Context Management Specification, Technology and Subject-1ndependent Component Architecture

Health L evel Seven Standard

Context M anagement Specification
Technology- and Subject-1ndependent Component Architecture
Version CM-1.0

DOCUMENT ID:
REVISION ID:
FILE NAME:

SUPERCEDES:

HL7SIGVI_2 1 99
Rev. A, February 13, 1999
hl7_vi_arch_rev_a.doc

n/a

Copyright 1999 Health Level Seven

Version CM-1.0 Copyright 1999, Health Level Seven

Context Management Specification, Technology and Subject-Independent Component Architecture

Table of Contents

O VI 2O 1 5101 1 1 7
1.1 (O TN o7 Y 0] N /= E TR 7
1.2 LINKSAND SUBJIECTS .uuuuiiiiiittttiiieeesieestttsseesseesssssasssessstessssasseesssesssbaasesssessssassseessersssrssseeasans 7
1.3 READING THIS DOCUMENT ..cctttttitiieiiiettits s s e esseeetbbasseessssesbbb s eessses bbb s eeessesssbaasseesserssbraseeasaes 9
2 SCOPE AND OBJIECTIVES......cco oo 10
2.1 SPECIFICATION ORGANIZATION ..iiietttuiiiieeiieatitiseessressssssesseessssstesstressseesserssseessresrnn. 10
2.2 ASSUMPTIONS/ASSERTIONS. ... e eeieeeeee ettt ettt ettt ettt e e e e e e e e e et e aaaaaaes 11
2.3 CIMA DESIGN CENTER....cutttuiiiiiiiitttiiiiieesiieatitseesssssstsstesstessssstessteestseesterss e, 13
3 TECHNOLOGY NEUTRALITY o 14
4 REQUIREMENTSAND CAPABILITIES. ..ottt ettt et e s sitee e stre e s snrae e 17
5 SYSTEM ARCHITECTURE ... 19
51 L0115 =1 1Y, [o= TR 19
52 CONTEXT MANAGEMENT RESPONSIBILITY ..iivtttuuiiiieeiiesttsniiieeeseessssseeessesssssseessessssmeesseesmn. 28
53 CONTEXT CHANGE DETECTION ...iiitttttiiiieiiietttiiiseesssessssssessssessbssassesssesssssassesssesssssssseesseessses 29
54 CONTEXT DATA REPRESENTATION etttuuiiieiiietttsiiieeessressssseesssesssssesssessssneesseessse. 29
55 CONTEXT DATA ACCESS ...ittuiiiiiiiietiiiiii i e e e s ettt s s e e esssestb s s e easeeaa b s eeassess bbbt seassesssbaaaseesseessses 30
5.6 CONTEXT DATA INTERPRETATION .etttuuuiiieiiiettttaieeesseesssssseesseessssssesssessssseesseessseesseessne. 31
5.6.1 Establishing the Meaning Context Data [tem NameS..........coooieiiiiiieeieeeeeeee e 32
5.6.2 Establishing the Meaning for Context Data Item ValUes.............ccoveeiieiiiiienie e 33
5.6.3 Representing Context Subjects That Cannot Be Uniquely Identified...........cccoooeeviieniens 33
5.6.4 (001011 S U] o] = £ RO 34
5.6.5 Representing “ NUIl” M VAIUBS.........ocoiiiii e 34
5.6.6 Representing an Empty Context SUDJECEccuii i 35
5.6.7 Case Sengitivity with Regard to Item Names and Item Values...........cccoveeveiiieninieecninen, 35
6 COMPONENT MODEL ..o 37
6.1 COMPONENT AND INTERFACE CONCEPTSccittttiiiiiiiiiittiiinsieeseessbisssesssssssssasssesssessssssnsseesseessses 37
6.1.1 INEEI TACES AN REFEIENCESeveeeeeeieeeeieieeeeeteeeeesesesesssnnns 38
6.1.2 INterface INTErTOgaLiON........c..ii ittt ra e e s be e 38
6.1.3 PrinCipal INtEITACEoiiiieie ettt b e e sbe e e saee e sneeens 39
6.1.4 Interface REfErenCe REGISITYeiiiii it 39
6.1.5 Interface Reference Managementooouieiiiiiiei ettt 39
7 PATIENT LINK THEORY OF OPERATION ...ccooeeeeeeee 41
7.1 PATIENT LINK COMPONENT ARCHITECTURE.....ccttttuiiiiieiiiettiiniieesiesstssnssesssesssssesssesssseeane 41
7.2 = RS U= = TR 42
7.3 PATIENT MAPPING AGENT ...cctttttiiiieiiitttttiiiseesseesstsasseessseesba s seasseestbaseesseessbbaaseesssessrbansseaases 43
7.4 CONTEXT CHANGE TRANSACTIONS. ..tttuiiieiiiettitiiieessiessssiseesssesssssssesssessssasseessessssssseeesseessses 43
7.5 JOINING THE COMMON CONTEXT SYSTEM cuttttuiiiiiiiieitiiiiiiiesiiestisiissesssessssssesssssssssneesssessssnns 44
7.6 CONTEXT CHANGE TRANSACTIONS. ..tttuiiieiiiettitiiieessiessssiseesssesssssssesssessssasseessessssssseeesseessses 45
7.7 TRANSACTIONAL CONSISTENCY etttuuiiiiiiiertiiiiiiessiesssssieesseesssiseesssesssieestressr 45
7.8 CONTEXT CHANGE NOTIFICATION PROCESS.....uuuiiiiiiiiiiiiiii ettt eetti e eabb e s s e eeaaa 46
7.9 LEAVING A COMMON CONTEXT SYSTEM tuuuiiiiiiietiiiiiiieeiieestiiiisesssesssssssseesssssssssnseessssssssneeene 48
7.10 BEHAVIORAL DETAILS. ... iiiiiittiiii i ee e eete s e e e s e e et s e e s s s e ea bt e e es s e e s bbb s eesseesabba s eessseesbbaansaeaases 48
7.10.1 Application Behavior When it Cannot Cancel Context Changes...........cccocvevieeieniiieeene 48
7.10.2 Application Behavior When it Does Not Understand Context Identifiers............cccoeueenee. 49

2 Copyright 1999, Health Level Seven Version CM-1.0

Context Management Specification, Technology and Subject-Independent Component Architecture

7.10.3 Application Behavior with Regard to an Empty CONteXtcccevieiineiniieeniee e 49
7.10.4 SUNVEYING DELAIIS. ... ettt rb e aee et e b e e e be e e saee s 49
7.11 COMMON CLINICAL CONTEXT USE MODELuuuuuuiuuiininiiii s 51
7111 Lifecycle of COMMON CONEEXE..........couiiiieiiieieriee ettt steestee et esbe e s be e seee e saeeesneeaens 52
7.11.2 Context Selection Change USE CaSE.......c.uia ittt saee s 56
7.11.3 Abnormal Termination of Common Context USE Case.......uueevveeiiiiirireeeeeeeeieirreeeeeeeseennns 65
7.12 STAT ADMISSIONSuuuuuuuunuunnnnnnnnnnnnnannaaaa.—————————...sannnsnnnnnnnssnnnnnnsssnnnsnnnnnnnnnnssnnnnnnnnnnnnnnnnnnnnnnnnnnnn 67
7.13 (@)= 1Y TNy @ N 67
7.14 THE SIMPLEST APPLICATION ..uuiiiiiieeiieeeeeeeeeee e e e e e e e e e s e e e e e e e e s s s e s s s s e s s s e s e e s e e s e e a s s s nnnnnnnnnnnnnnn 68
8 MAPPING AGENTS. ... ittt e e e e e e e e e e e et b e e e e e e e s s aabbbeeeeeessssassbaeeeeeeessannnes 71
8.1 ASSUMPTIONS AND ASSERTIONScciiiieeeeeeeeeee 71
8.2 INTERFACES.o i i, 72
83 THEORY OF OPERATION ...uuiiiiiiieieeeeeee e e ee e e e e e e e e e e s e e s e s s s e s e s e e e s s s s s s e e e s e s s s e s s s s e s e s e s s e nnnnnnnnnnnnnnnnnnn 73
8.3.1 Initializing a Context System When a Mapping Agent iSPresentcccocceeveevceeiiieeene 74
8.3.2 Terminating a Context System When a Mapping Agent iSPresentcoccceveeveeiienene 75
8.3.3 Distinguishing Between Mapping Agents and Context Participants............cccoveeveeriennns 76
8.34 Mapping Agent Updates to CONtEXE DALAceeieeeiieriieieiee e 77
8.35 Conditions for Mapping Agent Invalidation of Context Changes............cccovcevrieeeneeenenen. 77
8.3.6 Treatment of Mapping Agent Invalidation of Context Changes............cccovveevieeiieeiiieeene 79
8.3.7 Mapping Null-Valued TAeNntifiers..........ocei i 80
8.3.8 InitialiZing MappPiNg AQENESueiiiieii ettt ettt e e saee e sabe e sbe e beeeees 81
8.3.9 Handling Mapping Agent FailUreS..........cooiiiiiiiieee e 82
8.4 MAPPING AGENT EFFECT ON APPLICATION SECURITY POLICIEScccviiiiieiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 82
85 IDENTIFYING MAPPING AGENT IMPLEMENTATIONS.....ccciiiiiieeeeeeeeeeeeeeeeeeeeeeeeee e 83
8.6 PERFORMANCE COSTS AND OPTIMIZATIONS ...cettiiiieieeeeeeeeeeeeeeeeeeeeeeeeeesesssssessssesssssssssssssssssssssssnnes 83
9 USER LINK THEORY OF OPERATIONttt ettt esevtaee e e e e e nnnraeee s e e e e sennnes 85
9.1 USER LINK TERMSAND ASSUMPTIONS ...cctiiiiiiieiieeeeeeeeeeeeeeeeeeeeeeeeesssessssssssssssssesssssssssssssssssssssssenes 85
9.2 DESKTOP ASSUMPTIONS. ...ceeiititieeeeeeeeeeeeeeeeeeeeeeseeeseseseesessssesssnnnnns 86
9.3 USER SUBJECT ...eiiiiiiiiiiiieieieeeeeeeeeeeeeeeeeeeeeeee s s e e e s e e s e s s e s seseessssssesssssssssesasssssssssssssssssssssssssssssssnnnnnnnns 86
9.4 USER AUTHENTICATION DATA ISNOT PART OF THE USER CONTEXT ..ccvviiiiiiieieeeeereeeeeeeeeeeeeeeeeeeees 87
9.5 USER LINK COMMON CONTEXT SYSTEM DESCRIPTIONccceeiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeseseseesseeessseseseee 87
951 USEr MaPPING AGENLeiteieitie ettt et ste e sate e be e st e e e be e e saeeasabeesabeeabeeeabeeesaeeesnreans 88
9.5.2 Context Management INTErfaCES.c.ui i 88
953 AUthentiCation REPOSITONYccouiiiiieiie ettt rb e sbe e sab e sabe e s beeeees 89
954 Overall User Link Component ArChiteCIUNe.cooiueiiiiieiiee e 89
9.6 USER LINK SIGN-ON PROCESScciiitiiiiiiiiiiiiiieiieeeeeeeeeeeeeeeeeeeeeessesseessseseesessessesssssesssssssssssssssssnnes 20
9.7 DESIGNATING APPLICATIONS FOR USER AUTHENTICATION ..ceeiiieeeeeeeeeeeeeeeeeeeeeeeeessesesesesssesssssssenes 91
9.8 SIGNING-ON TO APPLICATIONS NOT DESIGNATED FOR AUTHENTICATING USERS......cccceeeiinnnnnne. 92
9.9 APPLICATION BEHAVIORWHEN LAUNCHEDcccoiiiiiieiee e, 93
9.10 MULTIPLE CONTEXT SUBJECTS. ..eetiiitiiiteieeeeeeeeeeeeeeeseseeeeseeeessessesssnsnnes 93
9.10.1 The Effect of Multiple Subjects on the Meaning of “ Link™ ..o 93
9.10.2 Context Manager Support for Multiple Context SUDJECES..........ccocvriii e, 94
9.10.3 Effect of Multiple Subjects on Context Change Transactioncccoceeeieeeneeesieeniieens 95
9.10.4 Context Manager Treatment of Multi-Subject Context Data...........cccoeevieerieniieeenieeeen, 96
9.10.5 Application Treatment of Multiple SUDJECES........cceiiiiiiie e 96
9.11 ACCESSCONTROL LISTS ... 96
9.12 EMPTY CONTEX TS eiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeee s e e e ee e e e e e seeeseessessessssssssasssssssssssssssssssssssssssnsnnnnnnnnnns 97
9.13 CHANGING USERS.......uuuuuuutiuuuiuuuuiununnannaaanaaaaaaaaaaa.———————————___ssnnnnnnnnnnnnnnnnnnnnnnnsnnnnnnnnnnnnnnnnnnnnnnnnnnnnn 97
9.14 LOGGING-OFF AND APPLICATION TERMINATION ...cccviiiiieiiieeeeeeeeeeeeeeeeeeeeeeeeseesessessssssssssssssssssssenes 98
9.15 AUTOMATICLOG-OFF ... 101
9.16 REAUTHENTICATION TIME=OUT ..eitiiiiiiiiiiiiieeeeeeeeeeeeeseeeeseeeesssnnns 102
9.17 BUSY APPLICATIONSoiiiiiiiiiiiiiieeeeeeeeteeeeeeeeeeeeeseeeeeeeseesaseasssssssassssssssssssssssssssssssssssssssssssssnnnnnns 103

Version CM-1.0 Copyright 1999, Health Level Seven 3

Context Management Specification, Technology and Subject-Independent Component Architecture

9.18 CoO-EXISTENCE WITH APPLICATIONS NOT CCOW-ENABLED.....ccciittiieeiiieie et 103
9.19 POPULATING THE USER MAPPING AGENTutiiiiitieeeiatieeaeatteeessaseeaesssseeassseeeassnnseassanseeassnnseeens 103
9.20 AUTHENTICATION REPOSITORY ...ceiiittiiaeitieaesatieeaesatteeesateeassssseeasssseeesasseeassasseeassnseeasanneeassnns 104
9.20.1 Repository Implementation CoNSIAErationsc.eeieeeiieeiiieenee e 105
9.20.2 Populating the REPOSITONYcooiuiieiieeiiie ettt et e b e sae e saee s 106
10 CHAIN OF TRUST ...ttt sttt r et b e sb e sn e sb e e sbeesreesreenreesreenreens 107
10.1 USER CONTEXT CHANGE TRANSACTIONS AND THE CHAIN OF TRUSTceeiiiiieieeniiee e 107
10.2 CREATING THE CHAIN OF TRUSTtttiiiititeeitteeesatteeessiteeaessbe e e s abse e e s aabaeaesanseeaesnbeeasanneeesanses 107
10.2.1 ODJECE INFrASITUCIUNES ...ttt b e sae e e esbe e e 108
10.2.2 Secure ComMMUNICatioNS ProtOCOIS.......coiuuiaiiie ettt 108
10.2.3 Security BUilding BIOCKSuiiiiiii et 109
10.2.4 Security Attacks On the Chain Of TrUSE..........oeiiiiiiii e 111
10.2.5 Chain of Trust Implementation Limitations............occueieiiiireniee e 113
10.3 DIGITAL SIGNATURES AND CMA COMPONENTSceteittiiaeitreeesareeeeassreeassssseeassseeessssseeessssseeens 114
10.3.1 Public Key / Private Key Encryption as a Means for Generating Sgnatures.................. 114
10.3.2 Incorporation of Sgnaturesinto the Context Management Architecture.............cccoocuee.e 116
10.3.3 Computing @ Digital SIGNALUIE.......ccoceiiiiieiee et 118
10.34 PUbBIiC K&Y DISLITDULION.ciiiiiiiiieiie ettt saee s 119
10.34.1 Passcode Generation REQUITEMENTSueiiiieriereeesieesie e seesee e sreeseeeeesreesseeneesseesseensesneas 121
10.3.4.2 PrOtECtinNg PaSSCOUEScveeeriieesieeieeiesteesee e st esee e steesteaseesseesteaneeaseenseansesseesseeneeaneesseensesnen 122
10.3.4.3 ProteCting Private KEYScoi ettt ettt ettt ee st e steeeesseenteeneneneesseeneeanean 123
10.35 System Configuration REQUIFEMENTS.ii it 123
104 TRUST RELATIONSHIPS.ceiiittitaeittetaeauteeaesauteeesabeeeesasbeeeeasbeeasaabeeessasbeeasanbeeeesanbeeaeaannneesanses 124
104.1 Trust Between Applications and Context Managerccoceeereeereeerieernieeesieeesieeesieens 124
10.4.2 Trust Between Context Manager and User Mapping AQent..........oovveveerieeeneeesieenieens 125
10.4.3 Trust Between Applications and Authentication REpOSItOrYcceveerieiineeenieenieenns 125
10.5 CHAIN OF TRUST INTERACTIONS. ... ettiiiutttaeitteeasatteeesauteeeesasseeasanseeesaasaeeasanseeeesasseesssnsneessansens 126
11 INTERFACE DEFINITIONS.......ooiiiiiieie et 129
111 INTERFACE DEFINITION LANGUAGEceiiiiutitieiittieeeatiee e e sitee e e sesbee e s sbse e e s sabeeasssbeeassnbseeessnneeaeanns 129
1111 Interface DEfiNitioN BOOYcccuiiiiiiiiiii ettt sae e saee e 130
11.1.2 SMPIE DAL TYPES ...ttt ettt ettt b e sab e e st e e st e e e sbe e e sabe e sabeesnbeeenees 131
11.1.3 EXCEPLION DECIAIALTIONeeiiiiieiiee ettt et e st e e sae e saee s 132
11.14 SEOUEICES ...ttt ettt ettt ettt b e bbbt bbbt Rt Rt Rt Rt R e n e e re e ne e nne e 132
1115 INtErface REFEIENCES.ee ettt sa e e saee e sare e 133
11.1.6 PrinCipal INtEITACEoi ittt saee s 133
11.1.7 QUALTTYING NBIMES......ciitei ettt sb et e st e e st e e e ebe e e sabe e sabe e snreeeees 133
11.2 INTERFACE IMPLEMENTATION ISSUES.......utiiiiiitiie ettt ettt ettt ettt nee e sbee e e s snneeaeanes 134
11.2.1 NotImplemented EXCEPLION.cc.uii ittt saee s 134
11.2.2 COoUPON REPIESENTALTON ...ttt ettt ettt et e e rbe e sane e sabe e sreeeees 134
11.2.3 Format for AppliCation NAMESoo it 134
11.24 EXIran@ous CONLEXE [TEITIS.eiiiiiieieeitiee ettt sttt e e e e e s enr e e e e enre e e e eaneas 135
11.25 Forcing the Termination of a Context Change Transactionccevceereernieeeseeesenen. 135
11.2.6 Character-Encoded Binary Data.........ccoouieiiieiieiiiie it 136
11.2.7 Representing Message Authentication Codes, Sgnatures and Public Keys..................... 137
11.2.8 Representing Basic Data TYPES @S SITNGS....ccooveieiiiaiieeiieeeiee et e e e e 138
11.3 INTERFACES. .. tttteeettee e e ettt e e sttt e e e bb e e e e aatee e e e s bee e e o b et e e e aabee e e e s bee e e sabbe e e e ambeeeeabbeeaeanbbeaesanreeananns 140
11.31 AuthenticatioNREPOSITOrY (AR)ccoveiiieieitie ettt sae e sbe e sbe e sbee e saee s 140
11311 1600 0] 0= o PP 140
11.3.1.2 DISCONMMECE ...ttt ettt e sttt e s te e et ne e s et eeeemeesseeteemee et eeneeemeeaseenseeneesseenseeneeaneenseenseanean 141
11.3.1.3 SELAULNENTICAEIONDBEAL ... eveeeeeeeeiiesie et e st e st e st ee st e ste et e e seeeneesseenseeneesseeneeaneesseenseanenn 141
11.3.14 Dl eteAUtNENtICALIONDALA eveeieeieesieerie ettt et et esteeee e e sseeneeeneesseeneeanean 142
11.3.15 (€1 72N0 111 glu Lo o gD v USSP 143

4 Copyright 1999, Health Level Seven Version CM-1.0

Context Management Specification, Technology and Subject-Independent Component Architecture

11.3.2 (001011 I D= - N (1 B) RSP SURRPT 145
11321 GEUTEMNEBIMES ...ttt bbbttt bbbt bbbt b e b e b e b e bt ebe st e ebeebesre e 145
11322 DI ELEITEMS. ...ttt bbbt bbb bbbt bbbt bbb nns 146
11.3.2.3 SELEMVAIUBS. ...ttt bbbttt bbbttt b et b et e bt bbb sne e 147
11324 GEULEMVBIUES ...ttt bbbt bbbttt b bbb ettt be bbb nre e 148

11.3.3 ConteXXMANAGEr (CIM) ...ttt ettt sb et e e be e e sbe e e saee e sabe e snbeeeees 150
11.331 M OSERECENTCONTEXTCOUDON ...ttt etee et ettt stee et et e e ebeesaee e beeebeesabeesseeasbeeaeeeenbeesnneanneean 151
11.3.32 JOINCOMIMONCONTEXL ...ttt sttt sttt ettt sttt ettt sbe st e sbeebesbesbesbesbeabesbeabesbesresrenrens 151
11.3.33 LEaVECOMMONCONTEXLcuviieeerieiesiee ettt r e n e s s e s reen e e e nreenesneas 152
11.3.34 S (00001 (= (O T 1010 =SSOSR 152
11.3.35 ENACONIEXICNENGES. ... et eeeieiesie ettt ettt e st e st et esteesteeneesseenseeneesseenseeneeaneesseeneeanean 153
11.3.36 UNAOCONEEXECRENGES. ...t eeeeieeesie e eiee st ettt et ee st e steenee st esteeseesseenseeneesseenseeneeaneesseensesnean 154
11.3.3.7 PUbli ShChaNQESDECISIONoveeiieieeie ettt et ee st e steeneeaneeseeeneeaneas 154
11.3.38 S0 o1c T | = T w1 7= 4 o] o USSP 155
11.3.3.9 RESUMEPAITI CIPALION ...ttt et e st e st e et esseesteeneesreesseeneeaneesseenseanean 156

11.34 ContextPartiCiPaNT (CP)co ettt et e e sae e saee e sabe e sbeeeees 158
11.34.1 ConteXtChaNGESPENING. ... eeteeieeiesie e see e et et eee st e steeeesreeseeeneesseenseeseeaseenseaneesseenseanenn 158
11.34.2 (000101 (=X (@ g FoTaT0 1= A woi o] (= o [USSP 159
11.34.3 ConteXtChangESCANCEEeeeiiierie ettt et e st e ee st e nteeneesteeneeeneesseeneeanean 159
11344 CommOoNCONTEXITEMMINGBLEM...........ueiiiiiiiriiiti it sbesresre e 160
11.3.45 1o USSP 160

11.35 Implementati oNINFOrMALION (I1) ..eeoveiiii e 161
11.351 (000 171070 0 = 011N\ = 10 0 = PRSPPI 161
11.35.2 REVMBJOTINUNM ...ttt ettt et e st e e e em e e etee st e emeeeseeneeemeeaseenseeneeaneesseensesnean 161
11.35.3 REVIVIINONNUI ...ttt bbbt bbbt bbbt bbbttt eb b e b e 161
11.354 PArENUMDET ...ttt bbbttt b bbb b bbb e 161
11.355 IMTANUFBCEURE ...ttt bbbttt bbbt bbbt b e bbb bbb e b e 161
11.356 TAIGELOS ...ttt bbbt bbbt bbbt Rt R b e bR R Rt Rt Rt Rt Rt R e b e bt ebe bt b benrenreas 161
11.35.7 I e 1= (O S R LY PP UUROPPOPRURI 162
11.35.8 WHENINSEA B ...ttt bbbt b e bbbt sbesbe b seeeeas 162

11.3.6 MaPPINGAGENT (IMA) ...ttt ettt ettt e e b e e ebe e e sabe e sab e e e beesabeeesaneas 163
11.36.1 ConteXtChaNGESPENING. ... eteeieeiesie et e st e st e e ee st e ste e st e steeneesseenseeseesseeneeaneesseenseaneas 163
11.3.6.2 1o USSP 163

11.3.7 SECUPEBINAING (SB) -vei vttt ettt e rb e e sabe e sabe e snbeeeees 165
11.37.1 QTR = =T 0o 1o USSR 165
11.3.7.2 FINATIZEBINGING. ... ettt ettt et e et e e ste et e e seesteeneesseenseeneeaneesseenseanean 167

11.3.8 SECUrECONEEXEDALA (SD)vveevteeriee ettt ettt ettt et st e st e st e e sbe e e sabe e sare e snreeenees 169
11.38.1 GELITEMNBIMES ...ttt e st e et e b e n e se e e r e e neaneenreenennnas 169
11.38.2 SELEMVAIUBS. ...ttt bbbttt bbbttt st b e b e besbe b e b sre e 169
11.3.8.3 GEULEMVBIUES ...ttt bbbttt bbbttt b bbb b e b et be b sbesre e 170

12 BACKWARDS COMPATIBILITY Lttt 172
APPENDIX: DIAGRAMMING CONVENTIONS ... 173

Version CM-1.0 Copyright 1999, Health Level Seven 5

Context Management Specification, Technology and Subject-Independent Component Architecture

Preface

This document was prepared by Robert Sdliger, Sentillion, Inc., on behalf of Health Leve
Seven's Specia Interest Group on Visual Integration (formerly the Clinical Context Object
Workgroup --- CCOW). Comments about the organization or wording of the document should
be directed to the author (robs@sentillion.com). Comments about technical content should be
directed to ccow@list.mc.duke.edu.

