update this resource to
change the data. Other applications periodically poll
the component to determine if the data has changed.

 Push-model A shared component is used to maintain the shared
context data. This component notifies applications
whenever the data is changed. In order to receive a
notification, an application must have first explicitly
indicated its interest in being notified.

 Reauthentication time-out Requires the currently signed-on user to
reauthenticate herself before being allowed to
continue using the applications on a clinical desktop.
The time-out occurs when the user has not interacted
with the desktop for an appreciable period of time.

 Repository See authentication repository.

 RMI Java Remote Method Invocation mechanism.

 RSA A popular public key / private key algorithm.

 202 Copyright 1999, Health Level Seven Version CM-1.0

 Secure (or one-way) hash function A function used for producing a unique numeric
surrogate from an arbitrary data stream. It is
improbable that two different data streams will yield
the same hash value. A secure hash function is an
essential part of the infrastructure needed to support
the use of digital signatures.

 SecureBinding (SB) Interface used by applications to establish a secure
communications binding with the context manager
before using the SecureContextData interface. Also
used by applications to establish a secure
communications binding with the authentication
repository before using the AuthenticationRepository
interface.

 SecureContextData (SD) Interface similar to the ContextData interface defined
for Patient Link; this interface is used by applications
to securely set/get the values for the items (logically
represented as name-value pairs) that comprise the
clinical context.

 S-HTTP Secure Hyper-Text Transfer Protocol.

 Sign on The act of identifying oneself to an application, prior
to initiating a user session, in a manner that can be
authenticated by the application, typically involving a
secret password or a biometric reading (such as a
thumb-print scan).

 SSL Secure Socket Layer. SSL enables secure (i.e.,
encrypted) transmission of data between a client and
a server. It also enables a client to authenticate a
server (and a server to authenticate a client).

 Stat admission Occurs when an application needs to enable the user
to record information about a patient even if an
identifier for the patient is not known.

 Technology neutral Means that the common clinical context approach
should work equally well with any one of a candidate
set of relevant technologies.

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 203

 Use case diagram Depicts the actors (human and/or computer-based)
and the roles that the play when participating in an
interesting scenario.

 Use case interaction diagram Illustrates the high-level interactions between the
actors that participate in the use case.

 User Link Enables the user to securely logon once to any
application as the means to automatically “tune” all
of the applications to the user.

 User subject The context subject of User is defined for User Link.
The context data identifier item for this subject is the
user’s logon name. The user’s given name is not used
as an identifier.

 User Link-enabled application An application that implements the CMA User Link
capability.

 204 Copyright 1999, Health Level Seven Version CM-1.0

 Index

 A
 Access Control Lists, 117
 Application Behavior, 113
 Application Names

 Format for, 159
 Application Termination, 119
 Architecture Summary, 13
 Assumptions/Assertions, 17
 Authentication Codes, 163
 Authentication Data, 106
 Authentication Repository, 108, 125

 implementation considerations, 126
 populating, 127

 AuthenticationRepository (AR), 166
 Connect, 167
 DeleteAuthenticationData, 168
 Disconnect, 167
 GetAuthenticationData, 170
 SetAuthenticationData, 167
 Synopsis, 166

 Automatic Log-Off, 122

 B
 Backwards Compatibility, 202
 Basic Data Types

 Representing as Strings, 163
 Behavioral Details, 65
 Busy Applications, 123

 C
 Case Sensitivity

 Item Names and Item Values, 50
 Chain of Trust, 128

 creation, 128
 implementation limitations, 134
 object infrastructures, 129
 secure communications protocols, 129
 security attacks, 132
 security building blocks, 130
 user context change, 128

 Chain of Trust Interactions, 149
 Hash(abcd), 149
 XXEncrypt, 149
 XXPublic Key, 149
 XXSignature, 149

 Changing Users, 118
 Character-Encoded Binary Data, 161
 Clinical Context, 11

 CMA Components, 135
 bindee, 142
 pass codes, 141, 143
 protecting private keys, 144
 public key distribution, 141
 replay attack, 146
 system configuration requirements, 145

 CMA Design Center, 19
 CMA Model, 27
 Co-Existence, 124
 Common Clinical Context Use Model, 67
 Common Context