Changes Based Upon CCOW January and February Technical Meetings:

Started (but have not completed) integration of CCOW Patient Link and CCOW User
Link specifications into a single document.

Added the “ Desktop” subject.
Added section Reauthentication Timeout.

Redefined secure binding process. Now use message authentication codes. Public keys
no longer stored in secure registry. (In fact, concept of secure registry has been
eiminated.)

Modified interface SecureBinding to enable new binding secure process.

Clarified the behavior of applications not designated for authenticating users.
Still to be done:

Table of contents for figures, tables, and interaction diagrams needs to be added.

Chapter need to aligned so that they start on odd pages.

Formatting needs to be checked for consistency.

Cross-references need to be checked.

6 Copyright 1999, Health Level Seven Version CM-1.0

1

Context Management Specification, Technology and Subject-Independent Component Architecture

Introduction

This document specifies the Health Level Seven Context Management Architecture (CMA).
This architecture enables multiple applications to be automatically coordinated and
synchronized in clinically meaningful ways at the point-of-use. The architecture specified in
this document establishes the basis for bringing interoperability among healthcare applications
to the point-of-se, such asthe clinical desktop.

1.1 Clinical Context

Clinical context is tate information that users establish and modify as they interact with
healthcare applications. The context is common because it establishes parameters that should
uniformly affect the behavior or operation of multiple healthcare applications. The context
needs to be managed so that the user has away of controlling it, and so that applications have
away of robustly coordinating their behavior as the context changes.

Examples of clinical context includes:

The identity of a patient whose data the user wantsto view or update via the
applications.

The identity of the user who wants to access the applications.

A moment in time around which temporal data displays should be centered by the
applications.

A particular patient encounter that the user wants to review via the applications.

Hesalthcare application devel opers often implement a common clinical context capability for
their own applications. However, there are currently no standards that enable independently-
devel oped applications to share a common clinical context. Further, with the diversity of
application programming technologies currently available, a common context solution should
strive to be applicableto at least severa of the dominant and emerging technologies.

1.2 Links and Subjects

The approach taken for the CMA isto define an architecture that enables applications to
establish asingle link based upon a set of clinical subjects of common interest. The
applications automatically and cooperatively change their state whenever the user sets a new
value for one or more of these subjects. Two link subjects are defined as core to the CMA, and
aretherefore introduced in this document:

Version CM-1.0 Copyright 1999, Health Level Seven 7

Context Management Specification, Technology and Subject-Independent Component Architecture

Patient, which enables the user to select the patient of interest once from any
application as the means to automatically “tune’ al of the applications to the selected

patient.

User, which enables the user to securely logon once to any application as the means to
automatically “tune’ al of the applications to the user.

A third subject, Desktop, is aso defined in this document. This subject complements the User
subject by enabling applications to establish common visual preferences for the clinical
desktop upon which the linked application present themsdlves.

Applications that share the same common context are said to comprise a common context
system. These applications have established and maintain a common context link. Thereis only
one link, while there can be multiple subjects. However, in the vernacular that arose as the
CMA was being developed, it became useful to refer to an application in terms of a specific
link subject. This has given rise to the terms such as Patient Link and User Link. An example
of Patient Linked applicationsis shown in Figure 1.

o e A0 Fimrbews Mo o Bum 0 1 omry bk TAIR T 1 b BE

mn il gAEEE e g SA D R
vincaiom | s | Pt | Dotem | o |
i Ealad
= TN

Rairrted Fbet e -1 Wiy e P pmnd- I— r

ﬂF Lind iy

AL PriiH I ITT

1R MR STREE T e [= pmw o

B [T, P i ol '— gl o i M Ll
Nancy
Furlow

VTEST SEGSICNTE Usn only to xAL1CF Coniiaucaticn,

Figure 1: Patient Linked Applications

The architecture for Patient Link was developed prior to the extensions defined for User Link.
In particular, User Link introduced substantial additional security-related capabilities. This
specification presents a single consolidated view of the overall CMA.

8 Copyright 1999, Health Level Seven Version CM-1.0

Context Management Specification, Technology and Subject-Independent Component Architecture

The CMA enables additional subjects to be defined in a manner that does not require changes
to the architecture. This capability isthe basis for extens ble standards-based context
management solutions that can evolve to address new requirements without requiring massive
architecture or application implementation changes.

1.3 Reading This Document

This document presents a comprehensive specification of the HL7 Context Management
Architecture. The precision of the specification becomes increasingly more detailed as the
document progresses. Several of the early chapters present concepts that underly the
architecture and lead the reader through the rationale for various architectural choices.

The document concludes with the complete set of component interface definitions, including
methods and their argument signatures. These interfaces are ultimately the basis for the
implementation of applications and components that comply with the CMA specification.

Version CM-1.0 Copyright 1999, Health Level Seven 9

Context Management Specification, Technology and Subject-Independent Component Architecture

2 Scope and Objectives

The HL7 Context Management Architecture (CMA) enables independently devel oped
applications to share data that describes a common clinical context. This document emphasizes
the policies, protocols, software interfaces, and respons bilities applications must implement
and adhere to as participants in a shared context system.

A common context system is comprised of applications launched directly or indirectly by a
particular clinical end-user, wherein the applications share the same context data. Also
included in this system is a context management facility that enables applications to share the
context data.

2.1 Specification Organization

It is beyond the scope of this document to provide all of the details that are needed in order to
fully implement a conformant CMA system. The necessary additional details are coveredin a
series of companion specification documents. Asillustrated in Figure 2, these documents are
organized to facilitate the process of defining additional link subjects and to accel erate the
process of realizing the CMA using any one of a variety of technologies.

Technology Neutral Context
M anagement Ar chitecture
Specification

Technology Specific

' Component M apping
Specification
\ Technology-Neutral
Subject Data Definition
Specifications Technol ogy 1

Technlogy 2
suiean QR

Subject B Technology 3

Subject C
Technlogy X Q '

Technology Specific User Technology Y
I nter face Specifications

Technlogy Z

Figure 2: Organization of HL 7 Context M anagement Specification Documents

10 Copyright 1999, Health Level Seven Version CM-1.0

Context Management Specification, Technology and Subject-Independent Component Architecture

The context management subjects and technologies that are of interest are determined by the
HL7 constituency:

Thereisan HL7 context management data definition specification document for each
of the standard link subjects. Each document defines the data elements that comprise a
link subject. Concurrent with the publication of this document, the following
documents have been devel oped:

Health Level-Seven Standard Context Management Specification,
Data Definition: Patient Subject, Verson CM-1.0

Health Level-Seven Standard Context Management Specification,
Data Definition: User Subject, Verson CM-1.0

Health Level-Seven Standard Context Management Specification,
Data Definition: Workstation Subject, Verson CM-1.0

Thereisan HL7 context management user interface specification document for each of
the user interface technol ogies with which CMA-enabled applications can be
implemented. Each document reflects the user interface requirements established in
this document in terms of a technol ogy-specific look-and-fed. Concurrent with the
publication of this document, the following document has been devel oped:

Health Level-Seven Standard Context Management Specification,
User Interface: Microsoft Windows OS, Verson CM-1.0

Thereisan HL7 context management component technology mapping specification
document for each of the component technologies that provided the technol ogy-specific
details needed to implement CMA-compliant applications and the associated CMA
components, as specified in this document. Concurrent with the publication of this
document, the following document has been devel oped:

Health Level-Seven Standard Context Management Specification,
Component Technology Mapping: ActiveX, Verson CM-1.0

2.2 Assumptions/Assertions

Key assertions and assumptions that were made during the course of developing the CMA are
indicated below:

The architecture does not intend to solve nor isit a substitute for solving the patient
identification problem. However, the architecture does attempt to accommodate
established means for achieving consistent interpretations of patient identification
information.

Version CM-1.0 Copyright 1999, Health Level Seven 11

Context Management Specification, Technology and Subject-Independent Component Architecture

12

Architectural support for context data other than that which is used to identify patients
is a non-objective to the extent it complicates the architecture. However, the
architectureis currently applicable to a wide range of context data e ements.

Architectural support for distributed applications is a non-objective to the extent it
complicates the architecture. However, the architecture is currently applicable to
distributed as well as co-located applications.

Context management is not a form of data interchange nor isit a subgtitute for data
interchange. However, the common context might contain data that can also be
obtained by an application through data i nterchange mechanisms such as those based
upon HL7 (e.g., apatient’sname or data of birth in addition to a patient identifier).
When such datais provided, it is only as a meansto smplify or optimize the sharing
of common context.

The context management facility is not visible to the dlinical end-user. However, it
might be visble to a systems integrator or systems administrator.

The architecture isintended for usein clinical systemsthat are configured by an IT
staff. Ad-hoc installation and configuration of a common context system by the
clinical user is anon-objective to the extent it complicates the architecture.

Thereis at most one context management facility per clinical desktop. However,
applications shall work correctly with any facility implementation that conforms with
the CMA specification. It isthe decision of the IT staff asto which facility
implementation is actually used by a clinical system.

Implementation complexitieswill be shifted to the context management facility, as
opposed to the applications, whenever thistactic is practical and reasonable.
Minimizing the burden for the application developer isvalued as an essential € ement
for attracting the participation of the widest possible array of applications.

It isassumed that the clinical desktop host operating system is capable of and
responsible for identifying and authenticating the user.

It isassumed that the clinical data used by applications that share a common clinical
context are appropriately synchronized (e.g., via back-end data interchange) to the
degree necessary to ensure the consistent interpretation of the common context.

It is assumed that any application that has been activated by the user can be used to set
the user’s common clinical context as long as the application conformsto the CMA
specification. This enables multiple applications to provide context setting capabilities,
which is convenient for the user.

Copyright 1999, Health Level Seven Version CM-1.0

Context Management Specification, Technology and Subject-Independent Component Architecture

It isassumed that any application that does not understand or is otherwise unable or
unwilling (e.g., for security reasons) to respond to a change in the common clinical
context will ignore the change. However, any application that choosesto ignorea
context change must clearly indicate its decision, for example by blanking its data
display and/or minimizing itsef.

2.3 CMA Design Center

The CMA specification is primarily aimed at enabling interoperability in the form of
application control by the end user. Thisisin contragt to traditional healthcare standards,
which have been primarily aimed at enabling interoperahility in the form of data interchange
between applications. Further, the design center for the CMA specification are applications
that have a means for interchanging clinical data. The overal role of the CMA specification is
illustrated in Figure 3.

Not CM A Design Center - CMA Desian Center

Common
Clinical Context

“application control”

Application Application Application
#1 #2 #3
—
(No Data Interchange) Dat Dt
__

“ data interchange’

Common
Clinical Data

Figure 3: Overall Role of the CM A Specification

Version CM-1.0 Copyright 1999, Health Level Seven 13

Context Management Specification, Technology and Subject-Independent Component Architecture

3 Technology Neutrality

Asrecently as one year ago, it would have sufficed to architect and implement a common
clinical context solution that was targeted specifically for the Microsoft Window platforms.
With the recent explosion of Web-based technologies, such as Java, thisrestriction is no longer
practical. Fortunately, it is possible to architect a solution that is not predicated upon a specific
technology. Specifically, in the architecture described in this document, the concept of
technology neutrality is also applied.

The term “technology neutral” does not mean that any technology is applicable. Rather, it
means that the common clinical context approach should work equally well with any one of a
candidate set of relevant technologies.

The candidate technol ogies consdered for this document are based upon market leadership:

Inter-component communication: via Microsoft Automation through COM/DCOM,;
viaany CORBA 2.0 compliant object request broker.

Programming languages. any language that can be interfaced with Microsoft
Automation and/or CORBA (e.g., VisuaBasic®, C++, Java, MUMPS).

Operating Systems. Windows 95®; Windows NT®; any platform that can host a Java
virtual machine.

The primary reason that technology neutrality is practical is because all of these technologies
have alot in common, including:

They are all based upon object-oriented principles.
They are all embraced by Microsoft or are readily available on Microsoft platforms.

These two points have an interesting consequence: the technologies are compatible and
interoperable. This makesit alot easier to be technology neutral. For example:

CORBA supports multiple programming languages. Support already exists for C,
C++, Smalltalk, Java, and MUMPS. Objects implemented in any of these languages
can transparently interoperate using CORBA.

COM supports multiple programming languages. Support already exists for C++,
VisualBasic, ObjectPascal, Java, and MUMPS. Objects implemented in any of these
languages can transparently interoperate using COM.

Most vendor’s CORBA object request brokers enable CORBA objects to transparently
interoperate with COM objects.

14 Copyright 1999, Health Level Seven Version CM-1.0

Context Management Specification, Technology and Subject-Independent Component Architecture

Micraosoft’s Java virtual machine enables Java objects (appl ets) to transparently
interoperate with COM objects.

Java objects (applets) can transparently communicate with remote Java objects using
the Java Remote Method Invocation (RM1) mechanism.

Given the synergistic dtate of the dominant object technol ogies, the emphasis of this document
ison the structure of the common context system, the roles and responsbilities of the
components that comprise the system, the precise definition of the interfaces they need to
implement in order to be participants, the interactions between the components (via their
interfaces), and a host of architectural decisonsthat are intended to result in arobust,
practical, and useful common context solution.

Figure 4 illustrates a COM-encapsul ated Java object that interoperates with other COM
objects, and C++ and Java CORBA objects that interoperates with other CORBA objects.

Version CM-1.0 Copyright 1999, Health Level Seven 15

Context Management Specification, Technology and Subject-Independent Component Architecture

aCOM
Object \—’9) IUnknown
IXXX
_O Virtua
_— Machine-
| provided COM
\\ wrapper
™ COM-
. encapsul ated
IDispatch Java object
(applet)
Microsoft Java
Virtual Machine
Windows
platform
Tool-generated
Java CORBA
Tool-generated Interface Stubs
/— C++ CORBA
Interface Stubs
C++ /
CORBA Java
Object CQRBA
CH++ Object
Object (applet)
Request
Broker y
Library
Host platform Any Java
Virtual Machine
Host platform

Figure4: COM/Java/CORBA Interoperability

16 Copyright 1999, Health Level Seven Version CM-1.0

Context Management Specification, Technology and Subject-Independent Component Architecture

4 Requirements and Capabilities

The architecture described in this document isintended to serve as an extensible basis for
future, more advanced, common clinical context capabilities. However, for now, an attempt
will be made to focus on the immediate issue of developing a robust solution for sharing a
common patient saection context.

In a complete solution, at least the following issues need to be addressed:
Extenshility - how can new context e ements be easily added in the future?

Coordination - how can applications be coordinated so that they respond to context
setting changesin an orchestrated and managesable manner?

Flexibility - how can applications and common context managers be structured so that
they implement only the capabilities that they need?

Performance - how can applications and common context managers be structured so
that their temporal performance and utilization of computing resources is acceptable to
the end-user?

Localizability - how areinternationalization issues addressed (e.g., local character
Sets, efc.)?

Scalability - how is the performance of a common context system affected by the
quantity of active applications?

Applicability - how should context information be structured and managed so that
application behaviors are useful to the end user?

Usahility - what are the policies that govern the use of a common context such that the
resulting application behaviors are intuitive and reasonable?

Verifiability - how will the correctness of independently developed common context
implementations be verified?

Architectural approaches that address these issues are presented next.

Version CM-1.0 Copyright 1999, Health Level Seven 17

Context Management Specification, Technology and Subject-Independent Component Architecture

5 System Architecture

At the mogt abstract level, the Context Management Architecture (CMA) provides away for
independent applications to share data that describes a common clinical context. However, the
CMA must provide solutions for the following problems:

What isthe general use modd for a common context, from the user’ s perspective?
Where does the respons bility for context management reside?
How are changes to context data detected by applications?

How is context data organized and represented so that it can be uniformly understood
by applications?

How is context data accessed by applications?
How isthe meaning of context data consistently interpreted by applications?

Before drilling into the details of the complete CMA, this chapter presents approaches and
associated trade-offs for these problems listed above.

5.1 Use-Model

There many possible use-models for a common clinical context.

The extremes of application support for making context changes are represented by:
Context changes can be performed only via a single, distinguished, application.
Context changes can be performed via any application.

In the model chosen for the CMA, context changes can be performed via any application. This
is because it is not reasonabl e to assume the universal existence of a distinguished application,
and it is beyond the interests and scope of HL7 to specify one.

The extremes of application behavior when context changes are made are represented by:

When the user changes the context, the changes are automatically communicated to all
of the applications that share the context. Applicationsthat are able and willing to
apply the context changes do so immediately. Applications that are unable or unwilling
to apply the context changes maintain their current context. It is assumed that the user
can easly determine which context an application is using.

Version CM-1.0 Copyright 1999, Health Level Seven 19

Context Management Specification, Technology and Subject-Independent Component Architecture

When the user changes the context, the changes are automatically communicated to all
of the applications that share the context. However, the context changes are only
allowed if all of the applications are able and willing to apply the context changes
immediately.

The moddl devel oped for the CMA isa hybrid of these two extremes that attemptsto enable a
high degree of automatic context management while also emphasizing patient safety:

Thelikelihood that applications can become uncoordinated with regard to a common
clinical context is minimized.

The circumstances that can prevent context changes from being automatically applied
are expected to be infrequent.

The CMA modd al so respects the challenges of retrofitting common context capabilities into
existing healthcare applications. Only modest assumptions about the capabilities of these
applications and technology used to develop them are presumed. The CMA modd isas
follows:

All or part of the common context can be set by the user from any application for
which providing this capability is functionally relevant.

When the user changes the context, the change is automatically communicated to all of
the applications that share the context. The applications are expected to apply the new
context in a cdinically meaningful manner. In general, applications are also expected to
apply the context changes immediately. Exceptions are described bel ow.

An application may choose to defer applying a context change until sometimein the
future. For example, an application that retrieves large medical image files (that
require substantial processing) might choose to not retrieve images each time a
different patient is selected as part of the clinical context. Instead, the application
might wait for an explicit directive or gesture from the user before actually retrieving
the image. An application that behaves in this manner must be sure that it does not
show data for an earlier context. Blanking-out its data displays or minimizing itself are
possible ways that this can be accomplished.

An application for which a change in the context might result in the loss of work
performed by the user can request that the user explicitly decide whether to proceed
with the context change anyway, or to cancel the change. The sdlicitation of user input
is performed by the application that is being used to change the context. The
solicitation includes an identification of the application for which work might be lost
and a description of the work that might be lost. An application that behavesin this
manner is expected to be able to discard its work in progress and apply the context
changesif ingructed to do so. For example, a medication ordering application might

20 Copyright 1999, Health Level Seven Version CM-1.0

Context Management Specification, Technology and Subject-Independent Component Architecture

indicate that the inputs for a medication order that has not yet been completed by the
user will belost if the context is changed to a different patient.

When an application is unable to respond to a context change, perhaps because the
user left it waiting for user input, the user is asked to explicitly decide about how to
proceed. The solicitation of user input is performed by the application that is being
used to change the context. The solicitation includes the identification of the non-
responsive application and indicates that the application cannot respond to a context
change. For patient safety reasons, when there are applications that cannot respond to
the changes, context changes will not be automatically applied to the applications that
share a common context.

When it isnot desirable or possible for context changes to be automatically applied,
either because there are applications for which work might be lost, or there are busy
applications that cannat be natified about context changes, the user can explicitly
interact with these applicationsto correct the situation, and then apply the context
changes. For example, the user might complete or terminate a dialog that was |eft open
in order to enable an application to apply the context changes.

When it isnot desirable or possible for context changes to be automatically applied,
the user can also decide to apply the context change only to the application that is
being used to change the context. The decision to do thisistypically in response to an
interruption during which the user needs to momentarily divert his attention to a
different context for a specific application. The application is, in effect, disconnected
from the common context, and must clearly indicate this fact to the user in avisua
manner. The application can be subsequently ingtructed by the user to reconnect and
apply the common context. The common context may have changed between the time
the application was disconnected and the time it is reconnected to the common context.

A high-leve summary of the interactions between applications when aclinical patient context
ischanged isillustrated below. Figure 5 illustrates the use case actors (i.e. external forces)
involved in a context change such as a patient selection. (The actors are the user plus
applications, al of which are represented in the Jacobson modeling technique as stick figures.)
Figure 6 through Figure 10 illustrate some possible instances of the Patient Selection Change
Use Case from the user’ s perspective. Not al possible instances of this use case are provided.

Version CM-1.0 Copyright 1999, Health Level Seven 21

Context Management Specification, Technology and Subject-Independent Component Architecture

; ; Participates In W
Healthcare Healthcare

Application

Application
Patient Selection Change

Chooses

T

Authorized User

Figure5: Patient Selection Change Use Case

Theinitia condition for each of the use case instances is that the currently selected patient is
Jane Doe. In each ingtance, the user changes the common clinical context by selecting the
patient Sam Smith. Some possible alternative outcomes follow:

22

Figure 6 illustrates all applications reacting to the context change by changing their
context to the patient “ Sam Smith.”

Figure 7 illustrates an application (Application DDD) conditionally accepting the
context change and providing information describing work that could belost if a
context change occurs at thistime. The user deciding to cancd the changeis shown.

Figure 8 illustrates a use case instance similar to Figure 7. However, the possible
outcome of the user deciding to force a context change within Application AAA while
the other applications remain with the original context is shown. Thisexemplifies
Application AAA disconnecting from the common context system. Once disconnected,
Application AAA’s context is no longer in synchrony with the other applications.

Figure 9 illustrates healthcare application DDD not responding to a sdection change
request in atimely fashion. The user deciding to cancel the change is shown.

Figure 10 illustrates the user being notified of potential data lossif sdection change
proceeds. The user accepting these consequences and proceeding with the changeis
shown.

Copyright 1999, Health Level Seven Version CM-1.0

Context Management Specification, Technology and Subject-1ndependent Component Architect

C
0
o)
=

Application AAA Application BBB Application CCC

Selected patient is "Jane Doe"

| choose "Sam Smith" |
~~~~~ select "Sam Smith"

oS L

select "Sam Smith"

select "Sam Smith"

change to
"Sam Smith"

"Sam Smith"

change to
"Sam Smith"

___ change to
i | "Sam Smith"

Selected patient is "Sam Smith"

Figure 6: Patient Context Automatically Changes within all Context Participant Applications

Version CM-1.0 Copyright 1999, Health Level Seven 23



Context Management Specification, Technology and Subject-1ndependent Component Architect

User Application AAA Application BBB Application CCC
Selected patient is "Jane Doe"
| choose "Sam Smith"
Sl select "Sam Smith"
select "Sam Smith" i
select "Sam Smith"
i 1 can | change
= selection?
change accepted
rrE can | change
L | - selection?
change accepted
conditionally accept: "You could lose work."
Application DDD warns
"You could lose work." i

D <

Cancel selection

S
R
.
)
D il cancel selection

cancel selection

r;;;;
1

cancel selection

Selected patient remains {"Jane Doe"

Figure 7: User Informed of Potential Data L oss and Cancels Context Change

24 Copyright 1999, Health Level Seven Version CM-1.0



Context Management Specification, Technology and Subject-1ndependent Component Architect

User Application AAA Application BBB Application CCC

Selected patient is "Jane Doe"

| choose "Sam Smith"
select "Sam Smith"

select "Sam Smith"

select "Sam Smith"

L can | change
selection?

change accepted :l

can | change
selection?

-

[]

—

change accepted

[]

—

conditionally accepted: "You could lose work."

0=
"You could lose work."

i I

Application DDD warns

Apply only to
AAA
D i cancel selection
cancel selection u
cancel selection u
"Sam Smith"
Selected patient
is "Sam Smith" Selected patient is "Jane Doe"

Figure 8: User forces Application AAA to Become Out of Synchrony with other Context Participants

Version CM-1.0 Copyright 1999, Health Level Seven 25



Context Management Specification, Technology and Subject-1ndependent Component Arch

Application AAA Application BBB Application CCC

C
I
]

Selected patient is "Jane Doe"

| choose "Sam Smith"

— select "Sam Smith"

select "Sam Smith"

select "Sam Smith"

can | change
selection?

change accepted :l
can | change
u L selection?

change accepted

Application DDD
did not respond
to selection
change request.

Cancel selection

cancel selection

cancel selection /u
cancel selection /u

Selected patient is "Jane Doe"

Figure 9: Context Participant Not Responding to Selection Change Request

26 Copyright 1999, Health Level Seven Version CM-1.0



Context Management Specification, Technology and Subject-1ndependent Component Architect

Application CCC

User Application AAA | Application BBB |
Selected patient is "Jane Doe"
| choose "Sam Smith"
. select "Sam Smith"
select "Sam Smith"
select "Sam Smith"
T | canlchange
_ [ selection?
change accepted L
e | can | change
§ selection?
change accepted S
conditionally accept: "You could lose work."
Application DDD warns )
"You could lose work." H
Go ahead with selection change
LTJ accept selection change
accept selection change
accept selection change L

]

Selected patient is "Sam Smith"

Figure 10: User Accepts Consequences of going ahead with Patient Selection Change with all Applications

Verson CM-1.0

Copyright 1999, Health Level Seven

27



Context Management Specification, Technology and Subject-Independent Component Architecture

5.2 Context Management Responsibility
There are two fundamental schemes for architecting the responsbility for context management:

Distributed: The responsgbility for managing the common context is uniformly
distributed among the applications. Thereis no central point of common context
management.

Centralized: The responshility for managing the common context is centralized in a
common servicethat isresponsible for coordinating the sharing of the context among
the applications.

In the distributed model, applications must either all know about each other, or at least form a
completely connected graph within which each application knows at least one other
application. Thisis necessary in order for the applications to communicate context and control
data among themsalves.

Further, each application has the responsibility to act as a server for the common context in
addition to acting as a client of the context. Thisisto offset the fact that there is no central
point of ownership for the context, so each application must be capable of being an owner.
This may be eegant, but it does introduce implementation complexities and burdens on all
applications.

In the centralized moddl, applications only need to know about common service or resource.
This service off-loads from the applications much of the burden of maintaining and managing
the common context. While a centralized service represents a single point of failureand a
potential performance bottleneck, it is nevertheless the approach that is pursued in this
document. The primary reasons include:

It issmpler from the perspective of the application devel oper.

The consequence of the service being a single point of failureis offset by the fact that
the service and the applications it serves are typically co-resident on the same persona
computer. Failures, if any, will belocalized to a single user

The consequence of the service being a performance bottleneck is offset by the fact
that the applications are far more likely to become the performance bottlenecks.

Given this basic system structure, the approaches for the other major architectural issuesare
summarized next.

28 Copyright 1999, Health Level Seven Version CM-1.0



Context Management Specification, Technology and Subject-Independent Component Architecture

5.3 Context Change Detection

There are at |least two distinct categories of architectural approaches for realizing a common
clinical context system:

Pull-model: A shared component is used to maintain the shared context data.
Applications update this resource to change the data. Other applications periodically
poll the component to determine if the data has changed.

Push-model: A shared component is used to maintain the shared context data. This
component notifies applications whenever the data is changed. In order to receive a
notification, an application must have first explicitly indicated its interest in being
notified.

Both modd s have advantages and disadvantages. For example, the pull model issmpler to
implement (e.g., does not require applications to handle asynchronous natifications), but can
lead to performance problems due to palling even when the context data has not changed.
Conversdly, the push model can be the basis for better performance, but introduces additional
implementation complexity.

Both modd s introduce the additional challenges of synchronizing concurrent accessto the
context data (e.g., to prevent two applications from attempting to change the data at the same
time). In addition, both models must deal with failures modes that can occur when independent
applications (i.e., applications that may be implemented as separate executables) are involved.
For example, an application that crashesin the middle of changing the context data may |eave
the context data in an incons stent state.

Given thisanalyss, the approach that is taken for the CMA is perhaps best described as a
robust push-mode. Thisisa push mode that deals with synchronization and partial failure
iSsues.

5.4 Context Data Representation

There are at |east three distinct categories of architectural approaches for representing the
common context data:

Fully-populated objects Objects are defined with properties and methods that model
the real-world entities that they represent (e.g., a patient, a provider, etc.). These
objects may be complex and involve arich structure (e.g., are comprised of alogical
network of objects).

Fully-populated messages Messages (asin “HL7 messages’) are used to convey
detailed information about the context data.

Version CM-1.0 Copyright 1999, Health Level Seven 29



Context Management Specification, Technology and Subject-Independent Component Architecture

Name-value pairs A set of name-value pairs represent only key summary information
about the common context (e.g., just the patient’s name and medical record number).
The symbolic name for an item describesits meaning. The data types for the items
come from a set of smple primitive data types.

The fully-populated object approach is perhaps the purest approach, but is subject to
performance concerns. Copies of the objects could be produced and then communicated to each
application every time the state of the primary copy changes. However, thisinvolves the
performance cost of marshaling the objects. The problem is further compounded by the fact
that marshaling capability would need to be explicitly implemented in either CORBA or COM.
(Java RMI implicitly supports the capability to communicate objects by value.)

The fully-popul ated message approach is actually a stylized way of marshaling objects. While

it is appealing to think of leveraging existing healthcare standards such as HL 7, it is non-trivial
to implement the parsers and trandators to create and interpret these messages. Even if such an
implementation was commercialy available, it isnot clear that it would be desirable to require
that al of the applicationsin a shared context system be able to support HL7 messages.

The name-value pair approach represents the compromise that is pursued in this document.
Using smple primitive data types enables the values of the items to be easily communicated
between processes. Performance concerns are mitigated because an application will be ableto
examine the values of only those items of interest in a single out-of-process access. (The
application smply indicates the names of the items whose values it isinterested in.) The
approach is also readily extensible, as new items (i.e., new name-value pairs) can easily be
added to the set of items.

All of the context data representation approaches described above are subject to establishing
semantic agreement about the meaning of the data. Thisistrue whether the context datais
represented as objects, messages, or name-value pairs. The process for establishing this
agreement is beyond the scope of the CMA, and isinstead specified in a series of HL7 context
management subject-specific data definition documents. These data definitions are key to
implementing a plug-and-play common clinical context system.

5.5 Context Data Access

Any common context architecture must provide away for an application that has just started
to obtain itsinitial view of the common context. The pull-modd implicitly solvesthis problem.
With the push-mode, there are two basi ¢ approaches:

When the application joins the common context system, the necessary data is pushed
toit.

30 Copyright 1999, Health Level Seven Version CM-1.0



Context Management Specification, Technology and Subject-Independent Component Architecture

The data can be accessed from a well-known location, such as afile, or from the
component that is responsible for pushing changes to the context system participants.
Thisis, in effect, a specialized use of the pull-scheme.

The approach to this problem is linked to the approach by which applications access the
context data for updating it, and the approach by which applications obtain the values for the
context data when it has changed.

The options are straightforward:

Each application maintains a copy of the context data. As changes occur, each
application updatesitslocal copy accordingly.

A central “authentic” copy of the context datais maintained. Context data updates are
directed by applications to this copy. Applications access this copy in order to ingpect
changes.

The approach in which each application maintainsits own copy of the context data has an
elegancetoit. However, in the absence of an authentic copy, an application that has gotten out
of synchrony with its peers may have a difficult time restoring its notion of the common
context. Further, the communication costs of keeping all applicationsin synchrony can become
sgnificant, particularly as the complexity and size of the common context increases over time
as additional common context items are defined.

The approach that taken for the CMA isto maintain a single authentic copy of the common
context for each common context system. Applications can choose to cache context data or
they can smply access the authentic copy whenever they need to. Applications can also
sdlectively read or write specific context data name-value pairs. Further, when the context
changes, an application is only informed about the change and is not provided with the data
that has changed. The application can selectively access this data when it needs to.

This approach was chosen as a balance between performance and complexity. Performance
issues are addressed by enabling applications to have sdlective access to context data.
Complexity issues are addressed by not forcing applications to maintain their own copy of the
common context data.

5.6 Context Data Interpretation

In order for applications to apply common context datain a clinically consistent manner, they
mugt interpret the meaning of the datain a uniform manner. With context items represented as
name-value pairs, applications must be able to uniformly interpret both the meaning of the
name and the value of a context item, or determine that it cannot correctly interpret the item.

Version CM-1.0 Copyright 1999, Health Level Seven 31



Context Management Specification, Technology and Subject-Independent Component Architecture

Context data items logically represent two categories of information: data that identifies areal-
world entity or concept (such as a specific patient or a specific encounter), and data that can be
used to corroborate the identity data. Identity information isrequired in order to establish a
common context between applications that involves a real-world entity or concept.
Corroborating data can be used by applications and/or users as a basis for checking further
that the identified entity or concept iswhat was expected.

For example, a patient’ s name can rarely be used to uniquely identify a patient. Typicaly, a
medical record number or smilar identifier that is generally unique over some population of
patients for one or more clinical systemsis used. However, these identifiers are rarely
meaningful to the user. Corroborating data might be comprised of the patient’s name, sex, and
data of birth. This data provides applications and/or the user with an additional means to check
that the identified patient is the intended patient.

Theclinical context is considered to have changed in a meaningful manner when identifier data
is changed. Applications are notified of changes to the context when identifier data, and
possibly corroboration data, are changed. Changes to corroboration data that are not
accompanied by associated changes to identifier data are not meaningful and are rejected.

5.6.1 Establishing the M eaning Context Data Item Names

Given this approach of organizing context data items into identity and corroborating data, there
are two basic techniques for establishing the meaning of context item names:

Apply a Context Management-specific information modeling processto identify and
define candidate clinical context item names and meanings.

Leverage names and their meaning as established by existing healthcare standards,
such as the HL7 messaging standard.

The approach that istaken for the CMA isthat existing HL7 messaging terms and their
meaning will be used as the default source for clinical context item names. New item names
and associated meanings will be created only when the HL7 messaging standard is not
applicable. The standard set of clinical context data context item names are specified in
separate HL7 context management data definition specification documents. Only the specified
set of context data items shall be implemented by conformant systems.

The reason for this approach is that the value-added for HL7 context management isnot in
defining clinical content, but rather in enabling new forms of clinically-rooted desktop-based
interoperability between independently-devel oped healthcare applications. Thereislittle
incentive to create new information models and devel op new clinical concepts when there are
existing concepts, such as those already specified for HL7 messaging, which can be leveraged.

32 Copyright 1999, Health Level Seven Version CM-1.0



Context Management Specification, Technology and Subject-Independent Component Architecture

5.6.2 Establishing the M eaning for Context Data Item Values

The abstract data types used to represent context data item values will also be leveraged from
the HL7 messaging standard. These types may be represented as strings encoded using a
simple subset of the HL7 character encoding rules. These types may also be mapped into
convenient technol ogy-specific data types. The actual clinical context data context item data
types are specified in the HL7 context management data definition specification documents.

There are two basic approaches for establishing the meaning of context item values:

Assume that each item has a value that can be globally interpreted by al of the
applications that share a common clinical context.

Provide multiple values for each item name such that each value represents that same
real-world entity or concept. Each application can apply the value it understands.

In some cases, it is safe to assume that a context item’ s value can be globally interpreted by all
applications. For example, if a patient’s data of birth is defined to be a corroborating context
data item, the value of thisitem has a single global interpretation.

5.6.3 Representing Context Subjects That Cannot Be Uniquely I dentified

Unfortunatedly, it is not possible to assume that all context subjects, such as patients, can be
identified using globally unique identifier values. For example, a patient cannot necessarily be
globally identified using a single identifier, such asa medical record number.

However, in these cases, there may be multiple synonymous identifier values, each of which is
pertinent to a subset of the applications that share a common context. For example, a hospital
and its affiliated clinics may assign their own medical record numbers to the same patient
population. Applications, such as master patient index systems, enable tracking and mapping
between these values. The result is multiple distinct values that identify the same patient.

It isnot the purview of the CMA to resolve global identification issues. It iswithin the scope of
the CMA to at least recognize that multiple identifier values may be necessary. Therefore, the
approach taken in this document is to support multiple identifier values for context items when
necessary.

An item that can have multiple valuesis actually represented as multiple items that have a
common name prefix and a distinct site-specific name suffix. The prefix for an item is defined
in the HL7 context management subject-specific data definition specification document within
which the item is defined. The suffixes are configured into an application using an application-
specific process when the application isingtalled at a site.

The values for such items are provided either by an application when it changes the clinical
context, or by an external mapping agent. (See Chapter 8, Mapping Agent.)

Version CM-1.0 Copyright 1999, Health Level Seven 33



Context Management Specification, Technology and Subject-Independent Component Architecture

Immediately following the item subject label is a short string that indicates whether theitem
representsidentifier data or corroborating data. The string “id” indicates identifier data. The
string “co” indicates corroborating data.

5.6.4 Context Subjects

All context items are organized by subject. Each subject represents a real-world entity or
concept that isidentified as part of the overall common clinical context.

Subject labels are defined in the HL7 context management subject-specific data definition
specification documents. The labels comprise the first part of each context data item name.
Examples of possible subject labels are” Patient” and “ User”. Item name e ements are
separated by a period. Words in multi-word item name elements are separated by an
underscore.

The general format of a context data item nameis:

Item subject_label.id_or_co.item _name prefix.optional _item_name_suffix

Examples of the name format for possible context data itemsis shown below. The name for the
items that represent a patient’s medical record numbers (MRN) for both a hospital and its
affiliated clinic (assuming that they use different medical record numbers):

“Patient.ld. MRN.St_Elsawhere Hospital”

“Patient.ld.MRN.St_Elsawhere Clinic”
The name for an item that represents a patient’ s date of birth might be:
“Patient.co.date of birth”

The actual subject labels, item names, and rules for generating an item name suffix are
specified in each the HL7 context management subject-specific data definition specification
documents.

5.6.5 Representing“ Null” 1tem Values

The value of a context identifier item or corroborating data item can be st to the distinguished
value of null to indicate that the item does not have a valid value. This capability provides a
means for an application to explicitly indicate it has not set avalid value for a particular
context item. For example, setting the value of the identifier whose nameis.

“Patient.Id. MRN.St_Elsawhere Hospital”

to null indicates that the application has not set avalid value for this identifier.

34 Copyright 1999, Health Level Seven Version CM-1.0



Context Management Specification, Technology and Subject-Independent Component Architecture

The actual representation of null is technology-dependent and is specified in each of the
CCOW technol ogy-specific specification documents.

5.6.6 Representing an Empty Context Subject

A context subject is empty when areal-world entity or concept is not currently identified. For
example, for the patient subject, this means that a patient is not currently identified.

An empty context subject is represented in ether of two ways:
- There are no context identifier items.
- There are context identifier items, but the values for all of these items are null.

Theinitial state for al subjectsin the context isthat they do not contain any identifier items.
See Section Error! Reference source not found, Error! Refer ence sour ce not found.
Applications can attempt to explicitly establish an empty context, but this behavior is not
currently allowed. See Section 7.10.3, Application Behavior with Regard to an Empty Context.

5.6.7 Case Sensitivity with Regard to Item Names and Item Values

Context item names are case insenditive. This meansthat caseis not be used for the purposes
of comparing names. Further, the case used to represent the same item name can be different

for different applications, and the case used to represent a particular item’ s name at onetime
need not necessarily be the same at alater time. For example, the item names:

“Patient.Id. MRN.St_Elsawhere Hospital”
“patient.id.mrn.st_elsewhere_hospital”
“PATIENT.ID.MRN.ST_ELSEWHERE_HOSPITAL"

areall equivalent.

A context item whose value is represented as a character string are also case insensitive, unless
otherwise noted in the HL7 context management subject-specific data definition specification
document that defines the item.

However, for consistency with the sSituations in which item values are case senditive, the case
used to represent the value for a particular item is preserved once the value has been set. The
casing for theitem’s value is maintained until a different value is subsequently established for
theitem.

For example, the following flow of eventsis allowed:

Version CM-1.0 Copyright 1999, Health Level Seven 35



Context Management Specification, Technology and Subject-Independent Component Architecture

An application sets the value of “Patient.|d.MRN.St_Elsewhere Hospital” to
“RS779238XZW".

An application gets the value of “Patient.|d. MRN.St_Elsewhere Hospital” as
“RS779238XZW".

An application sets the value of “Patient.|d.MRN.St_Elsewhere Hospital” to
“ AS119292RUH".

An application gets the value of “Patient.|d. MRN.St_Elsewhere Hospital” as
“ AS119292RUH".

An application sets the value of “Patient.|d.MRN.St_Elsewhere Hospital” to
“rs779238xzw”.

An application gets the value of “Patient.|d. MRN.St_Elsewhere Hospital” as
“rs779238xzw”.

The following flow of eventsis nat allowed:

36

7.

An application sets the value of “Patient.|d.MRN.St_Elsewhere Hospital” to
“RS779238XZW".

An application gets the value of “Patient.|d. MRN.St_Elsewhere Hospital” as
“rs779238xzw”.

Copyright 1999, Health Level Seven Version CM-1.0



Context Management Specification, Technology and Subject-Independent Component Architecture

6 Component Model

The architecture for a common clinical context system is described in terms of components and
the interfaces they must implement in order to be participantsin the system. Only the
components and interfaces that are germane to the establishment and maintenance of a
common clinical context for a clinical desktop are described.

A roleis described for each component, and the palicies that govern the intended use of the
interfaces are detailed. These policies can be thought of as the patterns of allowed interactions
between components. Both normal and exceptional interactions are described.

The key componentsin a common clinical context system are: aclinical context manager, one
or more context participant applications, an optional mapping agent for each context subject.

The context manager coordinates the applications each time there is a context change. It isaso
the“owner” of the authentic context for the system. The context participant applications set
and/or get the context from the context manager. They must follow the policies established
later in this document in order to behave as proper context management “ citizens.”

A mapping agent is a service component that from the perspective of an application isa
trangparent participant in a context change. A mapping agent’s primary role isto add
additional subject-specific context identifier itemsto the context data. Thisis useful when a
subject is known to the various context participant applications via multiple distinct identifiers,
but only one or afew of these identifiers are known to the application that sets the context.

Additional context management components are also defined, but servein supporting roles. All
of the necessary components are detailed later in this document.

The context manager does not need to know about the functionality or specific features
implemented by any of the applications. Conversely, al applications perceive the context
manager through a uniform set of interfaces and capabilities. Further, the applications do not
need to know about each other in order to participate in the same context system. Findly, a

mapping agent is

Applications and the context management components can all be independently implemented
and will gill interoperate aslong as they comply with the CMA specification. The CMA
specification isin turn predicated upon an underlying component modd, described next.

6.1 Component and Interface Concepts

Theclinical context manager and the applications that participatein a common context system
are modded in the architecture as components. The component model that isused is a high-

Version CM-1.0 Copyright 1999, Health Level Seven 37



Context Management Specification, Technology and Subject-Independent Component Architecture

level hybrid of the component models defined by Microsoft for its Component Object Model
(COM) and by the Object Management Group for its Object Management Architecture
(OMA).

6.1.1 Interfaces and References

In the hybrid model, components have one or more formally-defined object-oriented interfaces.
Each interface defines a semantically related set of operations (methods) that the component is
capable of performing. The interfaces implemented by a component represent the only way that
other components can interact with it. Each interface is denoted by a reference that can be
resolved at run-time to access the component instance that implements the interface.

Each method has a name and a set of inputs, outputs, and exceptions. The inputs enable a
component’ s clients to parameterize the behavior of the method each time they request that it
be performed. The outputs enable the component to convey to a client the results that pertain to
having properly performed the method. The exceptions enable the component to convey to a
client the fact that something unexpected was encountered during the course of performing the
method (such asan error condition). A method compl etes by returning outputs or by raising
exceptions. Methods need not have inputs, outputs, or exceptions.

The methods defined for an interface are invoked using a binary calling sequence. This means
that the component that issued the call does not need to be aware of how the component that
sarvices the call isimplemented. The components might be implemented using different tools
and libraries, and even different programming languages. Further, components can interact
with each other in alocation independent manner. A component only needs a reference to
another component’ sinterface in order to perform calls againgt the component. Knowledge of
the physical location of a component that services a call is not needed.

6.1.2 Interfacelnterrogation

The interfaces that a component implements can be determined by other components at run-
time through direct interrogation. The interrogator uses the symbolic name of the interface, or
an identifier that denotes the interface, to indicate the desired interface. If the interface exists,
the component being interrogated returns a reference to the interface. Otherwise an error
indication is returned.

It isassumed that al of the interfaces defined in this document include a common method that
enables interface interrogation. The name and signature for this method is the same for all
components implemented using a particular technology. The details of this method vary for
different implementation technologies and are not specified in this architecture document.

38 Copyright 1999, Health Level Seven Version CM-1.0



Context Management Specification, Technology and Subject-Independent Component Architecture

6.1.3 Principal Interface

Every component implements at least one well-known interface, referred to as the component’s
principal interface. The principal interface includes the same interface interrogation method as
a component’ s other interfaces. The name of the principal interfaceis the samefor all
components implemented using a particular technology. The principal interface enables
componentsto perform initial interface interrogations because the name of the principal
interface is known a priori, and because all components implement it.

The details of the principal interface and the methods that it supports vary for different
implementation technologies and are not specified in this architecture document.

6.1.4 Interface Reference Registry

An interface reference registry is a service that contains references to component interfaces.
Components can use the registry to obtain interface references to each other. A reference can
be used to access a component via the referenced interface. Each reference is denoted in the
registry by a symbolic name and/or description. This enables components to locate references
of interest based upon a symbolic and/or logical description of the reference of interest.

It isassumed that an interface reference regidiry is provided by the underlying implementation
technology. The means by which interface references are denoted and placed into the registry,
and the means by which components access the registry to retrieve the references, are

technol ogy-dependent.

Theregidry is assumed to be awell-known service that logically resides on each clinical
desktop. This means that each component on a desktop has an a priori technol ogy-specific
means for knowing how to locate the desktop’ s registry. This providesall components on a
desktop with a common means to obtain referencesto each other.