 Lifecycle, 68
 Common Context System, 60, 64
 CommonContextTerminated, 189
 Component Architecture Diagrams, 204, 207
 Component Concepts, 54

 Interface Interrogation, 54
 Interfaces and References, 54
 principal interface, 55

 Component Interaction Diagrams, 204, 208
 Component Model, 53
 ComponentName, 190
 Connect, 167
 Context Change Detection, 42

 pull-model, 42
 push model, 42

 Context Change Notification Process, 62
 Apply, 63
 Break Link, 63
 Cancel, 63

 Context Change Transactions, 59, 61
 Context Data, 57

 Access, 43
 Interpretation, 45
 Representation, 42

 Context Data Representation
 Fully populated, 42
 Name value pairs, 43

 Context Management Architecture, 5, 11, 14, 16,
27, 132, 137, 202, 212
 CMA, 11

 Context Management Interfaces, 108
 Context Management Responsibility, 41

 Centralized, 41
 distributed, 41

 context manager, 13, 57, 62, 129, 130, 138, 197,
201, 212, 213, 214

 Context Participant, 57
 Context Selection Change, 72
 Context Subject

 Empty, 49

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 205

 Context Subjects, 47
 Context System

 mapping agent, 92, 93
 ContextChangesAccepted, 188
 ContextChangesCanceled, 189
 ContextChangesPending, 187, 192
 ContextData, 172

 Synopsis, 172
 ContextData (CD)

 DeleteItems, 173
 GetItemNames, 173
 GetItemValues, 175
 SetItemValues, 174

 ContextManager (CM), 178
 EndContextChanges, 181
 JoinCommonContext, 179
 LeaveCommonContext, 180
 MostRecentContextCoupon, 179
 PublishChangesDecision, 183
 ResumeParticipation, 185
 StartContextChanges, 181
 SuspendParticipation, 184
 Synposis, 179
 UndoContextChange, 183

 ContextParticipant (CP), 187
 ContextParticipation (CP)

 CommonContextTerminated, 189
 ContextChangesAccepted, 188
 ContextChangesCanceled, 189
 ContextChangesPending, 187
 Ping, 189
 Synopsis, 187

 Contextx
 Empty, 118

 Coupon Representation, 159

 D
 DeleteAuthenticationData, 168
 DeleteItems, 173
 Desktop Assumptions, 105
 Diagramming Conventions, 204
 Diagrams

 component architecture diagram, 204
 component interaction diagram, 204
 use case, 204
 use case interaction, 204

 Digital Signatures, 135
 Context Management Architecture, 137
 public key and private key, 135

 Disconnect, 167

 E
 Empty Context Subject, 49
 Empty Contexts, 118
 EndContextChanges, 181
 Establishing the Meaning of Context Data Item

Values, 46

 Exception Declaration, 156
 Extraneous Context Items, 160

 F
 Figure 1: Patient Linked Applications, 12
 Figure 10: User Accepts Consequences of going

ahead with Patient Selection Change with all
Applications, 40

 Figure 11: Patient Link Component Architecture,
58

 Figure 12: Patient Link Context Change Process,
60

 Figure 13: Common Clinical Context Use
Model, 68

 Figure 14: Common Context Lifecycle Use Case,
69

 Figure 15: Context Selection Change Use Case,
72

 Figure 16: Abnormal Termination of Common
Context Use Case, 85

 Figure 17: User Link Component Architecture,
110

 Figure 18: User Link Sign-On Process, 111
 Figure 19: User Subject Context Data Mapped

for Different Applications, 125
 Figure 2: Organization of HL7 Context

Management Specification Documents, 16
 Figure 20: Signing A Message, 137
 Figure 21: Forming Signature Using Method