6.1.5 Interface Reference M anagement

In order to ensure orderly system behavior, components must have a means of knowing
whether or not other components possess references to any of its interfaces. Thisenables a
component to determine when it needsto bein arunning state (because thereis at least one
other component that possess a reference), and when it can terminate (because no components
possess a reference). The means by which this is accomplished is technol ogy-specific.

It isassumed that each component that holds an interface reference performs an implicit or
explicit action, which istechnology specific, that indicatesit wants to use a particular interface
referencethat it has obtained (e.g., from the interface reference registry). It is aso assumed
that a component performs an implicit or explicit action, which is technol ogy-specific, when it
no longer intends to use a particular reference. The latter action isreferred to as disposing an
interface reference.

Version CM-1.0 Copyright 1999, Health Level Seven 39






Context Management Specification, Technology and Subject-Independent Component Architecture

7 Patient Link Theory of Operation

Patient Link enables the user to sdect a patient once, from any Patient Link-enabled application, asthe
means for automatically “tuning” all of the Patient Link-enabled applicationsin the common context
system to the same patient.

Patient Link also establishes the foundation for all other context management *links’. For this reason,
many of the fundamental CMA principles and rules are explained in this chapter, but are framed in
terms of Patient Link so as not to become too abstract, and therefore hard to understand.

7.1 Patient Link Component Architecture

The following context management interfaces for Patient Link are modeled and illustrated in Figure 11:
Patient Link Component Architecture:

ContextM anager (CM) - implemented by the context manager; used by applicationsto
join/leave a common context system and to indicate the start/end of a set of changesto the
common context data.

ContextData (CD) - implemented by the context manager; used by applications to set/get the
data items that comprise the common context.

ContextParticipant (CP) - implemented by an application that wants to participatein a
common context system; used by the context manager to inform an application that the context
has changed.

I mplementationl nfor mation(l1) — implemented by the context manager and mapping agent;
used by applications, context management components, and tools, to obtain details about a
component’ s implementation, including its revison, when it was ingtalled, etc.

Formal definitions of these interfaces, aswell as example interactions between the components via
these interfaces, are presented later in this document.

Version CM-1.0 Copyright 1999, Health Level Seven 41



Context Management Specification, Technology and Subject-Independent Component Architecture

Application #1 Application #N
Implementation Implementation
cP cP

CM CD

Context Manager [

Implementation
@d—Tool , etc.

Common
Context
Data

@

Optional Patient M apping{ | Tool, etc.
Agent I mplementation

Figure11: Patient Link Component Architecture

7.2 Patient Subject

The context subject of Patient is defined for Patient Link. The context data identifier item for this
subject isa numeric patient identifier, such asamedica record number. The patient’s nameis not used
asan identifier.

Thisidentifier isunlikely to be universally unique. However, it is assumed that a population of patients
across which the identifier is unique can be established. Each such population is referred to asa site, as
itistypical that each population of patients corresponds to a physical site within an overall healthcare
ingtitution.

Conseguently, a single patient may be identified using multiple patient subject identifier items. Each
item is differentiated by a different site-specific suffix. An application shall be configurable such that it
can be instructed on-site as to which suffix (of suffices) it isto use when it interacts with the context
manager to set or get patient context data.

The format of a patient subject identifier item name includes a site-specific suffix. Use of this suffix,
and the values that may be assigned to this suffix, is at the discretion of each hedlthcare institution at
which a context management system is deployed.

42 Copyright 1999, Health Level Seven Version CM-1.0



Context Management Specification, Technology and Subject-Independent Component Architecture

In addition to identifier items, the patient subject also supports corroborating data items. The actual
names, meaning, and data types used to represent the values for both patient subject identifier items
and corroborating data items are defined in the document Health Level-Seven Sandard Context
Management Specification, Data Definition: Patient Subject.

An example of a patient subject identifier item appears bel ow:

Patient Subject Identifier Item
Example Item Name For mat: Example Item Name: Example Item Value:
Patient.ld. MRN.site_nane Patient.|d. MRN. St _El sewhere_Hospital RAS1958- 12939213- 122

7.3 Patient Mapping Agent

An optional patient mapping agent is also part of the common context system, The patient mapping
agent maps the identifiers for patients. Whenever an application sets the patient context, the context
manager instructs the patient mapping agent (if present) to provide any additional identifiersit knows
for the patient. The ste-suffix for each of the mapped identifier items denotes the site for which the
patient identifier isvalid, for example:

Patient Subject Identifier Item

Examples Item Names: Example Item Values:
Patient.ld. MRN. St _El sewher e_Hospi t al 123-456-789Q36
Pati ent.ld. MRN. Gener al _Hospi t al 6668-3923-987122

Mapping agents are described in more detail in Chapter 8.

7.4 Context Change Transactions

All changes to the common context are governed by a context change transaction that isinitiated by an
application but is coordinated by the context manager:

An ingtigating application initiates a context change transaction and sets the patient context
within the context manager. This context contains the identity of the patient.

The context manager consults the patient mapping agent (if present) and it adds data to the
context manager’ s patient context. This data includes additional identifiers by which the
patient is known.

Version CM-1.0 Copyright 1999, Health Level Seven 43



Context Management Specification, Technology and Subject-Independent Component Architecture

The context manager surveys the other applications, and if the transaction compl etes, they
obtain pertinent patient context data from the context manager.

The high-level eventsthat transpire when a user selects a patient are summarized in Figure 12. This
description assumes that a patient mapping agent is present. The patient mapping agent is presumed to
know the identifiersfor all patients for all applications within the common context system. (See
Chapter XXX.)

(2) Application authenticates the user and

tells context manager the user’slogon o

t(ri)e l;:t?’ mstd;d S name; authentication datais not passed (5) Each application indicates
interest from ontothecontext manager. - whether or not it can apply the ne
any application (6) If one or more of the applications Application | context.
on the dinical cannot or prefers not to apply the new YY
desktop context, the user is asked to decided

N\ Whether to continue, or cancel.

A (4) Context manager tells the other applications that a nev

patient context has been proposed. The context manager
Context surveys the applications to determine whether each can

apply the new context.

M anager
%)Conte(t manager tells each application to apply new

Application
al. O XX >

context, or that the transaction has been cancelled.

(8) Each application applies the

(3) Context manager tells patient Application | context if instructed to do so by

mapping agent that context changeis Patient VA context manager. Each applicati
occurring; mapping agent supplies the GUKET gets the new patient context fror
context manager with other identifersby | Mapping context manager.
which the patient is known. Agent

(Optional)

Figure12: Patient Link Context Change Process

The details for how this process works and the responsihilities of the applications and CMA
components are described next.

7.5 Joining the Common Context System

Applications join a common context system via the context manager for the system. The context
manager’ s ContextManager interface is used for this purpose. The application obtains areferenceto
thisinterface by interrogating the context manager’s principal interface. A reference to the context
manager’ s principal interface is obtained from the desktop’s interface reference registry.

An application typically retrieves the current common context data from the context manager’s
ContextData interface in order to establish itsinitial context. A reference to the context manager’s
ContextData interface is obtained by interrogating the context manager’s principal interface or by
interrogating the context manager’s ContextManager interface. The context data is represented as a set
of name-value pair items.

44 Copyright 1999, Health Level Seven Version CM-1.0



Context Management Specification, Technology and Subject-Independent Component Architecture

7.6 Context Change Transactions

Onceit isa participant within a common context system, the context manager will inform the
application of context data changes through the application’ s ContextParticipant interface. This data
can be changed by any of the participants in the common context system. A participant executes a
context change transaction to affect a context change. The transaction is coordinated by the context
manager and involves the ingtigator of the transaction as well as the other participants.

The ContextManager interface is for beginning and ending a context change transaction. The
ContextData interface is used for setting the new context data.

When a context change transaction is started, the context manager creates a transaction-specific
version of the context data. This version of the context datais initially empty and does not contain any
name-value pair items. Thisisto prevent data from the current context from becoming mixed with the
data for the new context. Items are added to the transaction-specific context data during the course of
the transaction.

Thisverson of the context data is updated during the course of the transaction and isintended to only
be visble to the application that instigated the transaction. All other applications continue to view the
context data as it was when most recently published. The published context data is replaced with the
context data set during the course of the transaction when the transaction compl etes successfully.

Prior to thefirst context change transaction, the published set of context data itemsis empty. Items are
added during the course of subsequent transactions.

While the context manager serves as a holder for the current context data, its semantic understanding
of the meaning of thisdata is intended to be minimal. Further, the specific itemsthat congtitute the
context data are not assumed to be hardwired into the context manager implementation. This enables
new context items to be defined over time without requiring changes to context manager
implementations. Thisincludes context items that represent identifier data as well as corroboration
data.

Only one context change transaction is alowed at atime. Once it has started a change transaction, the
ingtigator of the transaction is free to update the context data via the context manager’ s ContextData
interface.

7.7 Transactional Consistency

In order to ensure that changes to this set of items are salf-consistent, a participant must explicitly
begin and end a context data change transaction. All of the context change operations that are
performed within the scope of the transaction are treated as a single logical unit of work. When the
transaction completes, either al of the changes are published, or none of them are. Other participants
that access the ContextData interface to read the context data values will see the values as they were

Version CM-1.0 Copyright 1999, Health Level Seven 45



Context Management Specification, Technology and Subject-Independent Component Architecture

prior to the transaction. Only the ingtigator of the transaction will see the values as they are during the
course of the transaction. This prevents other participants from accidentally seeing inconsistent values.

This capability relies upon the proper use of context coupons, which are random unique identifiers that
are assigned each time a change transaction begins. The context manager provides the ingtigator of a
transaction with the context coupon when it is started. All other participants can only obtain from the
context manager the coupon for the most recently committed transaction. A coupon is also provided as
a parameter to most of the methods defined for the ContextData interface, thereby enabling the
manager to determine whether it should respond in terms of the transaction-in-progress or the most
recently committed transaction.

When the ingtigator of the context changes is done, it informs the context manager that the changes
have been completed. A context manager may unilaterally decide to terminate a transaction and undo
the changesif an application fails to indicate that it is done with its changesin atimey manner. (The
manager decides how long “timely” is. How this value is determined is an implementation decision.)

7.8 Context Change Notification Process

When the ingtigator compl etes the context changes, the context manager initiates a two-step change
notification process wherein it determines whether to publish the shared context data changes. This
processisinspired by the two-phase commit protocol used in many database systems to ensure
transaction consistency. For the purposes of managing a common clinical context, the protocal has
been smplified.

In thefirst step of the process, the context manager surveys the applications. Each application is
informed that there are a candidate set of context data changes and is asked to indicate whether it can
accept these changes. At this point, applications are provided with the context coupon value for this
change transaction. This enables the applications to access the context data changes in order to
consider specific data values as part of their decision about whether to accept the changes. Thisis
accomplished via the context manager’ s ContextData interface. It is possible for a participant to obtain
just the values that have changed.

The context manager gathers the results of the survey and provides them to the application that
ingtigated the context change. Depending upon the survey responses the application may be free to go
ahead and publish the changes, or it may need to solicit guidance from the user about how to proceed.
This guidance is required when there is at least one surveyed application that:

is unable to apply the context change because it isblocked (e.g., it isa single threaded
application that has a modal dialog open); these applications are referred to as * busy”

might loose work performed by the user if it applies the context changes (e.g., the user wasin
the process of entering data that would not be applicable in the new context); these applications
arereferred to as having “ conditionally accepted” the context changes.

46 Copyright 1999, Health Level Seven Version CM-1.0



Context Management Specification, Technology and Subject-Independent Component Architecture

For each application in one of these states, the user is provided with a description that identifies the
application and explains its situation.

When user guidanceis required, the following choices are offered:
Cancdl - the context change is canceed; the context changes are not published.

Break Link - the context changes are applied just to the application with which the user
initiated the context changes. This application essentially breaks away from the common
context system until the user explicitly instructs the application to rgoin the sysem. The
application that has broken away displays adistinct visual cue indicating that its context may
be different from the other applications (e.g., it might display a warning messagein a
prominent location)™.

Apply - the context data changes are applied to all of the applications, including those that
indicated that they might loose work performed by the user; this choice is allowed only when
there are no busy applications.

It isthe respongbility of any application that enables the user to instigate a context change to present,
when necessary, a dialog that obtains the user’ s guidance as described above. The appearance of the
dialog and the commands that the user can choose from are specified in each of the HL7 context
management technol ogy-specific user interface specification documents. Thiswill ensure a cons stent
and familiar set of interactions for users acrass CMA-conformant applications.

The ability for any one application to require the user’ s direct involvement in mediating context
changes provides an important efficiency and safety feature.

The efficiency feature addresses the fact changing the context may cause an application to oose work
performed by the user. Thiswork may bein the form of data entered but not yet saved by the user, or
may be in the form of an expensive computation (such as a lengthy database retrieval) that would need
to bere-performed in light of a context change. Allowing the user to decide how to proceed in these
circumstances minimizes the likelihood that the user will unintentionally loose work.

The safety feature addresses the fact that it may not always be possible to force an application to
accept changes to the context data. Specifically, thisisthe case for blocked, or busy, applications.

If context changes were automatically applied piecemeal to just the applications that could respond,
applications could become out of synchrony with regard to their clinical context, without the user being
aware of the situation. For example, the user might assume that after a context change, all of the
applications are displaying data for the same patient when in fact they are displaying data for different

A specific visual cue will be recommended within each of the HL7 context management technol ogy-specific
user interface specification documents.

Version CM-1.0 Copyright 1999, Health Level Seven 47



Context Management Specification, Technology and Subject-Independent Component Architecture

patients. The approach described above avoids this problem. Thisis because the only time that an
application can become out of synchrony with regard to the clinical context used by the other
applications is when the user has explicitly instructed it to break away.

In the second step of the two-step change notification process, the applications in the common context
system are informed about whether or not the context changes are to be applied. If all of the surveyed
applications indicate that they accept the changes, then the changes are applied and are reflected as the
new context state. If the user indicated that the changes should be canceled, then the changes are
discarded.

Once a participant has been informed that the context data has changed, it isfreeto inspect the data to
obtain the new valuesif it has not already done so (again, using the context manager’ s ContextData
interface). The participants can also assumethat all of the other participants are applying the same
context data.

In either case, the context change transaction completes when all of the applications have been
informed of the outcome of the survey. If the context manager is unable to inform an application of the
survey outcome, it will keep trying periodically, unless the manager determines that the application has
terminated. The periodic attempt to notify a non-responsve application does not prevent the transaction
from completing, nor will it prevent a new transaction from being Started.

7.9 Leaving a Common Context System

When an application terminates, it explicitly leaves the common context system by informing the
context manager via it ContextManager interface. At thistime, the context manager shall dispose of
any application interface references that it possesses, and the application shall dispose of any context
manager interface referencesthat it possesses.

A diagram of the overall common context system modd is presented in Figure 13, followed by
component interaction diagrams that represent typical common context data update transactions.

7.10Behavioral Details

7.10.1 Application Behavior When it Cannot Cancel Context Changes

It is possible that an application that instigated a context change transaction cannot easily implement
the capability to cancel the transaction. In this case, it is acceptable for the application to not offer
canceling the transaction as an option to the user. The details of how this appears to the user are
specified in each of the HL7 context management technol ogy-specific user interface specification
documents.

48 Copyright 1999, Health Level Seven Version CM-1.0



Context Management Specification, Technology and Subject-Independent Component Architecture

7.10.2 Application Behavior When it Does Not Under stand Context | dentifiers

It ispossible that an application isunableto interpret any of the context identifier items that were set
when the current context was established by another application. For example, the selected patient
might not be a patient known to the application.

An application that is unable to interpret any of the identifiers shall still participate in the context
change transaction. This Situation is not a basis for the application to prevent the transaction from
proceeding. Specifically, the application shall not use the surveying process to reject the context
change.

However, at the completion of the transaction, the application shall clearly indicate to the user that it is
unable to apply the current context. The application shall not show any patient data. The details of how
thisindication appears to the user are specified in each of the HL7 context management technol ogy-
specific user interface specification documents.

7.10.3 Application Behavior with Regard to an Empty Context

The context is empty when a context system isfirst initialized. (See Section 5.6.6, Representing an
Empty Context Subject). When thisisthe case, al of the applicationsin the context system shall
clearly indicate to the user that there is no current context. The details of how this indication appearsto
the user are specified in technol ogy-specific.

An application shall never explicitly set the context to empty. The context manager shall raise an
exception whenever an application attempts to perform a context change transaction in which the new
context is empty. The transaction is cancelled by the context manager, and the surveying of the
participant applications does not occur.

7.10.4 Surveying Details

During the context change survey, the context manager informs each of the applications in the common
context system (except for the application that ingtigated the changes) that there are pending context
data changes. When an application is surveyed, it shall create avisual cuethat indicatesit is about to
changeitsclinical context before responding to the surveyz. It shall not change its context yet. The
context-changes-pending indication shall only be removed once the context manager hasinformed the
surveyed application about how to proceed.

Under normal circumstances, the application will eventually be natified by the context manager about
whether or not the context changes should be applied. However, if the context manager is unable to
inform the application about how to proceed (e.g., because the application blocked after responding to

ZA specific visual cue recommended within each of the HL7 context management technol ogy-specific user
interface specification documents.

Version CM-1.0 Copyright 1999, Health Level Seven 49



Context Management Specification, Technology and Subject-Independent Component Architecture

the survey but before being notified that the context changes have been accepted), the user will at |east
be able to determine that the application may not bein synchrony with the other applications. Thisis
because the application is presumably still displaying avisual cue that indicatesit might changeits
clinical context. The fact that this cue is still being displayed after the context has changed cluesthe
user that thereis a problem with the application.

An application can explicitly respond to a context change natification survey by indicating one of the
following:

Accept: It iswilling to accept the context data changes and to changeitsinterna state
accordingly if the changes are published.

Accept-Conditional: It isin the midst of atask that might cause work to be logt if the user
does not complete the task; if the changes are published it iswilling to terminate the task,
accept the context data changes and change its interna state accordingly.

If the changes are subsequently published, an application can defer changing itsinternal state until
some time in the future (for example, when it regains the focus for user-inputs). However, it must offer
avisual cuethat indicates it not in synchrony with the new context, for example, it might blank out its
data display or minimize itsalf.?

An application that cannot interpret the context data (e.g., does not know who the patient is) should
accept the changes. However, the application should clearly indicate to the user (e.g., by displaying a
message) that it cannot apply the current context data.

The context manager infers an implicit response from an application under the following conditions.

Terminated the context manager has determined that the application has terminated without
first informing the context manager

Busy: the context manager has determined that the application is still running but is unable to
answer the survey (e.g., the application is single-threaded and has a modal dialog open)

It isnot possible for a surveyed application to explicitly reject, and therefore prevent, a context change.

The context manager gathers the survey responses and returns them to the application that was used to
ingtigate the context change transaction. Applications that have responded with accept-conditional are
expected to also provide a succinct but informative description of the consequences to the user of
applying the context changes. The context manager then prepends the name of the application

iy specific visual cueis recommended within each of the HL7 context management technol ogy-specific user
interface specification documents.

50 Copyright 1999, Health Level Seven Version CM-1.0



Context Management Specification, Technology and Subject-1ndependent Component Architecture

(provided by the application when it joined the common context system) to the description. This
description is shown to the user by the instigating application.

The context manager also provides the ingtigating application with a succinct but informative
description about any applications that are busy. This description includes the name of the application.
Thisinformation is provided by the context manager on behalf of these applications, asthey are unable
to do so for themsalves. This description is also shown to the user by the instigating application.

Applications that have terminated do not affect the survey process. The context manager considers
such applications to no longer be part of the common context system. Any information that the
manager is maintaining about terminated applicationsis discarded.

Applications that have suspended their participation in the context are not involved in the survey
process.

Applications that have joined the system but indicated that they do not want to participate in surveys
are not involved in the survey. However, they are informed aong with the other participants whenever
the decision to accept the changes is published. (They are not informed about decisions to cancel
changes, as thisinformation would beirrelevant.)

7.11Common Clinical Context Use Model

The Common Clinical Context Use Modd (Figure 13) illustrates a system with four actors (Authorized
User, Healthcare Application, Context Manager, and a System’s Administrator) applying forces on
three use cases. The use cases are Lifecycle of Common Context, Context Selection Change, and
Abnormal Termination of Common Context.

Common Clinical Context Svstem

Authorized User Context Manager

-«
Healthcare Application

Svstem Administrator

Figure13: Common Clinical Context Use M odel

Version CM-1.0 Copyright 1999, Health Level Seven 51



Context Management Specification, Technology and Subject-Independent Component Architecture

The common clinical context system is presented by providing a diagram of each use case followed by
interaction diagramsillustrating different behavioral flows of the associated use case. Each use case
has an associated description, which is provided below. Further, for brevity the specific interfaces
names (ContextManager, ContextParticipant, and ContextData) are not used; their abbreviations are
used instead (CM, CP, and CD). Also, theword “interface’ is abbreviated to “iface’. The diagram
notes (illustrated as a sheet of paper with corner folded over) are from a software developer’s
perspective, not the user of the application.

7.11.1 Lifecycle of Common Context

A common context does not initially exist. An application must establish the common context. The
common context ceases to exist when there are no longer any applications participating in the common
context. Figure 14, Interaction Diagram 1, and Interaction Diagram 2 illustrate this use case.

Context Manage Healthcare
Application

Coordlnates Establlshes/ends

common context

GCommon Context Lifecycle

Chooses Patient

Authorized
User

Figure14: Common Context Lifecycle Use Case

52 Copyright 1999, Health Level Seven Version CM-1.0



Context Management Specification, Technology and Subject-Independent Component Architecture

Version CM-1.0 Copyright 1999, Health Level Seven 53



User

| choose "Jane Doe"

Application AAA

CM::JoinCommonContext(CP iface of AAA, surveyYes)

Context Management Specification, Technology and Subject-1ndependent Component Architect

ContextManager

"Jane Doe"

I
E

CM:: StartContextChanges

gl

MostRecentContext coupon=/
No items in the context.

Transaction

context coupon

Begins

CD:: SetltemValues

CM:: EndContextChanges

Single participant,

survey results empty

therefore. no survey
is required.

CM::PublishChangesDecision("accept”)

Bxit program

Possiblv more
transactions.

CM:LeaveCommonContext

g

Transaction
Complete

MostRecentContext coupon
Items with values now in the

I nteraction Diagram 1: Common Context Lifecycle

54

Copyright 1999, Health Level Seven

1

Did last participant
[ leave?
Yes

BExit

<

Verson CM-1.0



Context Management Specification, Technology and Subject-1ndependent Component Architect

Application BBE

CM::JoinCommonContext(CP iface of BBB, surveyYes)

R

CM::JoinCommonContext(CP iface of CCC, surveyYes)

CM::SuspendParticipation
| choose "Sam Smith" <

CM::StartContextChanges

CD::SetltemValues

CM::EndContextChanges

CP::ContextChangesPending

"accept"

survey results: all applications accept

CM::PublishChangesDecision("accept") -

. “Sam Smith" - CP::ContextChangesAccepted

Toer sl

_ CM:ResumeParticipation

I choose "Kent Clark”

]

= CM::StartContextChanges

CM::SetltemValues

CM::EndContextChanges

CP::ContextChangesPending

"accept"

CP::ContextChangesPending

"accept"

survey results: all applications accept

CM::PublishChangesDecision("accept")

CP::ContextChangesAccepted

"Kent Clark"

CP::ContextChangesAccepted

S

T

I nteraction Diagram 2: Suspending/Resuming Context Participation

Version CM-1.0 Copyright 1999, Health Level Seven 55



Context Management Specification, Technology and Subject-Independent Component Architecture

7.11.2 Context Selection Change Use Case

The Context Selection Change use case assumes a patient context has been established. The user is currently
focused on one application, while several other healthcare applications may be executing on the same host
machine. The user chooses to change the sdlected patient from “Jane Doe” to “ Sam Smith”.