Parameters, 139
 Figure 3: Overall Role of the CMA

Specification, 19
 Figure 4: COM/Java/CORBA Interoperability,

22
 Figure 5: Patient Selection Change Use Case, 30
 Figure 6: Patient Context Automatically Changes

within all Context Participant Applications, 32
 Figure 7: User Informed of Potential Data Loss

and Cancels Context Change, 34
 Figure 8: User forces Application AAA to

Become Out of Synchrony with other Context
Participants, 36

 Figure 9: Context Participant Not Responding to
Selection Change Request, 38

 FinalizeBinding, 196
 Forcing the Termination of a Context Change

Transaction, 160
 Format for Application Names, 159

 G
 GeneralFailure Exception, 158
 GetAuthenticationData, 170
 GetItemNames, 173, 199
 GetItemValues, 175, 200
 Glossary, 210

 206 Copyright 1999, Health Level Seven Version CM-1.0

 I
 IDL. See Interface Definition Language
 Implementation Information, 57
 ImplementationInformation (II), 190

 ComponentName, 190
 Manufacturer, 191
 PartNumber, 190
 RevMajorNum, 190
 RevMinorNum, 190
 Synopsis, 190
 TargetOS, 191
 TargetOSRev, 191
 WhenInstalled, 191

 InitiateBinding, 194
 Interaction Diagram 1: Common Context

Lifecycle, 70
 Interaction Diagram 10: An application

conditionally accepts the changes; user breaks link
with common context, 84

 Interaction Diagram 11: Abnormal Termination
of Common Context, 86

 Interaction Diagram 12: Simplest Application,
89

 Interaction Diagram 13: Context Change
Transaction with Mapping Agent, 95

 Interaction Diagram 14: Mapping Agent
Invalidates Context Change Transaction, 100

 Interaction Diagram 15: User Logs Off From
One Application, 121

 Interaction Diagram 16: User Logs-Off From
Desktop, 121

 Interaction Diagram 17: Populating
Authentication Repository with User
Authentication Data, 150

 Interaction Diagram 18: User Link Context
Change Transaction, 152

 Interaction Diagram 2: Suspending/Resuming
Context Participation, 71

 Interaction Diagram 3: All applications accept
the changes, 73

 Interaction Diagram 4: An application
conditionally accepts the changes; user decides to
cancel changes, 75

 Interaction Diagram 5: An application does not
respond to survey, 76

 Interaction Diagram 6: An application does not
respond to change notification, 77

 Interaction Diagram 7: An application responds
after context change transaction has completed, 78

 Interaction Diagram 8: A non-surveyed
application participates in context change, 80

 Interaction Diagram 9: An application
conditionally accepts the changes; user decides to
accept consequences of change, 82

 Interface Concepts, 54
 Interface Reference Management, 55
 Interface Reference Registry, 55

 Interface Definition Body, 154

 Interface Definition Language, 153
 Exception Declaration, 156
 Interface Definition Body, 154
 Interface References, 157
 Principal Interface, 157
 Qualifying Names, 158
 Sequences, 156
 Simple Data Types, 155

 Interface Definitions, 153
 Implementation Issues, 158
 Interface Definition Language, 153
 Interfaces, 166

 Interface Implemenation Issues
 Representing Basic Data Types as Strings.

See
 Interface Implementation Issues, 158

 Character Encoded Binary Data, 161
 Coupon Representation, 159
 Extraneous Context Items, 160
 Forcing the Termination of a Context Change

Transaction, 160
 Format for Application Names, 159
 GeneralFailure Exception, 158
 NotImplemented Exception, 158
 Pre-Defined Mapping Agent Coupons, 164
 Representing Message Authentication Codes,

Signatures and Public Keys, 163
 Interface References, 157
 Interfaces, 91, 166

 AuthenticationRepository (AR), 166
 ContextData, 172
 ContextManager (CM), 178
 ContextParticipant (CP), 187
 Implementaion Information, 91
 ImplementationInformation (II), 190
 Mapping Agent, 91
 MappingAgent (MA), 192
 SecureBinding (SB), 194
 SecureContextData (SD), 199

 Introduction for Technology and Subject
Independent Component Architecture, 11

 Item Name Format, 47

 J
 JoinCommonContext, 179

 L
 LeaveCommonContext, 180
 Links and Subjects, 11

 common context system, 12
 Patient. See
 User, 12

 Logging-Off, 112, 119

 M
 Manufacturer, 191

 Context Management Specification, Technology and Subject-Independent Component Architecture