Figure 15 illustrates this use case. There are several possible instances of this use case which are provided in
Interaction Diagram 3 through Interaction Diagram 10.

w Patlupates n _— j:
Authorized

Healthcare
User o
Application

Context Selection Change

Coordinates

Context Manager

Figure 15: Context Selection Change Use Case

56 Copyright 1999, Health Level Seven Version CM-1.0



Context Management Specification, Technology and Subject-Independent Component Architecture

Application AAA ContextManage| Application BBB

CM::JoinCommonContext(CP iface of AAA, surveyYes)

CM::JoinCommonContext(CP iface of BBB, surveyYes)

—J

CM::JoinCommonContext(CP iface of CCC, surveyYes)
D<

| choose "Sam Smith"

CM::StartContextChanges

CD::SetltemValues

CM::EndContextChanges .
9 CP::ContextChangesPending

"accept”
Possibly
concurrent _
surveys. CP::ContextChangesPending
"accept”

survey results: all applications accept

CM::PublishChangesDecision("accept”)

CP::ContextChangesAccepted

Possibly
concurrent

notifications. CP::ContextChangesAccepted

"Sam Smith"

CD::GetltemValues

Possibly
concurrent

queries CD::GetltemValues U

I nteraction Diagram 3: All applications accept the changes

Version CM-1.0 Copyright 1999, Health Level Seven 57



Context Management Specification, Technology and Subject-1ndependent Component Architecture

T — 1 e —
User Application AAA ContextManager Application BBB

CM::JoinCommonContext(CP iface to AAA, surveyYes)

CM::JoinCommonContext(CP iface to BBB, surveyYes)

CM::JoinCommonContext(CP iface to CCC, surveyYes) H

CM::StartContextChanges

CD::SetltemValues

I

N

I choose U\
1
gl

CM::EndContextChanges

CP:: ContextChangesPending

"accept"

CP:: ContextChangesPending L

survey results:

Application CCC
conditionally accepted
with this consequence.

"conditionally accept" and consequences

"Are you sure you want

User is told that

Application CCC might o change?"

lose work in progress.

User is provided with cancel

adescription of CM::PublishChangesDecision("cancel")

consequences of a
context change at this CP:: ContextChangesCanceled

time. /U

CP:: ContextChangesCanceled

Completes work in progress

| choose "Sam Smith*

CM::StartContextChanges

New Transaction Begins

i

Sequence of context
changes re-initiated.

I nteraction Diagram 4: An application conditionally accepts the changes; user decidesto cancel changes

58 Copyright 1999, Health Level Seven Version CM-1.0



Context Management Specification, Technology and Subject-Independent Component Architecture
CM::JoinCommonContext(CP iface to AAA, surveyYes)

CM::JoinCommonContext(CP iface to BBB, surveyYes)

D |

CM::JoinCommonContext(CP iface to CCC, surveyYes)

| choose "Sam Smith"

CM::StartContextChanges

—

CD::SetltemValues

T

CM::EndContextChanges

CP::ContextChangesPending

"accept”

CP::ContextChangesPending 5

survey results: Application CCC not responding

User is told that L\ "Application CCC not responding."

Application CCC .
did not respond to cancel selection change

pending changes
survey.

CM::PublishChangesDecision("cancel")

CP::ContextChangesCanceled
Userwaits or 1\
makes /D
adjustments so
Application CCC
can handle
selection change.

| choose "Sam Smith"

CM::StartContextChanges

1 Sequence of conte
= changes re-initiated.

I nteraction Diagram 5: An application does not respond to survey

/U New Transaction Begins

Version CM-1.0 Copyright 1999, Health Level Seven 59



Context Management Specification, Technology and Subject-Independent Component Architecture

c

——— —
Application AAA ContextManager

I I

CM::JoinCommonContext(CP iface to AAA, surveyYes)

i

S EEES—
Application BBB

]

CM::JoinCommonContext(CP iface to BBB, surveyYes)

[

|

CM::JoinCommonContext(CP iface to CCC, surveyYes)

| choose "Sam Smith"

CM:: StartContextChanges

[—

CD::SetltemValues

CM:: EndContextChanges /U

CP:: ContextChangesPending

"accept"

CP:: ContextChangesPending

"accept"

survey results: all application accept

CM:: PublishChangesDecision("accept")

CP:: ContextChangesAccepted

CP:: ContextChangesAccepted
"Sam Smith"

Context Manager
responsible for
attempting to notify
until a new

= transaction begins.

I nteraction Diagram 6: An application does not respond to change notification

60 Copyright 1999, Health Level Seven Version CM-1.0

Same interaction would
occur if pending changes
were canceled.




Context Management Specification, Technology and Subject-Independent Component Architecture

c

Application AAA ContextManager Application BBB

I I I

CM::JoinCommonContext(CP iface to AAA, surveyYes)

[

CM::JoinCommonContext(CP iface to BBB, surveyYes)

| H

CM::JoinCommonContext(CP iface to CCC, surveyYes)

| choose “Sam Smith"

CM:: StartContextChanges

CD::SetltemValues D

1

CM::EndContextChanges

CP:: ContextChangesPending

“"accept"

CP:: ContextChangesPending

survey results: Application CCC not responding

"Application CCC not responding”

cancel selection change

CM:: PublishChangesDecision("cancel")

CP:: ContextChangesCanceled

Transaction Complete

= “"accept"
D<
CP:: ContextChangesCanceled

I nteraction Diagram 7: An application responds after context change transaction has completed

Version CM-1.0 Copyright 1999, Health Level Seven 61



| choose "Sam Smith"

Context Management Specification, Technology and Subject-Independent Component Architecture

o)

Application AAA ContextManager Application BBB

CM::JoinCommonContext(CP iface of AAA,\sxjurveyYes)

~ CM::JoinCommonContext(CP iface of BBB, surveyYes)

1

CM::JoinCommonContext(CP iface of CCC, surveyNo)

—

N

"Sam Smith"

CM::StartContextChanges

]

CD::SetltemValues

CM::EndContextChanges

CP::ContextChangesPending

Application E:ﬂ‘

CCC not
surveyed.

"accept"”

survey results: all applications accept

CM::PublishChangesDecision("accept")

CP::ContextChangesAccepted

P

CP::ContextChangesAccepted

. CD::GetltemValues

,A##
[

_ CD:GetltemValues

,444441

I nteraction Diagram 8: A non-surveyed application participatesin context change

62

Copyright 1999, Health Level Seven Version CM-1.0



Context Management Specification, Technology and Subject-1ndependent Component Architecture

User Application AAA ContextManaﬁr Application BBB
CM::JoinCommonContext(CP iface to AAA, surveyYes)
CM::JoinCommonContext(CP iface to BBB, surveyYes)
CM::JoinCommonContext(CP iface to CCC, surveyYe
| choose "Sam Smith" CM::StartContextChanges D<
CD::SetltemValues /U
CM::EndContextChanges
CP::ContextChangesPending
"accept”
CP::ContextChangesPending
survey results: Applicatior "conditionally accept" and consequences
CCC conditionally accepted

User is told that L\ with this reason.
Application CCC "Are you sure you want to
might lose work in change?"
progress. User is
provided with a accept selection change
description of _ o
consequences of CM::PublishChangesDecision("accept")
context change CP::ContextChangesAccepted

CP::ContextChangesAccepted m

I nteraction Diagram 9: An application conditionally accepts the changes; user decides to accept consequences of change

Version CM-1.0 Copyright 1999, Health Level Seven 63



Context Management Specification, Technology and Subject-1ndependent Component Architectur:

User Application AAA ContextMana%e‘ Application BBB|
CM::JoinCommonContext(CP iface to AAA, surveyYes)
CM::JoinCommonContext(CP iface to BBB, surveyYes)
CM::JoinCommonContext(CP iface to CCC, surveyYes) H
| choose "Sam Smith" Lr

CM::StartContextChanges

CD::SetltemValues

CM::EndContextChanges w

CP::ContextChangesPending
"accept"
CP::ContextChangesPending L
survey results: Applicatior "conditionally accept" and consequence
CCC conditionally accepted
with this reason.

User is told that E 'Are youhsure y’gu want to
Application CCC change+
might lose work in i
progress. User is Break link
provided with a CM::PublishChangesDecision("cancel”,
description of CP::ContextChangesCanceled
consequences of a
context change at /U
this time. CP::ContextChangesCanceled

CM::SuspendParticipation

L Selected patient is "Sam Smith" ﬁ Selected patient is previously chosen patient

I nteraction Diagram 10: An application conditionally accepts the changes, user breakslink with common context

64 Copyright 1999, Health Level Seven Version CM-1.0



Context Management Specification, Technology and Subject-1ndependent Component Architecture

7.11.3 Abnormal Termination of Common Context Use Case

The Abnormal Termination of Common Context Use Case involves a syssem administrator forcing the
termination of the context manager through some action. The common context participants are notified of the
termination of the common context.

Figure 16 illustrates the abnormal termination use case while Interaction Diagram 11 captures an instance of
this case.

Healthcare
Application

System
Administrator

aborts common Is Notified of

Abnormal Termination of Common
Coptext

Coordinates

Context Manager

Figure 16: Abnormal Termination of Common Context Use Case

Version CM-1.0 Copyright 1999, Health Level Seven 65



C
»
0]
=

Context Management Specification, Technology and Subject-Independent Component Architecture

=

Application AAA ContextManager

CM::JoinCommonContext(CP iface of AAA, surve(Yes)

U

CM::JoinCommonCol

I

Possibly
several
transactions.

— Some event
causes/tells to

CP::CommonContextTerminated

CP::CommonContex

I nteraction Diagram 11: Abnormal Termination of Common Context

66

Copyright 1999, Health Level Seven Version CM-1.0



Context Management Specification, Technology and Subject-Independent Component Architecture

7.12 Stat Admissions

A stat admission occurs when an application needs to enable the user to record information
about a patient even if an identifier for the patient is not known. In this case, the application
should indicate to the user that it is breaking its participation in the patient context, and then
break its participation upon user confirmation. Thisis becauseit is not possible for the
application to identify the patient, which is needed in order to change the common context. The
only reasonable recourseis for the application to break its participation in the common context.

7.13 Optimizations

There are several optimizations that have been designed into the specification. These
optimizations are reflected in the interface specifications described in Chapter 11:

An application can indicate that it never wants to participate in the survey conducted
by the context manager when the context data changes. The context manager will
assume that such applications always accept the changes. Read-only data displays
represent a class of applications for which this capability is useful.

An application can sdectively suspend its participation in the surveying process
without actually leaving the common context. This enables an application to either
perform computational tasks without being interrupted by context changes. Thisalso
enables an application to minimize its use of computational resourcesif it isin a state
(e.g., minimized) in which responding to context changes provides no benefit to the
user. The application can subsequently resume its participation in the common
context.

An application can obtain just the context data values that were altered by the most
recent change transaction. This capability will become increasingly useful as
additional common context data items are defined.

Multiple common context items can be accessed by an application in asingle
invocation of a context manager method. This optimizes performance by reducing the
number of calls an application needs to make to access context items.

When an application is notified about a context change, it is also provided with the
context coupon value that it needsin order to access the context data. This smplifies
the design of applications because they do not necessarily need to keep track of context
coupon values.

Version CM-1.0 Copyright 1999, Health Level Seven 67



Context Management Specification, Technology and Subject-Independent Component Architecture

Context managers can be implemented to conduct the change survey and the
subseguent change natificationsin a concurrent manner, thereby decreasing the
amount of time it takes to complete these computations.

Additional optimizations, such as enabling applicationsto indicate their interest in only being
notified when specific context data items change are candidates for future enhancements.

7.14The Simplest Application

The responsgibilities that an application must implement in order to behave properly asa
participant in a common context system depends upon the application’s functionality.
Applications that need to participate in the context change survey must implement
straightforward but non-trivial behaviors. However, for many applications it will suffice to
implement a very small set of behaviors. Specifically, the smplest participants are those that
do not participate in the survey, do not set the context data, and only want to be informed when
context changes have been accepted. These applications only need to do the following:

1. Join the common context system via the context manager’ s ContextManager interface.

2. Implement the ContextParticipant method that enables the application to be informed
about accepted context changes.

3. Accessthe context data via the context manager’ s ContextData interface.

4. Leavethe common context system upon termination, via the context manager’s
ContextManager interface.

As Interaction Diagram 12 illustrates bel ow, this amounts to implementing one method for
ContextParticipant. (The others can be stubbed with trivial default behaviors.) It also requires
using two ContextManager methods: one to join and one to leave a common context system.
Finally, it requires using one ContextData method to access the context data. The application
does not necessarily need to keep track of the value of the context change coupon, asthe
context manager each time a change occurs provides the correct coupon value to the notified
application. The result isthat smple applications are not penalized for being co-participants
with applications that have more sophisticated needs.

68 Copyright 1999, Health Level Seven Version CM-1.0



Context Management Specification, Technology and Subject-Independent Component Architecture

C
2]
(0]
4

Application AAA GontextManager

CM::JoinCommonContext(CP iface to AAA, surveyYes)

CM::JoinCommonContext(CP i

| choose "Sam Smith"

CM:: StartContextChanges

CD:: SetltemValues

VY o

CM:: EndContextChanges

survey results: all applications accept

CM:: PublishChangesDecision("accept")

"Sam Smith" CP:: ContextChangesAcceptec

CD:: GetltemValues
<

item values

CM::LeaveCommonContext

T

I nteraction Diagram 12: Simplest Application

Version CM-1.0 Copyright 1999, Health Level Seven 69



Context Management Specification, Technology and Subject-Independent Component Architecture

70 Copyright 1999, Health Level Seven Version CM-1.0



Context Management Specification, Technology and Subject-Independent Component Architecture

8 Mapping Agents

A mapping agent in a common context system provides a means to automatically supply
multiple synonymous identifiers for the same real-world entity or concept even when only one
identifier is known to the application used to ingtigate a context change. This mapping is
performed in a manner that is transparent to the user and to the applications in the context
system.

For example, multiple medical record numbers within a healthcare enterprise might identify a
patient. However, each application might only be able to denote a particular patient via just
one of these identifiers. When the user selects a patient using such an application, the
application sets the new patient context using the patient identifier it knows. The context
manager automatically delegates the task of mapping the provided identifier to additional
identifiers to a mapping agent. A magter patient index system might serve as the basis for
implementing a mapping agent capable of mapping patient identifiers.

Mapping agents are not necessarily needed in order to realize a useful and correctly
functioning common context system. Specifically, mapping agents are not needed when each
real-world entity or concept has asingle identifier that is already known to all of the
applications in the common context system. For example, there are healthcare enterprises that
have a uniform way to identify their patients.

The specification contained in this chapter isfor a Patient Link mapping agent. However, other
kinds of mapping agents are envisioned for other types of common clinical context data.
Therefore, an attempt has been made to specify the mapping agent in away that will enable
forward compatibility with future CMA capabilities, such as additional context subjects.

8.1 Assumptions and Assertions

It isnot an objective of the CMA to define how mapping agents should work or to prescribe or
assume a particular mapping agent implementation. Instead, a mapping agent istreated asan
abstraction. Interfaces are defined that enable mapping agents to be connected to context
managers for the purpose of aiding in the mapping of context identifiers between multiple
identifier spaces.

Additional assumptions and assertions include:

When present, the mapping agent is the authority within a common context system on
the mapping between context identifiers.

Version CM-1.0 Copyright 1999, Health Level Seven 71



Context Management Specification, Technology and Subject-Independent Component Architecture

A mapping agent does not alow an identifier to map to more than one real-world
entity or concept (e.g., a patient mapping agent does not allow a patient identifier to
map to more than one patient).

Thereisat most one mapping agent per context subject per clinical desktop. (Behind
the “scenes’ mapping agents may work together, or may be implemented using asingle
common service. However, thisis not visible to the context manager or the context
participants.)

A context manager does not know about the mapping agent implementation; a context
manager only “sees’ a mapping agent through its CCOW interface.

Context participant applications do not “ know” about the mapping agent (or even if
there is one); the mapping agent does not “ know” about context participant
applications.

The mapping agent may reside on a computer that is remote from the computer (s)
upon which the context manager(s) they serve resde; however, these computers must
be connected by aLAN or WAN whose performanceis LAN-equivalent.

Mapping agents are an optional component of a CMA context management system.

8.2 Interfaces
The following interfaces are defined for and implemented by mapping agents.

MappingAgent (MA) - used by a context manager to inform a mapping agent that the
clinical context has changes pending and that the mapping agent should perform its
context data mapping responsibilities

Implementationinformation (11) - used by a context manager to obtain details about
who implemented the mapping agent, when it was ingalled, etc., for the purpose of
creating detailed error reports

In addition, mapping agents to set/get context data items uses the context manager
ContextData interface.

The mapping agent interfaces are modeled and illustrated in Figure 11: Patient Link
Component Architecture.

72 Copyright 1999, Health Level Seven Version CM-1.0



Context Management Specification, Technology and Subject-Independent Component Architecture

8.3 Theory of Operation

Assume, firgt, that one or more context participants have already joined the same common
context and that they are connected to the context manager. Further, assume that the context
manager aready has an interface reference to a mapping agent’s MappingAgent interface.
How these references are obtained is described in Section 8.3.1, Initializing a Context System
When a Mapping Agent is Present.

Given these conditions, a context participant instigates a context change transaction viathe
context manager’ s ContextManager interface, sets the new context data via context manager’s
ContextData interface, and then indicatesit is done setting the data via the context manager’s
ContextManager interface.

At this point, before the other context participants are surveyed, the manager informsthe
mapping agent that the context data has changes pending, via the mapping agent’s
MappingAgent interface (which issimilar to an application’s ContextParticipant interface).
The mapping agent blocks the context manager’ s method return until the mapping agent has
completed its mapping tasks. The proposed context data items that are available to the
mapping agent are exactly as the instigating participant set them.

The mapping agent reads the proposed context data via the context manager’ s ContextData
interface, and may set one or more additional context data identifier or corroborating itemsvia
this same interface. The objective is for the mapping agent to enhance the proposed context by
providing additional identifier or corroborating datain a manner that is transparent to the
application that ingtigated the transaction.

Applications (including the instigating application) are not allowed to set context item values
after the ingtigating application has completed its changes. However, the context manager
allows the mapping agents to make changes because it knows it is a mapping agent that is
setting the item values. How the context manager knows that itsis a mapping agent will be
described later.

Once the mapping agent has completed its mapping tasks, the context manager surveys the
context participants and processing of the context change transaction is performed as usual.
With this approach, all of the synonymous values for an identifier will be set before the other
applications are informed via a context manager-initiated survey that the context has been
changed.

However, if theinstigating application has set multiple values for a context identifier, and the
mapping agent detects an inconsistency among these values, then it informs the context
manager that the context change transaction has been invalidated. Thisis because the mapping
agent isthe authority in a context system when it comes to mappings between identifiers.
Allowing the transaction to proceed could create confusion about the context among the other
context participants.

Version CM-1.0 Copyright 1999, Health Level Seven 73



Context Management Specification, Technology and Subject-Independent Component Architecture

The details about the conditions under which a mapping agent can invalidate a context change
transaction are described in 8.3.5 Conditions for Mapping Agent Invalidation of Context
Changes.

When the mapping agent invalidates a context change transaction, the context manager does
not survey the participating applications. Ingtead, the context manager informs the ingtigating
application that the transaction has been invalidated. The ingtigating application then asks the
user to intervene to decide how to proceed.

The user can decide (via a dialog presented by the application that was used to instigate the
context change) whether to cancel the context change or to break the instigating application
away from the common context system. In either case, the context change transaction is
terminated and the context changes are discarded. Additional identifiers are not mapped and
the other applications are not surveyed.

This approach gives the user the option of applying the context changes to just the application
used to ingtigate the context change while also preventing the other applications from becoming
confused about the context.

The details of this Stuation are described in 8.3.6 Treatment of Mapping Agent Invalidation of
Context Changes.

8.3.1 Initializing a Context System When a M apping Agent is Present

A mapping agent and the context manager it serves must be connected to each other. There are
two ways in which this can be accomplished. Either the context manager connects to the
mapping agent, or the mapping agent connects to the context manager. The order in which this
connection occurs has significant impact on complexity and computing resource utilization.

The mapping agent could concelvably locate and connect to a context manager the same way a
context participant does. Thisrequires that the connection be made before the first time a
context participant application sets the context. Thisis so that the mapping agent can be
ingtructed by the context manager to perform its mapping tasks.

A consequence of this approach isthat a context manager will execute even if it isnot actively
servicing any context participants. Further, the requirement that the connection be made before
thefirst time a context participant application sets the context introduces initialization-
sequencing compl exities.

In general thereis no way to know when the first context participant will connect to a context
manager, so the only prudent recourse would be to launch the context manager and the
mapping agent as part of the boot-up process for the desktop they serve. Thiswould
complicate the installation process for context managers and mapping agents.

74 Copyright 1999, Health Level Seven Version CM-1.0



Context Management Specification, Technology and Subject-Independent Component Architecture

The dternative is for the context manager to connect to the mapping agent. This approach
enables the connection to be deferred until the mapping agent is needed to service a context
participant. However, a means by which context managers can locate the necessary mapping
agent must be established.

Fortunately, the fact that there is only one mapping agent per context subject per clinical
desktop enables the location process to be easily implemented using the desktop’ s technol ogy-
specific desktop interface reference registry. Specifically, a reference to a mapping agent’s
principal interface is entered into the desktop’ s interface reference registry. The symbolic name
and/or description of the interface within the registry indicates the context subject that the
mapping agent maps. The context manager obtainsthis reference and usesit to interrogate the
mapping agent to obtain references to its other interfaces, such as MappingAgent.

An additional benefit of the manager-connects-with-agent approach isthat it is not even
necessary for distinct connect/disconnect methods to be defined. Instead, the context manager
smply informs the mapping agent whenever the context manager has changes pending. The
context manager explicitly provides areferenceto it principal interface to the mapping agent.
The mapping agent then interrogates the context manager viaits principa interface to obtain a
reference to other context manager agent interfaces, such as the interface ContextData.

The sequence of eventsis shown in Interaction Diagram 13: Context Change Transaction with
Mapping Agent.

8.3.2 Terminating a Context System When a M apping Agent is Present

To enable the orderly termination of the context system, the context manager shall implicitly or
explicitly dispose of any mapping agent interface references that it possesses prior to
terminating. The mapping agent shall dispose of any context manager interface references that
it possesses when it has completed its mapping actions for a context change transaction. The
means by which these disposal s are effected is technol ogy-specific.

The consequence of these disposalsisthat at the end of a context change transaction, only
context participant applications will possess context manager interface references. If there are
no participants, then the context manager can properly terminate. (Participants dispose of their
any context manager interface references that they possess prior to terminating. See Section
Error! Reference source not found., Error! Reference sour ce not found..) This aso means
that once the context manager terminates, the mapping agent can aso properly terminate.

Version CM-1.0 Copyright 1999, Health Level Seven 75



Context Management Specification, Technology and Subject-Independent Component Architecture

Context manager Context participant Mapping Agent

ContextManager ::JoinCommonContext()

In

]‘ ContextManager:: StartContextChanges()

ContextData:: SetltemValues()

Iy

ContextManager::EndContextChanges()

MappingAgent::ContextChangesPending(Principal iface to context manager)
-

Mapping agent |ocates context
manager’ s ContextData interface

ContextData:: GetltemVa ues()

—=

ContextData:: SetltemValues()
—q=

Return from ContextChangesPending
—=

Surveying the other context participants
occurs here

Return from EndContethanges()

I nteraction Diagram 13: Context Change Transaction with M apping Agent

8.3.3 Distinguishing Between M apping Agents and Context Participants

When a mapping agent isinformed that a context change is pending, the context manager
providesit with two coupons. One coupon denotes the context change transaction; the other

denotes the mapping agent. The mapping agent coupon is not the same as any of the coupons
assigned by the context manager to the context participants.

The mapping agent shall use the coupon that denotes it whenever it sets context data viathe
ContextData interface. The context manager uses this coupon to determine that a mapping
agent, and not a context participant, is setting the context data. Only a mapping agent is

76 Copyright 1999, Health Level Seven Version CM-1.0



Context Management Specification, Technology and Subject-Independent Component Architecture

allowed to set context data after the instigator of the context change hasindicated that it has
completed the context changes.

It isacontext manager implementation decision as to whether the coupon assigned to a
mapping agent is the same or different between context change transactions.

8.3.4 Mapping Agent Updates to Context Data

A mapping agent only adds data to the context. A mapping agent can add additional context
identifier items. It can also add additional corroborating data items. These updates are
primarily for the benefit of the context participants other than the application that instigated the
context change.

Thisisbecauseit cannot be assumed that the ingtigating application will re-read the context
data once it has completed its context changes. In contrast, the other applications do not read
the new context until they are surveyed, which occurs after the mapping agent has added data
to the context.

If a mapping agent was allowed to change the values for context items that have been set by
the ingtigating application, it could be confusing to the user. Thisis because the user might see
differences between the context data as displayed by the ingtigating application and as
displayed by the other context participant applications.

Given this concern, a mapping agent shall not alter the values of any of the context data items
that have already been set by the ingtigating participant as part of the proposed context. Any
attempt to alter existing context data items by the mapping agent shall result in the context
manager raising an exception.

A mapping agent shall not delete any of the context data items. Any attempt to del ete context
data items by the mapping agent shall result in the context manager raising an exception.

8.3.5 Conditionsfor Mapping Agent Invalidation of Context Changes

A context subject is comprised of multiple identifier and corroborating data items, each of
which is represented as namefvalue pairs (see Section 5.4, Context Data Representation, and
Section 5.6, Context Data Interpretation). It is the responsibility of every application that sets
these items to ensure that they are self-consistent. However, there are a variety of potential
item name and/or item value incong stencies that a mapping agent must be able to detect.

Specifically, if an application has set multiple values for a context identifier item, and the
mapping agent determines that these values do not all identify the same real-world entity or
concept (e.g., patient), the mapping agent shall invalidate the context change transaction.

Specifically, a mapping agent shall invalidate a context change transaction when:

Version CM-1.0 Copyright 1999, Health Level Seven 77



Context Management Specification, Technology and Subject-Independent Component Architecture

The ingtigating application sets more than one value for the same context identifier
item, but the mapping agent determinesthat at least two of these values identify
different patients.

The ingtigating application sets more than one value for the same context identifier
item, but the mapping agent knows that at least one of these values conflicts with a
value known to identify the patient.

There are stuationsin which the mapping agent must not invalidate a context change
transaction even though there are apparent context item inconsistencies. A mapping agent must
not flag what it believes to be incons stencies when in fact the suspect items might represent
reasonable application behaviors.

The following scenariosillustrate the desired mapping agent behaviors. Assumethat there are
two patients, each with identifiers for two stes, and the mapping agent is able to map the
patient identifiers for both sites:

Patients and Their Site-Specific I dentifiers

I nstitution John Doe Jim Smith
St. Elsewhere Hospital 123-456-789Q36 155-213-424Y 82
St. Elsewhere Clinic 2888-91922-\W928 18291-81293-D812

The first two scenarios represent incons stencies that the mapping agent must respond by
invalidating the context change transaction. The last three scenarios represent inconsistencies
that the mapping agent must ignore:

78 Copyright 1999, Health Level Seven Version CM-1.0



Context Management Specification, Technology and Subject-Independent Component Architecture

What the instigating
application does ...

Example ...

What the mapping agent
does ...

Sets two identifier values,
both with the intent of
dencting John Doe, but the
values erroneously dencte
John Doe and Jim Smith.

Item identifies John Doe:

[Patient.|d.MRN.St_Elsewhere Hospital,
123-456-789Q36]

Item erroneousdly identifies Jim Smith:

[Patient.ld.MRN.St_Elsewhere_Clinic,
18291-81293-D812]

Invalidates the context change
transaction because the first identifier
value denotes John Doe, while the
second denotes Jim Smith.

Mapping is not performed.

Sets more than oneidentifier
pair, both with the intent of
dencting John Doe. Thefirst
valueis John Do€ s hospital
identifier, but the second
valueis not John Do€ s clinic
identifier.

Item identifies John Doe:

[Patient.|d.MRN.St_Elsewhere_Hospital,
123-456-789Q36]

Item does not identify John Doe:

[Patient.ld.MRN.St_Elsewhere_Clinic,
0000-00000-0000]

Invalidates the context change
transaction because while the first
identifier value is John Do€' s hospital
identifier, the second value is known not
to be John Doe' s clinic identifier.

Mapping is not performed.

Sets only one context
identifier item and the name
of theitem is not known to the

mapping agent.

Item name not known to mapping agent:

[Patient.ld.MRN.General_Hospital,
6668-3923-987122]

I gnor es this situation and does not
inform the context manager about
inconsistencies.

Mapping is not performed.

Sets more than one value for a
context identifier item, and
one or more of the item names
are not known to the mapping

agent.

Item name known to mapping agent:

[Patient.|d.MRN.St_Elsewhere_Hospital,
123-456-789Q36]

Item name not known to mapping agent:

[Patient.ld.MRN.General_Hospital,
6668-3923-987122]

I gnor es this situation and does not
inform the context manager about
inconsistencies.

Mapping is performed.

Sets the corroborating data to
values that are different (or
incomplete) as compared to
the corroborating data known
to the mapping agent

Application sets corroborating data containing

the identified patient’s name to “ Jack Doe”
but mapping agent knows the identified
patient as “ John Dog’.

I gnor es this situation and does not
inform the context manager about
inconsistencies.

Mapping is performed.

In summary, detectabl e incons stencies between identifier values are the only reason that a
mapping agent should invalidate a transaction. Transactions must not be invalidated when
unknown identifier names are used by an application or because of corroborating data

inconsistencies.

8.3.6 Treatment of M apping Agent I nvalidation of Context Changes

Applications that instigate context change transactions and then explicitly set more than one
identifier during a context change transaction shall explicitly handle the situation in which a
mapping agent invalidates a context change transaction. (Applications that set only one

identifier do not need to handle this situation.)

An ingtigating application is not provided with a means to distinguish between the invalidation
of a context change transaction and the presence of a busy application. These are clearly

Verson CM-1.0

Copyright 1999, Health Level Seven

79




Context Management Specification, Technology and Subject-Independent Component Architecture

different situations, but are to be handled by an ingtigating application in the same way. The
application shall present adialog that clearly indicates that a problem has been encountered
while attempting to change the common context.

The dialog shall include a description of the problem that was encountered. The dialog shall
also enable the user to cancel the context change or to break the link between the ingtigating
applications and the other applications.

When the mapping agent has invalidated a transaction it shall not be possible for the user to
force a common context change. If the user decides to break the link between the ingtigating
application and the other applications, instigating application shall only apply the context
changeto itsdlf. This application shall break away from the common context and shall clearly
indicate to the user that it is not participating in the common context.

If the user cancd s the context change, then the instigating application shall indicate this fact to
the context manager. Both the instigating application and the context manager shall discard the
current transaction. The context manager shall not survey the other applications.

Independent of the reason for which the mapping agent invalidated the transaction, the context
manager shall aways provide to the instigating application the same user-friendly description
of the problem that was encountered. Thisisin order to keep things smplefor the user, who is
unlikely to be concerned about the details of what went wrong. This description shall be
included in the dialog by the ingtigating application.

The appearance of the dialog and the commands that the user can choose from are specified in
the CCOW document Common Clinical Context User Interface Specification The wording
for the user-friendly description that isincluded in the dialog is a so specified in the CCOW
document Common Clinical Context User Interface Specification Thiswill ensurea
consistent and familiar set of interactions for users across CCOW-conformant applications.

The sequence of events that occur when a mapping agent invalidates a context change
transaction is shown in Interaction Diagram 14: Mapping Agent Invalidates Context Change
Transaction.

8.3.7 Mapping Null-Valued I dentifiers

A mapping agent shall not perform any mapping when the context subject is empty (See
Section 5.6.6, Representing an Empty Context). The net effect is that the context subject
remains empty, and all of the applications see the context as such.

80 Copyright 1999, Health Level Seven Version CM-1.0



Context Management Specification, Technology and Subject-Independent Component Architecture

Authorized User Instigating Context Manager Mapping Agent Participating
Application Application

‘ CM::JoinCommonContext(surveyYes)

CM::JoinCommonContext(surveyYes)

| chose "Sam Smith"

CM::StartConte C—Langes()

CD::SetltemValugs()

CM::EndContextChanges()
MA::ContextChangesPending()

CD::GetltemValues()

"invalid", "ID conflict detected"

noContinue=TRUE, "MappingAgent: IDs map to two different patients"

Dialog
presented to

user. User
informed of “Jcancel or break link
invalidation of
context change. L] CM::PublishChangesDecision("cancel")
Allowed cancel
or break link.

Discard proposed context

U\ Other participants not AN
informed of cancellation of

context change because

they were not surveyed.

I nteraction Diagram 14: Mapping Agent Invalidates Context Change Transaction

8.3.8 Initializing M apping Agents
Different mapping agent implementations may require different initialization methods. For
example, a mapping agent might need to authenticate the current user in order to enforce
security palicies. Other than being automatically launched by a context manager, the additional
steps needed to initialize a mapping agent are implementation issues and are not addressed by

Version CM-1.0 Copyright 1999, Health Level Seven 81



Context Management Specification, Technology and Subject-Independent Component Architecture

this specification. (Future CCOW specifications may provide standardized ways of initializing
mapping agents, for example as part of a CCOW User Link capability.)

It can be the case that different mapping agent implementations will require different explicit or
implicit actions on the part of the user in order to complete their initialization tasks. An
example of an explicit user action is signing-on to the mapping agent via a mapping agent-
supplied dialog. An example of an implicit user action is signing-on to a context participant
application that relays its authentication of the user to the mapping agent; this obvioudy
implies a relationship with the mapping agent that goes beyond this specification.

8.3.9 Handling M apping Agent Failures

A context manager must be able to detect and handle the failure of a mapping agent.
Specifically, a context manager shall behavein arobust manner even if its calls to a mapping
agent’ s MappingAgent interface do not return in atimely manner.

Therecourse, after atimeout has occurred, is for the context manager to continue with the
normal processing of the context change transaction. If the mapping agent has indeed failed,
then some of the context participants may not be able to interpret the next context. However,
this fail-soft approach till enables the user to perform useful work until the mapping agent
failureis corrected.

Finally, even if a mapping agent has failed, a context manager shall continueto try to access
the mapping agent during subsequent transactions on the prospect that the failure has been
corrected. In doing so, the context manager may need to obtain a new interface reference for
the mapping agent (because the old reference may no longer be valid).

Note that this policy of continually attempting to access a failed mapping agent also applies
even when a context manager isfirst launched. It may be the case that a mapping agent
becomes available after the context manager has begun executing. (See Section 8.3.8,
Initializing Mapping Agents, for one explanation of why this might happen.) A context
manager that does not locate and initiate a mapping agent when it is launched shall
nevertheless keep trying between and/or during context change transactions. It isan
implementation decision as to how the performance impact of this policy is minimized.

8.4 Mapping Agent Effect on Application Security Policies

Mapping agents may implement their own security policiesin terms of what context data it will
map for a particular user. Mapping agent security policies can differ from the policies of the
participating applications. A mapping agent’s policies might effect what patients a user can, or
cannot, access.

82 Copyright 1999, Health Level Seven Version CM-1.0



Context Management Specification, Technology and Subject-Independent Component Architecture

When the mapping agent’ s policy is more restrictive than one or more of the participating
application’s, a mapping agent might eect to not map an identifier because doing so would
violate the security rules known to the mapping agent. When the mapping agent’s policy isless
restrictive than one or more of the participating applications, each application’s own security
policy will be the predominating policy for the current change transaction.

A mapping agent that el ects to not map an identifier because of security concerns shall not
indicate this fact to the user. The user will smply observe that access to the selected patient is
not possible through one or more of the participating applications. These applications do not
know that the identifier for the selected patient has not been mapped because of the mapping
agent’ s security policy. Instead, it looks to the applications as though a patient has been
sdlected but the identifier(s) by which the patient is known to the applications has not been
provided. These applications behave as specified for in 6.5.1 Application Behavior When it
Cannot Cance Context Changes.

8.5 Identifying Mapping Agent Implementations

Context managers use a mapping agent’ s Implementationlnformation interface to provide
system adminigtrators with a description of the mapping agent implementation it isusing. This
information can help system administrators diagnose run-time problems that involve mapping
agents.

The Implementationinformation interface shall be supported by all mapping agent
implementations. A context manager shall not interact with a mapping agent that does not
support thisinterface.

8.6 Performance Costs and Optimizations

When present, a mapping agent will beinvolved in every context change transaction. This adds
an overhead to the context change transaction in the form of the added communication between
the context manager and the mapping agent, and for the time it takes for the mapping agent to
validate the identifiers and provide any additional mappings for the identifiers. However, these
costs are viewed as being worth the benefits of the semantic integrity that a mapping agent
brings to a context system.

In some cases, a mapping agent will be implemented using an underlying application that
providesits own user interface for patient selection. This type of mapping agent is, in effect,
both a mapping agent and a context participant application. In the casein which this
underlying application is used to instigate a context change, performing identifier validations
and mappingsis superfluous. It is possible to optimize the mapping agent implementation so
that it does not perform identifier validations and mappings when it knows that it was
essentially itself that instigated a context change.

Version CM-1.0 Copyright 1999, Health Level Seven 83



Context Management Specification, Technology and Subject-Independent Component Architecture

However, the only information that is readily available to the mapping agent that could help it
determine this fact is the context change coupon. This coupon is provided by the context
manager to an application when the application starts a context change transaction. This
coupon is also provided by the context manager to the mapping agent via its MappingAgent
interface during each context change transaction.

It isan implementation decision as to how the portion of an application that implements a
mapping agent obtains the value of the context coupon from the portion of the application that
ingtigates a context change transaction.

84 Copyright 1999, Health Level Seven Version CM-1.0



Context Management Specification, Technology and Subject-Independent Component Architecture

9 User Link Theory of Operation

Context Management Architecture support for User Link builds upon CMA support for
Patient Link, as described in Chapter 7. Added capabilities enable:

A user can securdly sign-on to any User Link-enabled application on a desktop using
just one logon name and one means of authentication (such as a password) in order to
securdly sign-on to all User Link-enabled applications on the desktop.

The provider ingtitution decides which applications can be trusted to authenticate
users.

There can be multiple ways to authenticate users, including passwords, biometrics,
€tc.

The Patient Link architectural approach isleveraged (i.e., context manager, context
participants, and mapping agent) to create a sngle context per desktop. However, the
context is extended to include the user subject in addition to the patient subject

The Patient Link interfaces ContextManager, ContextParticipant, MappingAgent, and
Implementationlnformation interfaces are used. However, two new security-related
interfaces are defined, SecureContextData (modeled upon the Patient Link
ContextData interface), and SecureBinding.

In keeping with the CMA philosophy, the User Link approach is conceived for low re-
engineering costs.

The architecture that supports these capabilitiesis described next.

9.1 User Link Terms and Assumptions

User Link-enabled application - an application that implementsthe CMA User Link
capability.

Sign-on — the act of identifying onesalf to an application, prior to initiating a user
session, in amanner that can be authenticated by the application, typically involving a
secret password or a biometric reading (such as a thumb-print scan).

L og-off — the termination of a user’s session with an application; it assumed that
logging-off does not require user authentication.

Empty context — a context is not defined for a particular subject, either because no
context identifier items are present in the context data (asis the case when a context

Version CM-1.0 Copyright 1999, Health Level Seven 85



Context Management Specification, Technology and Subject-Independent Component Architecture

manager isfirg initialized) or because the values of al of the identifier itemsfor the
subject that are present in the context data are null (asis the case when an application
explicitly indicates that the context is empty).

9.2 Desktop Assumptions

The following assumptions are made about the clinical desktop upon which User Link-enabled
applications are deployed:

The desktops upon which User Link-enabled applications are deployed may residein
physically unsecured locations.

While recommended, it may not be the case that appropriate security precautions have
been taken to restrict the types of operating system-level actions, such asingalling
new programs, that users can perform on desktops that reside in physically unsecured
locations.

In summary, the CMA isintended to be no less secure than the User Linked applications would
be were they not User Linked. In general, User Linked applications will be substantially more
secure.

9.3 User Subject

The context subject of User is defined for User Link. The context data identifier item for this
subject isthe user’ slogon name. The user’ s given name is not used as an identifier.

Thisidentifier isunlikely to be universaly unique. However, it is assumed that a population of
user across which each logon name is unique can be established. Each such population is
referred to as application, asit istypical that each population of users correspondsto a
particular application within an overall healthcare ingtitution.

Consequently, a single user may be identified using multiple user subject identifier items. Each
item is differentiated by a different application-specific suffix. An application shall be
configurable such that it can be instructed on-site as to which suffix (of suffices) it isto use
when it interacts with the context manager to set or get user context data.

The format of a user subject identifier item name includes an application-specific suffix. Use
of this suffix, and the values that may be assigned to this suffix, is at the discretion of each
healthcare ingtitution at which a context management system is deployed.

In addition to identifier items, the user subject also supports corroborating data items. The
actual names, meaning, and data types used to represent the values for both user subject

86 Copyright 1999, Health Level Seven Version CM-1.0



Context Management Specification, Technology and Subject-Independent Component Architecture

identifier items and corroborating data items are defined in the document Health Level-Seven
Sandard Context Management Specification, Data Definition: User Subject

An example of a user subject identifier item appears below:

User Subject Identifier
Example Item Name For mat: Example Item Name: Example Item Value:

User. | d. Logon. appl i cati on_nane User. |l d. Logon.3M Clinical _Wrkstation robs

9.4 User Authentication Data Is Not Part of the User Context

The data used to authenticate a user is not included as part of the user context data. This data
istypically a password, but it can be any data that is used to authenticate a user, such asa
biometric sample. Instead, each application is expected to be able to sign-on a user given just
the application-specific logon name for the user.

This approach substantially reduces security risks because the data used by an application to
authenticate the user remains within the application. If this data were part of the user context,
it would be vulnerable to undesired accesses. However, in order for applicationsto tune to the
user context, they must trust that the context data is authentic. The means by which thisis
accomplished isreferred to as the “ chain of trust” and is described bel ow.

9.5 User Link Common Context System Description

Consgtent with the CMA, on each desktop there are applications that are user context
participants, and there is a context manager. The applications perform context change
transactions to indicate who the user is.

However, in contrast to the way in which patient context is communicated in a Patient Link
system, the user context is communicated throughout the common context system in a secure
manner. Thisisto prevent people from accidentally or malicioudy gaining accessto
applications that are User Linked.

The necessary security is achieved by adding capabilities to the CMA that enables the
realization of a*chain of trust” among the User Link-enabled applications and User Link
components. With the chain of trust, User Link-enabled applications and User Link
components work together to ensure that only authorized users are allowed accessto a
common context system.

In the chain of trust, the need to include user authentication data, such as passwords, as part of
the user context, is avoided. Only the user’ sidentity (i.e., logon name) is communicated among

Version CM-1.0 Copyright 1999, Health Level Seven 87



Context Management Specification, Technology and Subject-Independent Component Architecture

the User Link-enabled context participants. Specifically, the data used by an application to
authenticate a user who has signed-on viaa User Link-enabled application remains private to
the application.

This nat only smplifies the overall solution, but resultsin a system that is more secure than
would be the case if authentication data were part of the common context, and were therefore
vulnerable to security attacks directed against the context manager or mapping agent.

The chain of trust is specified in Chapter 10.

9.5.1 User Mapping Agent

An optional user mapping agent is also part of the common context system, The user mapping
agent maps the logon names for users. The user mapping agent issimilar to, but distinct from,
the patient mapping agent (although a single mapping agent implementation could fulfill both
roles).

Whenever an application sets the user context, the context manager instructs the user mapping
agent (if present) to provide any additional logon names it knows for the user. The application
suffix for each of the mapped identifier items denotes the application for which the mapped
logon nameisvalid, for example:

Examples Item Names: Example Item Values:
User. |l d. Logon.3M Clinical _Wrkstation robs

User. | d. Logon. Medi cal ogi c_Logi ci an rob_seliger

User. | d. Logon. HP_Car eVue r_seliger

9.5.2 Context Management | nterfaces
The context management interfaces defined for User Link are smilar to the ones defined for
Patient Link. A context participant still implements ContextPartcipant (CP). The context
manager ill implements ContextManager (CM), but it also implements the following new
interfaces:

SecureContextData (SD) - Similar to the ContextData interface defined for Patient
Link, thisinterface is used by applications to securely set/get the values for the items
(logically represented as name-value pairs) that comprise the clinical context.

SecureBinding (SB) - Used by applications to establish a secure communications
binding with the context manager before using the SecureContextData interface.

88 Copyright 1999, Health Level Seven Version CM-1.0



Context Management Specification, Technology and Subject-Independent Component Architecture

Implementationlnformation (I1) — Originally defined for the patient mapping agent, this
interface is added to the context manager so that applications, other components, and
tools, can obtain details about the context manager implementation, including its
revison, when it was insalled, etc.

The interfaces implemented by the user mapping agent are MappingAgent (MA) and
Implementationinformation (I1). These are the same interfaces as defined for the patient

mapping agent.

9.5.3 Authentication Repository

In order to make it practical to re-engineer existing applications to support the chain of trug,
the CMA authentication repository component is defined. This repository enables applications
to securely store and retrieve application-specific user authentication data. The repository is
used by applications that do not have a built-in means to easily sign-on a user given only a
logon name.

The authentication repository implements the following interfaces:

AuthenticationRepository (AR) - Used by applications to securely interact with the
repository to store and retrieve user authentication data.

SecureBinding (SB) — Used by applications to establish a secure communications
binding with the respository before using the AuthenticationRepository interface. This
isthe same interface that the context manager implements.

Implementationinformation (11 ) — Originally defined for the patient mapping agent,
thisinterface is added to the authentication repository so that applications, other
components, and tools, can obtain details about the authentication repository,
including itsrevison, when it was installed, etc.

9.5.4 Overall User Link Component Architecture

The overall User Link architectureisillustrated in Figure 17: User Link Component
Architecture. (A description for how to interpret the notation used in this diagram appearsin
the Appendix: Diagramming Conventions.)

Version CM-1.0 Copyright 1999, Health Level Seven 89



Context Management Specification, Technology and Subject-Independent Component Architecture

Application #1 Application #N
Implementation _ Implementation
cp (cp)
SD

Context Manager
Implementation

@4— Tool, etc.

Common
Context
Data

v

@

Optional User Mapping
Agent Implementation

Tool, etc.

Optional External

Authentication 0 <€4—Tool, etc.
Repository

Implementation

Figure 17: User Link Component Ar chitecture

9.6 User Link Sign-On Process

The process for performing a context change transaction to set the user context is essentially
the same as defined for Patient Link for setting the patient context:

An ingtigating application initiates a context change transaction and sets the user
context within the context manager. This context contains just the identity of the user.
It does not include the data used to authenticate the user.

90 Copyright 1999, Health Level Seven Version CM-1.0



Context Management Specification, Technology and Subject-Independent Component Architecture

The context manager consults the user mapping agent (if present) and it adds data to
the context manager’ s user context. This data includes additional logon names by
which the user is known.

The context manager surveys the other applications, and if the transaction compl etes,
they obtain pertinent user context data from the context manager.

The high-level events that transpire when a user sgns-on are summarized in Figure 18: User
Link Sign-On Process. This description assumes that a user mapping agent is present. The user
mapping agent is presumed to know the logon names for all usersfor all applications. (See
Section 9.19, Populating the User Mapping Agent.) The description omits most of the details
pertaining to the surveying of the participant applications by the context manager. This process
isidentical to the process defined for Patient Link. (See Chapter 7.)

(1) User signs- (2) Application authenticates the L’JQ 5) Each anolications qels user's
on (eg. enters and tells context manager the user's gp)plicati;,:z';)eciﬁc logon namefrom
logon name and logon name; authentication data is not Application | the context man
password; passed on to the context manager. vy 08
SWipes security g .
cadetc). S S == (6a) An application optionally
A consultsinternal authentication
Application (4) Context manager tellS 14 renository to get application-
o other applicationsthal  gyevific authentication data for the
trust _to N Context thereisanew user new user and automatically signs-
= O authenticate Manager context. on the user.
\/ users
\\ N Application
: Y4 6b) An application
(3) Context manager te I_s mapping agent gpti)onal ly consults externd
context change s occurring; mapping User authentication data repository
agent suppliesthe context manager with . - to get application-
other logon namesfor the user asknown | M@pping - specific authentication deta
to each gpplication. ET - for thenew user and
(Optional) External Authentication automaticaly Sans.on the
Repository (Optional) icdy sg
user.
Chain of Trugt >
Figure 18: User Link Sign-On Process

9.7 Designating Applications for User Authentication

Any User Link-enabled application can serve as the means by which a user signs-on to all of
the User Link-enabled applications on a desktop. To servein this capacity, the User Link-
enabled application shall provide a mechanism for establishing and authenticating the user’s

identity.

Verson CM-1.0

Copyright 1999, Health Level Seven

91




Context Management Specification, Technology and Subject-Independent Component Architecture

The CMA does not specify an application’s user authentication mechanism, visual appearance,
or implementation. The authentication mechanisms can vary among applications. Applications
can be created whose sole purpose is to enable user authentication for desktops comprised of
User Linked applications.

However, even though any User Link-enabled application has the potential to be used for
signing-on to a desktop of User Linked applications, the provider ingtitution designates the
specific application or applicationsit trusts for thistask. Only the designated applications shall
be allowed by a context manager to compl ete a context change transaction that involves a
change to the user subject.

The one exception to thisruleis that any application can set the user subject to empty. Thisis
so that any application can be used to log-off from a desktop of User Linked applications. (See
Section 9.14, Logging-Off and Application Termination.)

A context manager implementati on-specific configuration processis used for indicating the
designated applications for a particular desktop. One, several, or al of the User Link-enabled
applications on a desktop can be designated for this purpose. The designated applications for a
desktop can differ among desktops. It is recommend that a hedlthcare ingtitution analyze the
use cases for their clinical applications to determine how to best deploy User Link.

The decision criteriafor a provider institution’s choice of whether to designate an application
for authenticating usersis based upon whether they trust the application’s security capabilities
asit pertains to user authentication. For example, it might not be a good choice to designate an
application that maintains user passwords in plain text (which can easily be read by
unauthorized users).

9.8 Signing-On to Applications Not Designated for
Authenticating Users

A User Link-enabled application that has not been designated for authenticating users on a
particular desktop shall not alow the user to sign-on to the application or the desktop. The
user must sgn-on to a designated application in order to sSgn-on to alinked but non-des gnated
application. The user must break a non-designated application’s link with the common context
in order to sign-on to just the application.

If the application has not been designated for authenticating users and it isthe first to be
launched on the desktop, the user must either launch an application that has been designated
for authenticating users, or the user must break the link of the non-designated application. The
user can then sign-on to just the non-designated application.

The CMA does specify a means by which an application can determine whether it has been
designated for authenticating users. See Section 11.3.7.1, InitiateBinding. This enables an

92 Copyright 1999, Health Level Seven Version CM-1.0