 Version CM-1.0 Copyright 1999, Health Level Seven 207

 Mapping
 null-valued identifiers, 99

 Mapping Agents, 14, 59, 90, 91, 101
 context data, 96
 context participants, 95
 failures, 101
 Initializing, 100
 populating, 124
 security policies, 101

 MappingAgent (MA), 192
 ContextChangesPending, 192
 Ping, 193
 Synopsis, 192

 Meaning of Context Data Item Names, 45
 MostRecentContextCoupon, 179
 Multiple Context Subjects, 113

 context change, 115
 context manager support, 114
 link, 113

 Multiple Subjects
 Mapping Agents, 117

 N
 NotImplemented Exception, 158
 Null\ Item Values, 49

 O
 Optimizations, 87

 P
 PartNumber, 190
 Patient Link, 3, 7, 12, 57, 58, 90, 104, 107, 108,

109, 111, 113, 114, 115, 116, 117, 123, 124, 190,
202, 216, 217, 218

 Patient Mapping Agent, 59
 Patient Subject, 58
 Performance Costs and Optimizations, 102
 Ping, 189, 193
 Pre-Defined Mapping Agent Coupons, 164
 Principal Interface, 157
 Public Keys, 163
 PublishChangesDecision, 183

 Q
 Qualifying Names, 158

 R
 Reauthentication Time-out, 122
 Representing Basic Data Types as Strings, 163
 Representing Context Subjects, 46
 Representing Message Authentication Codes,

Signatures and Public Keys, 163
 Requirements and Capabilities, 24

 applicability, 24

 coordination, 24
 extensibility, 24
 flexibility, 24
 localizability, 24
 performance, 24
 scalability, 24
 usability, 24
 verifiability, 24

 ResumeParticipation, 185
 RevMajorNum, 190
 RevMinorNum, 190

 S
 Scope and Objectives, 16
 SecureBinding (SB), 194

 FinalizeBinding, 196
 InitiateBinding, 194
 Synopsis, 194

 SecureContextData (SD), 199
 GetItemNames, 199
 GetItemValues, 200
 SetItemValues, 200
 Synopsis, 199

 Sequences, 156
 SetAuthenticationData, 167
 SetItemValues, 174, 200
 Signatures, 163
 Simple Data Types, 155
 Simplest Application, 88
 Specification Organization, 16
 Standard Context Data Items, 48

 Non-standard, 48
 StartContextChanges, 181
 Stat Admissions, 87
 Strings, 163

 Representing Representing Basic Data Types
as, 163

 Surveying Details, 65
 Accept, 66
 Busy, 67
 Terminated, 66

 SuspendParticipation, 184
 Synopsis, 166, 172, 179, 187, 190, 192, 194,

199
 System Architecture, 27

 T
 Table 1: User Link-Enabled Application

Behavior for Termination and Log-Off, 120
 Table 2: Chain of Trust Attacks and Defenses,

133
 Table 3: Handling Transaction Instigator Failure,

161
 Table 4: Character Representations for Basic

Data Types, 164
 TargetOS, 191
 TargetOsRev, 191

 208 Copyright 1999, Health Level Seven Version CM-1.0

 Technology Neutrality, 20
 examples, 20
 Figure 4, 21
 Inter-component communication, 20
 Operating Systems, 20
 Programing languages, 20

 Theory of Operation, 92
 Transactional Consistency, 62
 Trust Relationships, 146

 applications and authentication repository,
148

 applications and context manager, 147
 context manager and user mapping agent, 147

 U
 UndoContextChange, 183
 Use Case Diagram, 204
 Use Case Interaction Diagram, 204

 Use Case Interaction Diagrams, 205
 Use Model, 27
 User Authentication

 Applications, 112
 User Link, 4, 5, 7, 8, 12, 104, 105, 107, 108,

109, 112, 113, 114, 116, 117, 118, 119, 120, 121,
123, 124, 126, 128, 129, 130, 131, 132, 134, 135,
137, 141, 142, 145, 147, 148, 211, 219
 Common Context System, 107
 Component Architecture, 109
 sign on process, 111
 Terms, 105

 User Subject, 105

 W
 WhenInstalled, 191