Context Management Specification, Technology and Subject-Independent Component Architecture

application to determine whether it has been designated before a user attempts to sign-on to the
application. An application can use thisinformation to present or hideits user interface user
sign-on controls accordingly.

9.9 Application Behavior When Launched

When a User Link-enabled application is launched on a desktop, it should join the common
context system established for the desktop. The application should set its user context to match
the current user context. (If the application is Patient Link-enabled, it should also set its patient
context to match the current patient context.)

9.10 Multiple Context Subjects

User Link introduces the user as an additional common context subject. This creates the need
to define what happens to the patient context when the user context changes, and what happens
to the user context when the patient context changes. The smplest approach isto not assume
any dependenci es between these subjects. (Future context subjects may require dependencies,
but thisis beyond the scope of User link.)

With this assumption, it should be possible for an application to independently set the context
data items for just one subject or for both subjects during the course of a single context change
transaction. At the end of the transaction the application has changed the user context, the
patient context, or both contexts. A context that is not atered by the application remains as it
was prior to the transaction. The details of managing multiple context subjects are described in
the following sections.

9.10.1 The Effect of M ultiple Subjects on the M eaning of “ Link”

Even though there are multiple subjectsin a common context system (i.e., patient and user),
thereisonly onelink that coordinates the CCOW-compliant applications on a desktop. This
means that when an application islinked, it must “tune’ to all of the subjectsit is capable of
dedling with:

An application that is only Patient Link-enabled tunes to just the patient context.
An application that is only User Link-enabled tunesto just the user context.

An application that is both Patient Link-enabled and User Link-enabled tunes to both
the patient context and the user context.

Conversdly, when the user breaks an application’ slink, then the application is no longer tuned
to any context subject.

Version CM-1.0 Copyright 1999, Health Level Seven 93



Context Management Specification, Technology and Subject-Independent Component Architecture

Independent of the number of context subjects it supports, asinglevisual cueis provided by an
application to indicate whether or not it islinked. The specification for this cue appearsin the
CCOW User Interface Specification document.

9.10.2 Context Manager Support for Multiple Context Subjects

Even though the user and patient subjects are logically independent, there are nevertheless

rel ationships between these subjects. These relationships require that context manager
implementations have an understanding of multiple subjects and potentially the inter-
relationships between the subjects. Further, some applications may need to be aware that they
are dealing with multiple context subjects. There are two basic ways to address these i ssues:

Maintain a context manager per subject.
Support multiple context subjects within a single context manager.

Thefirst approach has the advantage that context manager implementations can be specialized
to support a single subject. Thiswould enable a Patient Link context manager from one vendor
to be used with a User Link context manager from another vendor. The disadvantages are that
applications would need to deal with two context managers.

Further, the context managers would need some way to cooperate in order to coordinate
transactions that affect multiple subjects (such as a user context change). This coordination
would probably require the definition of additional context manager interfaces. This
coordination would also increase the complexity of the failure scenarios because of the
increased opportunity for partial failures (i.e., one context manager fails while the other
context manager continues to function).

The second approach has the advantage that it enables the complexities of dealing with
multiple subjects to be hidden within the implementation of the context manager. Additional
context manager interfaces are not required, and partial failure scenarios are avoided.

This approach also has the advantage that applications only need to deal with a single context
manager.

The second approach has the disadvantage that context manager vendors would need to
support both Patient Link and User Link capabilities within their context managers. However,
it has been the case that complexity is pushed into the context manager whenever it smplifies
the creation of new applications and the reengineering of existing applications. The second
approach isthe onethat is pursued in this document because, from the perspective of an
application, it issmpler than the first approach.

94 Copyright 1999, Health Level Seven Version CM-1.0



Context Management Specification, Technology and Subject-Independent Component Architecture

9.10.3 Effect of Multiple Subjects on Context Change Transaction
For application flexibility and backwards compatibility, it is highly desirable that:

An application does not have to know about both the user and patient subjectsin order
to set the context pertaining to just one subject.

Either or both the user and patient subjects can be updated within a single context
change transaction.

However, these desires raise the question of how to treat context data for a subject that is not
“touched” during a transaction by the instigating application? There are two approaches:

1. At the completion of the transaction, the untouched subject is empty, meaning that it
does not contain any context items.

2. At the completion of the transaction, the untouched subject is unaffected, meaning that
it contains the same items and item values as it did before the transaction.

Thefirgt approach is essentially consistent with the existing behavior defined for Patient Link.
Specifically, the context manager ensures that each context change transaction beginswith an
empty context (i.e., no context items). With two subjects, only the subject that is touched
during atransaction will contain items at the completion of the transaction.

However, a problem arises with this approach. An application that is only Patient Link-enabled
might be co-resident with applicationsthat are Patient Link and User Link-enabled. If the
application that is only Patient Link-enabled changes the patient context, the user context
shared by the other applicationswill belogt (i.e, it will be empty).

Applications could be required to know about both subjects and to explicitly copy the subject
that is nat to be changed from the current context to the new context. However, this creates a
burden on the application developers. It is also a substantial impediment to backward
compatibility.

The second approach avoids this problem, but requires changes to the behavior of applications
or to the behavior of the context manager. To ensure backward compatibility, changing the
behavior of applicationsisruled out. This eiminates the option of requiring applications to
indicate which context subject or subjectsit intends to set. (Further thiswould require changes
to the context manager’ sinterfaces.)

A smpler solution involves a change to the context manager’ s behavior that is nevertheless
backwards compatible with applications that are only Patient Link-enabled is described in
Section 9.10.4, Context Manager Treatment of Multi-Subject Context Data.

Version CM-1.0 Copyright 1999, Health Level Seven 95



Context Management Specification, Technology and Subject-Independent Component Architecture

9.10.4 Context Manager Treatment of Multi-Subject Context Data

Asiscurrently the case with Patient Link, when a context change transaction is started, the
context manager creates a transaction-specific version of the context data. This version of the
context data isinitially empty and does not contain any user subject or patient subject context
items.

The application that instigated the transaction then establishes the new context by setting
context data item values for the user and/or the patient subjects. The application then informs
the context manager that it has completed its context changes. The context manager shall then
copy the items from the previous context to the new context for any subject that the application
that instigated the transaction did not touch. This shall occur before the context manager
surveys the context participants.

The net effect isthat the instigating application sets context items for whichever subject(s) it
knows about. If a subject was * untouched” by the application, then the items for the subject
are automatically post-filled by the context manager to reflect the values as they were before
the context change transaction.

For applications that are only Patient Link-enabled, this post-filling behavior emulates the
existing behavior defined for Patient Link. For applications that are User Link aswell as
Patient Link-enabled, this behavior enables the user and patient subjects to be managed
independently.

With these new rules, an application can just set subjects based upon the user’ s explicit
gestures, such as selecting a patient, signing-on, or both. Aswith Patient Link, an application
only needs to set the user (or patient) subject context itemsthat it is capable of setting. For
example, an application may not be ableto set all of the corroborating data for a subject.
Similarly, a participant application does not have to deal with all subjects, or show all of the
context data items defined for a subject.

9.10.5 Application Treatment of Multiple Subjects

An application can change ether or both the patient and user subjectsin a single context
change transaction. However, it is recommended that an application generally only change one
subject at atime, in direct response to a user command. This enables the user to relate changes
in the common context to application gestures that they have explicitly performed. Cause-and-
effect between a user’s gesture and a change in application Sateis an important dement in
creating systemsthat are easy for people to use.

9.11 Access Control Lists

Access contral lists (ACL), which determine the privileges and capabilities a particular user
has, are presumed to be maintained by each application. Whileit is desirable that there be only

96 Copyright 1999, Health Level Seven Version CM-1.0



Context Management Specification, Technology and Subject-Independent Component Architecture

one centrally administered ACL, achieving thisis beyond the scope of CCOW. However,
before central or distributed ACL’s can be properly used it is essential that the user be
authenticated. Thisis precisdy the capability the CCOW User Link feature supports.

9.12 Empty Contexts

With multiple independent subjects, applications need a way to explicitly indicate that the user
context, patient context, or both are empty. The reasons include:

Enabling applications to change the user context without necessarily carrying over the
existing patient context.

Enabling applications to log-off users by indicating that there is no user context.

The capahility to explicitly indicate that a context is empty is already defined in Revision 1.1
of the CCOW Architecture Specification, Section 5.6.5, Representing An Empty Context. The
stated rules are extended to apply to User Link. This means that the context can identify both a
user and a patient, just a user, just a patient, or neither.

When one or both context subjects are empty, al of the applications in the context system shall
clearly indicate to the user that thisisthe case. The appearance of thisindication is specified in
the CCOW User Interface Specification document.

9.13Changing Users

With User Link, it is advantageous for applications to support a change-user capability. This
capahility enables a new user to sign-on without explicitly requiring that the current user first
log-off. There are two ways in which this can be implemented by an application:

The application performs a single user context change transaction to establish the new
user asthe current user.

The application performs a two-step process. In thefirst step, the current user is
logged-off and the user context is set to empty (to indicate that thereis no user). In the
second step, the new user is signed-on, and the user context is set to indicate who the
new user is.

Thefirgt approach is recommended because it isthe sSmplest and the most efficient from the
perspective of the context system (e.g., only one context change transaction per user change).
The second approach is acceptable, however the two step process should be invisible to users.

The gestures needed to change who the user is, and the appearance of the application asit
pertainsto this capability, are not specified by the CMA.

Version CM-1.0 Copyright 1999, Health Level Seven 97



Context Management Specification, Technology and Subject-Independent Component Architecture

9.14Logging-Off and Application Termination
User Link provides applications with an easy way to enable usersto:

Terminate a specific User Linked application on the clinical desktop“.
Log-off from a specific User Linked application on the clinical desktop.
Log-off from all of the User Linked applications on the clinical desktop.

There are many possible ways in which these capahilities can be realized in a common context
system. The approach described in Table 1: User Linked-Enabled Application Behavior for
Termination and Log-Off is defined becauseit is smple for usersto understand, yet enables
design flexibility for application developers.

The basic ideaisthat each User Link-enabled application optionally supports gestures that
enable the user to terminate the application, log-off from just the application, or log-off from
all of the User Linked applicationsthat are resident on the same desktop.

* Terminati ng al of the applications on a desktop is not supported because there is no way to indicate
this event via a change to the user context subject.

98 Copyright 1999, Health Level Seven Version CM-1.0



Context Management Specification, Technology and Subject-Independent Component Architecture

User Action

Effect on Application
That User’s Action Is
Directed At

Effect on the Common
Context

Effect on Other User
Linked Applications on
the Desktop

Terminate a specific User Application leaves the None. None.
Linked application. common context, ceases

execution, and exits
Log-off from a specific None. None.

User Linked application.

See Interaction Diagram

Application:

. continuesto run,
logs the user off,
visually indicates that

15: User Logs-Off From it has no user,
One Application. |eaves common
context (i.e., breaks
link)
Log-off from all of the User subject changed to When the context change

User Linked applications
that are resident on the
same desktop.

See Interaction Diagram
16: User Logs-Off From
Desktop.

Application:

- continuesto run,
instigates a context
change transaction to
set the user context to
empty,
visually indicates that
it has no user,
continuesto be a
context participant.

empty.

is completed, each

application:

. continuesto run,
logs the user off,
visually indicates that
it has no user,
continuesto be a
context participant.

Table1: User Linked-Enabled Application Behavior for Termination and L og-Off

All User Link-enabled applications must behave properly as participantsin a context change
transaction, as described in Table 1. All User Link-enabled applications must be ableto
properly deal with the context when the user context is empty.

However, the CMA does not specify the user gestures that are needed to initiate the actions

described in Table 1. The gestures may be different among applications. Further, applications
may chaose which action gestures, if any, it will support. For example:

A particular application might enable a user to terminate it, but might not enable the
user to log-off from it or log-off from all of the User Linked applications on a desktop.

A particular application might not enable the user to terminate it, log-off from it, or
log-off from all of the User Linked applications on a desktop.

An application that enables the user to log-off shall clearly indicate that in doing so, the user
will cause the application to break its link with the common context system.

There are several subtleties involved with the behaviors described in Table 1:

Version CM-1.0 Copyright 1999, Health Level Seven 99



Context Management Specification, Technology and Subject-Independent Component Architecture

Any application can set the user context to empty, including applications that have not
been designated for authenticating users. This enables any application to be used for
logging-off from all of the User Linked applications on a desktop.

A user might terminate the application(s) designated for authenticating users. The next
user will need to re-launch one of the designated applications before being able to sign-
on to the User Linked desktop.

It is conceivable that the collective capahilities of a particular set of User Link-enabled
applications on a desktop result in a system that does not provide any way for the user
to log-off from the desktop. A site must be mindful in its choice of applicationsin
order to prevent this from happening.

Oneissue with desktop log-off is the treatment of “busy” applications. Busy applications affect
single sign-on as well as desktop log-off, and is dealt with in Section 9.16, Reauthentication
Time-out

A reauthentication time-out requires the currently signed-on user to reauthenticate herself
before being allowed to continue using the User Linked applications on a clinical desktop. The
time-out occurs when the user has not interacted with the User Link applications for an
appreciable period of time. The CMA does not specify reauthentication time-out policy or
implementation. It isan application decison asto how and when to initiate a reauthentication
time-out.

To support this capability, the Desktop subject is defined. This subject contains context items
that applications use to coordinate their visual presence on the clinical desktop. The actual
names, meaning, and data types used to represent the values for desktop subject context data
items are defined in the document Health Level-Seven Standard Context Management
Soecification, Data Definition: Desktop Subject.

Any application can initiate a reauthentication time-out by performing a context change
transaction that sets the appropriate desktop context item to indicate that a reauthentication
time-out has transpired. This shall have the effect of causing all of the other User Linked
applications on the desktop to blank their data displays. The applications shall maintain their
internal state asthe user left it prior to the time-out.

The designated applications on the desktop shall aso present their logon screens to enable the
current user to sign-on again. If the current user sgns-on again, then the applications resume
asthey were. If adifferent user signs-on, then the applications handle this as they do whenever
thereis achange of user.

Busy Applications.

100 Copyright 1999, Health Level Seven Version CM-1.0



Context Management Specification, Technology and Subject-Independent Component Architecture

User Participating Context Participating Participating
Application AA Manager Application YY Application ZZ
‘ User chooses log-off ‘
Leave common context
User logged off
application AA
ONLY
I nteraction Diagram 15: User L ogs-Off From One Application
User Participating Context Participating Participating
Application AA Manager Application YY Application ZZ

J User chooses desktop
log-off

Set user context to empty

User context has change:

User context has chang

Get user context
empty

User logged off from
desktop

I nteraction Diagram 16: User L ogs-Off From Desktop

9.15Automatic Log-Off

An automatic log-off logs the current user off of the User Linked applications on a desktop
when the user has not interacted with the applications for an appreciable period of time.

Any application can initiate an automatic log-off by performing a context change transaction
that setsthe user context to empty. Thiswill have the effect of causing all of the other User
Linked applications on the desktop to also log the user off. Once an automatic log-off has
completed, the next user sgns-on via one of the designated applications.

In contrast to a user-initiated log-off, an automatic log-off isinitiated automatically by an
application. The CMA does not specify an automatic log-off policy or implementation. It isan
application decision as to how and when to initiate an automatic |og-off.

Version CM-1.0 Copyright 1999, Health Level Seven 101



Context Management Specification, Technology and Subject-Independent Component Architecture

For example, an application might monitor user interactions with the mouse and keyboard to
determine whether or not the user is actually engaged in using any of the applications on the
desktop. The capability to do this depends upon the application’ s implementation and the
underlying desktop technology.

An application that initiates a context change transaction to affect an automatic |og-off must
be prepared to handle the condition in which surveyed applications are busy, or have responded
with a conditional accept of the transaction. In this case the ingtigating application shall cancel
the context change transaction. It shall not present adialog to the user, asthis could be
disruptive or confusing to the user. The application may eect to initiate an automatic |og-off
again in the future.

It is necessary that the administrator is able to configure the behavior of automatic log-off asit
pertainsto aclinical desktop. Otherwise, the administrator has no control over an application
whose policy for initiating an automatic |og-off interferes with the users' work.

Therefore, any application that initiates an automatic log-off shall provide a means for
controlling this capability. Specifically, it shall be possible to configure that application in
terms of whether the log-off it initiatesis desktop-wide (and therefore affects all of the context
participants), or islimited to just the application. If the automatic log-off is limited to just the
application, then the application shall nat perform a context change transaction when the
automatic log-off interval transpires. Instead, it shall just log the user off from itself.

9.16 Reauthentication Time-out

A reauthentication time-out requires the currently signed-on user to reauthenticate hersalf
before being allowed to continue using the User Linked applications on a clinical desktop. The
time-out occurs when the user has not interacted with the User Link applications for an
appreciable period of time. The CMA does not specify reauthentication time-out policy or
implementation. It isan application decison as to how and when to initiate a reauthentication
time-out.

To support this capability, the Desktop subject is defined. This subject contains context items
that applications use to coordinate their visual presence on the clinical desktop. The actual
names, meaning, and data types used to represent the values for desktop subject context data
items are defined in the document Health Level-Seven Standard Context Management
Soecification, Data Definition: Desktop Subject

Any application can initiate a reauthentication time-out by performing a context change
transaction that sets the appropriate desktop context item to indicate that a reauthentication
time-out has transpired. This shall have the effect of causing all of the other User Linked
applications on the desktop to blank their data displays. The applications shall maintain their
internal state asthe user left it prior to the time-out.

102 Copyright 1999, Health Level Seven Version CM-1.0



Context Management Specification, Technology and Subject-Independent Component Architecture

The designated applications on the desktop shall aso present their logon screens to enable the
current user to sign-on again. If the current user sgns-on again, then the applications resume
asthey were. If adifferent user signs-on, then the applications handle this as they do whenever
thereisachange of user.

9.17Busy Applications

When a context change transaction is conducted, it is possible that an application isunableto
participate becauseit is busy. For example, a single-threaded application that has a modal
dialog open will not be able to respond until the dialog is closed.

User Link deals with busy applications the same way as for Patient Link. Specifically, a busy
application effectively prevents a context change transaction from occurring. The only option
for the application that instigated the transaction is to ask the user if they want to break the
link.

Breaking the link has the potential to compromise user security. With a broken link, multiple
users would effectively be logged on to different applications on the same desktop.

However, this situation is not substantially different from breaking the Patient Link, which
results in different applications on the same desktop being tuned to different patients. Further,
without the option to break the link, CMA support for some important use cases, such as
“stat” admissions (see Section 7.12, Stat Admissions), would be lost.

9.18 Co-Existence with Applications Not CCOW-Enabled

User Link-enabled applications will co-exist with applications that are not User Link-enabled.
Userswill still need to manually sign-on to and log-off from each of the applications that are
not User Link-enabled.

Co-existence can create confusion among users, as they might assumethat al of the
applications on a desktop are User Link-enabled. Training, plus visual cues documented in the
CCOW User Interface Specification are partial solutions. Ultimatdy, userswill cometo learn
which applications are User Link-enabled, and which are not, and will adjust their use of these
applications accordingly.

9.19 Populating the User Mapping Agent

The user mapping agent is conceptually smilar to the patient mapping agent defined for a
Patient Link common context system. For example, both types of mapping agents implement
the same interface specification, MappingAgent. However, the behavior and management of

Version CM-1.0 Copyright 1999, Health Level Seven 103



Context Management Specification, Technology and Subject-Independent Component Architecture

the user mapping agent is substantially influenced by security considerations. Several of these
considerations are described in this section. The role of the user mapping agent isillustrated in
Figure 19: User Subject Context Data Mapped for Different Applications.

Application Application Application
“ AAA" LR BBB" “ CCC"
\ | /
GetltemValues(..., GetltemValues(..., GetltemValues(...,
“User.ld.Logon.AAA”, ...) “User.ld.Logon.BBB”, ...) “User.ld.Logon.CCC”, ...)

Mapped User Context Data Within Context
M anager :

User. | d. Logon. AAA robs
User. 1 d. Logon. BBBrobert_sel i ger
User. |1 d. Logon. CCCrsel i ger

Three applications, each of which knows the signed-
on user by a different logon name.

Figure 19: User Subject Context Data M apped for Different Applications

In order for the user mapping agent to be able to provide additional logon names for users, it
must be populated with the necessary logon names. However, unlike the patient mapping
agent, for which there exists healthcare standards that can be used to obtain the necessary
patient data (e.g., HL7's Admission/Discharge/Transfer messages), an equivalent means does
not exist for user data. In the absence of applicable standards, the means by which a user
mapping agent is popul ated depends upon the user mapping agent implementation.

9.20 Authentication Repository

The chain of trust has the potential to maximize the overall security of a common context
system because the data used to authenticate a user is never passed between applications and
therefore cannot be easily intercepted or spoofed. However, not passing around this data
creates a problem when there are applications that require user authentication data to perform
auser sign-on. For example, many existing healthcare applications require the user’ s password
to establish sessions with their underlying databases.

104 Copyright 1999, Health Level Seven Version CM-1.0



Context Management Specification, Technology and Subject-Independent Component Architecture

The common context system therefore includes a user authentication data repository as an
additional context management component. This repository enables applications to securely
maintain application-specific user authentication data. The repository is used by applications
that do not have a built-in meansto easily sgn-on a user given only alogon name. The
repository may be implemented as a distributed or centralized service.

For example, some applications obtain the user’ s password from the user and then hand it off
to an underlying database. The database does the actual authentication. The security
capabilities of the database prevent these applications from retrieving user passwords.
Therefore, it isnot possible for these applications to sign-on a user knowing only the user’s
logon name. For these applications, an external means of maintaining user logon names and
associated authentication data is required.

The authentication repository provides away of doing thisthat is minimally invasive to the
application. Therepository isnot used for authenticating users. Rather, it enables existing
applications that need user authentication data to sign-on the user to have a means for
obtaining this data when participating in a User Link common context system.

The User Link user authentication data repository provides the capahility to securdy store the
data that an application uses to authenticate its users. The application can use a user’s logon
nameto retrieve the user’ s authentication data from the repository. The application can then
use the authentication data to establish a user session with a database or other underlying
application services.

In keeping with the spirit of the CMA, the interfaces to the authentication repository, but not
itsimplementation, are defined. These interfaces enable an application to securdy retrieve a
user’s authentication data and to update this data when necessary (for example, if the
application periodically requires that users change their passwords).

9.20.1 Repository Implementation Consider ations

The repository can be implemented as a central or distributed service that services multiple
applications. However, the repository shall always appear as a private service to each
application. This means that an application should never be aware that there are other
applications using the repository.

The user authentication data stored in the repository on behalf of an application shall be
encrypted by the application prior to being communicated to the repository. The encryption
technique that is used is determined by the application. The authentication data shall remain
encrypted within the repository, as the repository never has the need to interpret or usethis
data.

The interface AuthenticationRepository enables an application to put tuples comprised of a
logon name and a corresponding bit stream (representing the user’ s authentication data) into

Version CM-1.0 Copyright 1999, Health Level Seven 105



Context Management Specification, Technology and Subject-Independent Component Architecture

the repository. This interface also enables an application to retrieve a user’ s authentication
data using the user’ slogon name.

The means by which the repository maintains its data must be secure and shall guard against
security attacks. However, the security mechanisms that are employed to achieve these
objectives are an authentication repository implementation decision.

9.20.2 Populating the Repository

The authentication repository needs to be populated with the authentication data for each user
for each application that it services. One way to do thisisto create a batch process that 10ads
the necessary data. However, in many cases the necessary datais inaccessible. For example,
most database management systems do not provide a means for accessing the user passwords
that they store.

A smpler dternativeisto incrementally populate the repository. This can be accomplished by
involving each of the applications that use the repository in the process of populating the
repository, as follows:

When the context manager informs the application that the user context has changed,
the application obtains the logon name for the new user from the context manager.

The application then accesses the repository to securely retrieve the user’s
authentication data. The user’ slogon nameis supplied as the search parameter.

If the repository cannot find the user logon name, which will be the caseif the
repository has not yet been populated with data for the user, then it informs the
application that the logon is not known.

The application then prompts the user to enter his’her authentication data by whatever
means the application normally uses (e.g., a password dialog box).

The application attempts to sign-on the user usng whatever underlying mechanism
(e.g., database) it normally usesto do this.

If the user is successfully signed on, then the application updates the authentication
repository with the user’ s authentication data, usng the user’slogon as the update key.
The application shall encrypt the user’ s authentication data prior to putting the datain
the repository.

This schemeisrdatively easy to implement for amost any application. It is essential, though,
that the repository and its interfaces are secure, as detailed in Chapter 11.

106 Copyright 1999, Health Level Seven Version CM-1.0



Context Management Specification, Technology and Subject-Independent Component Architecture

10 Chain of Trust

This chapter defines the behaviors, algorithms, policies, and protocols that User Link-enabled
applications and components must adhereto in order to properly realize the chain of trudt.

10.1User Context Change Transactions and the Chain of Trust

The major difference between a context change transaction that involves the user context and a
transaction that only involves the patient context is support in the former for the chain of trudt.
Additional application and component behaviors are defined to prevent the chain of trust from
being violated.

Two types of defenses that are required:

The applications and components that participate in the chain of trust must be able to
authenticate each other’ sidentity. The objective isto prevent rogue applications or
components from impersonating a real application or component as a means to
manipulate the user context. Such manipulations could result in an unauthorized user
gaining access to the User Link-enabled applications.

The applications and components that participate in the chain of trust must be able to
validate theintegrity of user context data that they communicate to each other. The
objectiveisto prevent arogue program from modifying the data asit is passed
between applications and components as a means to manipul ate the user context. Such
manipulations could result in an unauthorized user gaining access to the User Link-
enabled applications.

Techniques for creating the chain of trust using passcodes, message authentication codes, and
digital signatures are described next.

10.2Creating the Chain of Trust

There are three general sources of mechanismsfor creating the chain of trust:

Mechanisms incorporated into existing commercially available object infrastructures,
such as those based upon CORBA or COM.

Mechanisms based upon existing commercially available secure communications
infrastructures, such as the Secure Socket Layer service (SSL) or the Secure Hyper-
Text Transfer Protocol (SHTTP).

Version CM-1.0 Copyright 1999, Health Level Seven 107



Context Management Specification, Technology and Subject-Independent Component Architecture

Mechanisms based upon existing widdly available security building blocks, such as
public key / private key encryption.

These alternatives are discussed next.

10.2.1 Object Infrastructures

It is conceivable that the chain of trust could be realized using the security mechanisms built
into commercially available object infrastructures such as those based upon CORBA or COM.
Unfortunatdy, these infrastructures currently employ security models that are fundamentally
different from what is needed for User Link:

Security for these infrastructures is based upon keeping track of who the user is and
their respective access privileges.

To do this requires that the user has signed-on to the underlying operating system.

However, signing on at the operating system leve takes too much time. Thisisthe
very problem that User Link istrying to solve.

For example, security in Microsoft’s COM-based infrastructure is based upon tracking who
the user isand what their permissions are. This means that when security is enabled for a
COM interface, a COM server accepts or rejects a COM client’ s access attempts based upon
the privileges of the user on whose behalf the COM client isworking. This does not work for
User Link because a COM server (specifically, the context manager) needs to accept or reject
accesses based upon which application isthe COM client. The user is not relevant in this case.

It may be possible to establish a stylized approach for adapting object infrastructure security
mechanisms to realize the chain of trust. However, this could make it particularly difficult to
define a technology-neutral specification for the chain of trust. This result could result in
different User Link architectures for different technologies. Thisis counter to the overal CMA
objective of technology-neutrality.

10.2.2 Secure Communications Protocols

User Link-enabled applications and the various CMA components could communicate using a
secure communications protocols, such as the Secure Sockets Layer (SSL) service. SSL
enables secure (i.e., encrypted) transmission of data between a client and a server. It also
enables a client to authenticate a server (and a server to authenticate a client).

SSL uses the RSA public key encryption system for authentication and for data integrity and
confidentiality. Of interest for the chain of trust isthe SSL capability for clients and serversto
authenticate each other. An SSL server usesits private key to create a digital signature. Public
keys are issued to progpective clients. The public key is used by the client to authenticate the

108 Copyright 1999, Health Level Seven Version CM-1.0



Context Management Specification, Technology and Subject-Independent Component Architecture

server by decoding the server’s signature. Only a signature that has been encoded using the
server’ s private key can be (easily) decoded viathe server’s public key.

For example, in the chain of trust, an SSL connection would be established between an
application that has been designated for authenticating users and the context manager. In this
scenario, the application isan SSL server, while the context manager isan SSL client.

SSL and its secure communications counterparts, such as SSHT TP, provide off-the-shelf
mechanisms for implementing the chain of trust. However, this technology has not been
integrated with popular object infrastructures, such as those based upon COM or CORBA.

While secure communication services could provide a means for the implementing the chain of
trust, the practical implications of using multiple communications technol ogies within the User
Link architecture are a cause for concern. For example, it could become overly complicated to
have some of the communications be via COM or CORBA interfaces, while other
communications used SSL or SHTTP.

Further, the chain of trust generally does not require confidentiality. For example, the User
Link architecture does not require that sensitive data, such as a user’ s password, be
communicated between applications. Secure communication channels are overkill and are not a
good fit for User Link.

10.2.3 Security Building Blocks

The security building blocks that are available on most popular operating systems can form the
basisfor realizing the chain of trust. The two building block of particular interest are:

Digital signatures.
Secure (or one-way) hashing.

Digital signatures, which cannot be easily forged, are typically used by people as a meansto
authenticate each others' identity whenever they communicate e ectronically. However, a
digital signature also enables an application or component to identify itsaf in away that can be
authenticated whenever it communicates with another application or component.

Digital signatures are formed using public key / private key encryption techniques. While these
techniques enable encryption, they also enable the formulation of digital signatures. An
application or component formulates its digital signature using its private key and sends the
sgnature along with the data that it wants to share. The recipient of a Sgned message applies
the sender’ s public key to the signature to authenticate the sender and to verify the integrity of
the data that was sent.

Version CM-1.0 Copyright 1999, Health Level Seven 109



Context Management Specification, Technology and Subject-Independent Component Architecture

There are several public key / private key algorithms and related standards. Commercial
implementations of many of these algorithms are available in a variety of technologies. RSA is
an example of an algorithm that has been widdly implemented.

A secure hash function is used for producing a unique numeric surrogate from an arbitrary
data stream. It isimprobable that two different data streams will yield the same hash value. A
secure hash function is an essential part of the infrastructure needed to support the use of
digital sgnatures.

Specifically, a secure hash function enables the efficient computation of a digital sgnature. A
secure has function also plays arole in enabling public keysto be reliably distributed. It is
essential that the holder of a public key is able to determine who (or what) the key belongs to.
Otherwise an impostor could present its own public key while claiming to be someone or
something that it isnot. The holder of the public key would mistake subsequent
communications as coming from a valid source when in fact it came from an impostor.

There are several secure hashing agorithms and related standards. Commercial
implementations of many of these algorithms are available in a variety of technologies. MD5 is
an example of an algorithm that has been widdly implemented.

Taken together, digital signatures and secure hashing could be used in the chain of trust asthe
means for User Link-enabled applications and User Link components to authenticate each
others identity each time they communicate. This capability is fundamenta to the
establishment and maintenance of the chain of trust.

To accomplish this, adigital signature would be explicitly included as a method parameter for
each CMA-specified interface that required this level of security. The use of digital signatures
enables the specification of a system that has the desired User Link semantics and that can be
readily implemented using existing security standards and technology.

Creating a system that employs digital signatures for applications and components is smpler
than creating a signature-based system for people. Thisis because the population of
applications and User Link components that require signatures is small compared to the
number of users of the system. Further, the population of applications and User Link
components does not change near as often as the user population. The result is that the work
required to create and maintain the chain of trust is substantially less than would be the case if
user sgnatures were required.

Anocther advantage of digital signaturesisthat they can be used to ensure the integrity of any
data communicated during interactions among and between User Link components and User

Link-enabled applications. The recipient of the data can use the signature to determineif the
data has been tampered with between the time it was sent and the time it was received.

110 Copyright 1999, Health Level Seven Version CM-1.0



Context Management Specification, Technology and Subject-Independent Component Architecture

Method-based digital signatures fit well with the component-based Context Management
Architecture. For example, realizing the chain of trust in this manner enables a technology-
neutral specification for the chain of trust. Thisis because the approach can exploit
capabilities common to public key / private key implementations that are commercially
available in multiple technologies. Further, the ways in which digital signatures are used can be
arranged to achieve the desired security behaviors needed for User Link.

The trade-off isthat more effort is required to architect the chain of trust than would be the
caseif astandard “ off-the-shelf” component-based solution was available. Thistrade-off is
viewed as acceptable. Therefore the approach pursued in the CMA is to use method-based
digital signatures asthe basis for the chain of trust.

10.2.4 Security Attacks On the Chain Of Trust

The primary challenge for realizing the chain of trust is minimizing the likdihood that an
intruder is able to violate the chain of trust in order to obtain accessto a User Link-enabled
application. Thisviolation could occur if arogue program was able to set the user context to
represent a user who either has not been authenticated, or who is different from the user who
has been authenticated.

The chain of trust based upon the security building blocks described in Section 10.2.3,
Security Building Blocks, defends against the security attacks described in the table below, all
of which are directed at manipulating the user context. Refer to Figure 18: User Link Sign-On
Process for the specific trust relationships:

Version CM-1.0 Copyright 1999, Health Level Seven 111



Context Management Specification, Technology and Subject-Independent Component Architecture

Attack

Defense

Attempt to impersonate an application in order to set
the user context (Step #2).

An application presents its signature to the context
manager in order to set the user context. The context
manager uses the signature to authenticate the
application to ensure that has been designated for
authenticating users.

Attempt to impersonate the context manager so that
the user context that the user mapping agents sees,
and therefore maps, is bogus (Step #3).

The context manager presentsits signature to the
mapping agent when the mapping agent gets the user
context data from the context manager. The mapping
agent uses the signature to authenticate the context
manager.

Attempt to impersonate the user mapping agent as a
means to set bogus user logon names within the user
context (Step #3).

The mapping agent presents its signature to the
context manager when it sets user context data. The
context manager uses the signature to authenticate the

mapping agent.

Attempt to impersonate the context manager so that
the user context that a participant application seesis

bogus (Step #5).

The context manager presentsits signature to the
participant application when the application gets the
user context data from the context manager. The
application uses the signature to authenticate the
context manager.

Attempts to impersonate the authentication repository
as ameansto obtain user authentication data from an
application (Step #6b).

The application encrypts the user authentication data
using the authentication repository’ s public key before
providing the data to the repository. Only the real
authentication repository can decrypt this data.
Further, the application pre-encrypts the data using an
application-specific encryption scheme. The data
remains encrypted even when stored inside the
repository.

Attempt to impersonate an application asa meansto
obtain user authentication data from the
authentication repository (Step #6b).

An application must present its signature to the
authentication repository when it gets user
authentication data from the repository. The
repository uses the signature to authenticate the
application. Further, the application encrypts the
authentication data before storing it in the repository.
Only the application that encrypted the data can
subsequently decrypt it.

Table 2: Chain of Trust Attacks and Defenses

The chain of trust does not necessarily need to defend against every type of attack, including
attacks to gain accessto the user’slogon name (i.e., Step #4). A user’slogon nameis easy to
guess or obtain, and in the absence of user authentication data (e.g., a password) alogon name
does not provide a means for gaining access to a system.

112

Copyright 1999, Health Level Seven

Verson CM-1.0




Context Management Specification, Technology and Subject-Independent Component Architecture

The chain of trust also does not defend against applications that do a poor job of authenticating
users (i.e., Step #1). Provider ingtitutions must ensure that the applications they designate for
authenticating users meet their security needs.

Other types of attacks that are not defended by the chain of trust can result in adenial of
service, which may cause a common context system to function improperly. For example, a
rogue program might continually invoke context manager methods, causing the context
manager’ s performance to degrade while it services these invocations.

These programs do not breech security in terms of enabling unauthorized access to User Link-
enabled applications, but they do result in inconveniences for users of the system. In generad it
isextremely hard, and can be quite costly, to defend against denial of service attacks.

The mogt effective preventatives for denial of service attacks begin with physical security, in
which amalicious user is denied access to any of the computers within a system. Without
access to the system, a malicious user will have a much harder time installing rogue programs.
Physical security is strongly encouraged, but it is beyond the scope of the CMA to specify the
necessary measures.

Additional potential limitations of the chain of trust are described in Section 10.2.5, Chain of
Trust Implementation Limitations.

10.2.5 Chain of Trust Implementation Limitations

A secure implementation of the chain of trust requires that the User Link components (i.e.,
context manager, applications, mapping agent, authentication repository) all have a robust way
of authenticating each other’ sidentity. Providing this capahility requires the use of underlying
operating systems primitives, including file access privileges and memory protection
mechanisms.

Not all operating systems implement these security primitives to the same degree of robustness.
The approach for implementing the chain of trust described below is therefore fundamentally
limited by the capabilities (or lack thereof) of the underlying operating system upon which a
User Link system is deployed.

In particular, Windows NT and most Unix-based operating systems provide the necessary
primitives. User Link systems deployed on these operating systems will offer robust security
capabilities. In contrast, Windows 95 and Windows 98 lacks many of the necessary primitives.
User Link systems deployed on this operating system will offer security capabilitiesthat are
more robust that native Windows 95/98, but which are still susceptible to security violations.

Version CM-1.0 Copyright 1999, Health Level Seven 113



Context Management Specification, Technology and Subject-Independent Component Architecture

10.3Digital Signatures and CMA Components

Digital signatures created using a public key / private key encryption system are incorporated
into the component interfaces defined for User Link-enabled applications and components. In
the chain of trust these signatures (and corresponding keys) are not associated with a user, but
rather with an application or component. The signatures and keys for a particular application
are the same independent of who the user is.

Several of the methods defined for the existing context manager interfaces already require that
applications identify themsalves, but in a non-secure manner (e.g.,

ContextData:: SetltemValues ). The participant coupon, which is a 32-bit randomly generated
integer, is assigned by the context manager to an application when it joins a common context
system (via ContextManager::JoinCommonContext). This coupon is subsequently used by the
application to identify itself when it calls a context manager method that requires application
identification.

The methods requiring applications to identify themsaves do so in order to enforce the correct
behavior of a common context system. For example, only the application that instigated a
context change transaction can set the context data. Similarly, only the instigating application
can end the transaction in progress.

An daboration of this approach isto use digital sgnatures as a means for applications to
identify themsalves in a manner that can be authenticated. It isrelatively straightforward to use
digital signatures in addition to coupons whenever it is necessary to authenticate an application
or component.

Based on this approach, new CMA interfaces are defined that enable the establishment of the
necessary signature-based security relationships among and between applications and context
management components. New interfaces that subsequently enforce these security relationships
as applications and components interact during the course of a context change transaction are
also defined.

10.3.1 Public Key / Private Key Encryption asa M eans for Gener ating Signatures

Providing applications with digital signatures requires that each application or component that
isto betrusted is assigned a public key and private key based upon an algorithm such as RSA.
The private key is used to create a digital signature. The corresponding public key isused to
verify the signature.

For example, an application suppliesits participant coupon and its signature to the context
manager whenever it performs a context manager method that requires the context manager to
authenticate the identity of the application and validate the integrity of the data sent by the
application.

114 Copyright 1999, Health Level Seven Version CM-1.0



Context Management Specification, Technology and Subject-Independent Component Architecture

A digital signature isformed by applying a secure hash function (alternatively known as a one-
way hash function) to the data that isto be transmitted. The resulting hash value isreferred to
asthe message digest, asit isanumeric surrogate for the plain-text message. It is
computationally improbable that two message will produce the same hash val ue’.

The message digest isthen encrypted by the sender using its private keyG. The digest can only
be decrypted using the sender’ s public key. In other words, any party holding the sender’s
public key can authenticate that the message came from the sender and that the data sent was
received in tact’.

The encrypted hash value enables the sender of the data to ensure that the receiver of the data
can authenticate the sender’ sidentity. The recelver uses the same secure hash function asthe
sender to perform its own computation of a hash value using the data it received. Note that the
data was not encrypted. Just the hash value computed from the data was encrypted.

The receiver compares the hash value it computed with the value it decrypted. The encrypted
hash value can only be successfully decrypted using the public key that matches the sender’s
private key. If the hash values match, then the data was sender’ s identity has been confirmed,
and the integrity of the data has been validated.

If the hash values do not match, then either the data was tampered with between the timeit was
sent and was received, or the sender is not who it claimsto be.

The algorithm for creating the hash value must be compatible with the public key / private key
scheme that is employed. For example, if RSA isthe public key / private key schemethat is
used, then an RSA-supported hashing agorithm (e.g., MD5, SHA-1) must be employed to
create the hash value. When the signature is computed in this manner, authenticity and data
integrity can be verified.

The specific secure hash agorithm and the public key / private key scheme that isemployed is
technol ogy-specific. Each of the HL7 Context Management Technology Mapping
Specifications indicates the secure hash algorithm public key / private key scheme that is
needed for a particular technology-specific implementation.

> When a secure hash function is used, it is also computationally infeasible to invert the computed
hash value. Specifically, given the secure hash function f and input value x, f(x) is relatively easy to
compute. However, even knowing f it isinfeasible to compute x given f(x).

® The signing of a message digest rather than of the plain-text message is a performance expediency.
A digest istypically several bytesin size, whereas the message represented by a digest can be of
arbitrary size. It is generally faster to encrypt the digest rather than the entire message.

" Thisistheinverse of the process used to send a secret message, in which the sender encrypts data
with the intended recipient’s public key. Only the holder of the private key can decrypt the data.

Version CM-1.0 Copyright 1999, Health Level Seven 115



Context Management Specification, Technology and Subject-Independent Component Architecture

The overall process for signing amessageisillustrated Figure 20: Signing A Message.

Sender Recelver
w—— e &=
Secure Hash &
4
Encrypt [ = —»  Decrypt —>
By private key  signed message  BY public key
Copyright ©Jung Joo-won, 1996, http:// smac.kaist.ac.kr/~jwjung/seminar/ ssl-ca-inst/dides.en

Figure 20: Signing A M essage

10.3.2 Incorporation of Signaturesinto the Context M anagement Ar chitecture

Digital signatures are incorporated in the Context Management Architecture to enable
authentication between User Link-enabled applications and User Link components. For
example, digital signatures enable the context manager to authenticate the identity of any
application that performs a context manager method. The context manager can aso ensure the
integrity of the parameter valuesthat it received from the application.

The context manager accomplishes this by computing a hash value from the input parameters
it receives from the application. To obtain the application-computed hash value from the
signature the context manager must use the same public key / private key scheme as the
application. The context manager must aso use the same hash algorithm as the application.

The context manager compares the hash value it computes to the hash value it has obtained by
decrypting the application’ sdigital signature. If the two hash values match, than the method
invocation is authentic and data integrity is ensured.

Otherwise, there has been a breech of security: either the method was invoked by an impaostor
for the application, and/or the parameter values provided by the application were tampered
with after they were sent but before they were received by the context manager. The context
manager reects the method invocation.

116 Copyright 1999, Health Level Seven Version CM-1.0



Context Management Specification, Technology and Subject-1ndependent Component Architecture

To be more specific, for the context manager method SecureContextData:: SetltemValues, the
hash value would be computed using the value of the participant application’s coupon (i.e.,
input parameter participantCoupon), current context change transaction (:oupon8 (i.e., input
parameter contextCoupon), the names of the items whose values are to be set (i.e., input
parameter itemNames), and the values for theseitems (i.e., input parameter itemValues).

The use of ahash in forming asignatureisillugtrated Figure 21: Forming Signature Using

Method Parameters.

XXX’'ssignatureistheresult of XXX using its private key
to encrypt a has value computed using the parameter values
it providesin the call to SetltemValues ... all of the

Authenticating
Application XXX

i tenval ues = [“robs”]
Cont ext Coupon = 998834,
Si gnature = 0110101000100010011..0011

Sa

Context manager uses XX X’s public key to decrypt the
hash value encrypted in the signature. The context
manager uses the same algorithm as XXX to compute a
has value from the parameter values provided in the call
to SetltemValues. The context manager compares to two
hash values. If they match, the call is valid.

applications and the context manager use the same public Private key for XXXO‘I"‘I"
key/private key scheme for generating signatures. They must
also use the same hash algorithm.
A
Set | t emval ues(
partici pant Coupon = 1762829,
itemNanes = [“User.id.logon.3M Clinical_Wrkstation”],

Context Manager

Public key for XXX °'I'|'I'|

Figure 21: Forming Signature Using M ethod Parameters

8 This coupon denotes the current context change transaction, not the application. Each context
change coupon is unique over the execution lifetime of a particular context manager.

Version CM-1.0 Copyright 1999, Health Level Seven

117




Context Management Specification, Technology and Subject-Independent Component Architecture

10.3.3 Computing a Digital Signature

Secure hash algorithms use a character string as the representation of the data val ue upon
which a hash valueisto be computed. Therefore, parameter values that are to be protected
from tampering during a method invocation must be converted to character strings. These
strings must then be concatenated to form a single string. It is the concatenated string that is
used to compute the hash value.

Therules for concatenation are as follows. These rules take into account the fact that the
mapping of CMA interfaces to specific technologies may ater the order in which method
parameters are declared and/or may require additional technol ogy-specific parameters. The
rules ensure that the process for creating signatures isinvariant across technologies:

The architectural specification for each method that isto be signed will define which
method parameters must be protected from tampering, and are therefore to be used in
formulating the signature.

The architectural specification for each method that is to be signed will define the
order in which the string representations of the parameters are to be concatenated.

The string representation of an array parameter starts with the first dement in the
array and ends with the last d ement in the array.

A parameter or array element whose value is null or empty is omitted from the string.

An array that does not contain any elements (i.e.,, the array length is zero) is omitted
from the string.

Ddimiters are not required because there is no need to parse the string.

For example, the concatenated string that might be produced based upon the examplein Figure
21: Forming Signature Using Method Parameters would look like:

1762829User . i d.l ogon. 3M O i ni cal _Wbr kst ati onr obs998834

In another example, where the value of the context item “logon” is null, the concatenated string
would look like:

1762829User . i d. |l ogon. 3M O i ni cal _Wr kst ati on998834

In afina example, where the context items are:
User.id.logon.3M_Clinical_Workstation = “robs”
User.co.GivenName = “Robert Seliger”

118 Copyright 1999, Health Level Seven Version CM-1.0



Context Management Specification, Technology and Subject-Independent Component Architecture

The concatenated string would look like:

1762829User. i d. |l ogon. 3M C i ni cal _Wrkstati onUser. co. G venNaner obsR
obert Seliger998834

Therulesfor representing various data types as character strings are specified in Section
11.2.8, Representing Basic Data Types as Strings.

Finally, once the hash value has been computed, encrypting the hash value with the sender’s
private key generates the digital signature.

10.3.4 Public Key Distribution

Public key distribution is the process by which an entity, such as the context manager, makes it
public key available to the other entities, such as an application, that need to use the key. This
process must ensure that a receiving entity can reliably establish the identity of the entity that
created the key. If thisis not accomplished than it is possible for a rogue entity to impersonate
avalid entity by representing the valid entity’ s public key asits own.

In contrast, private keys are not distributed, but remain the secret of the owner of the
corresponding public key. A discussion about protecting private keys appears in Section
10.3.4.3, Protecting Private Keys.

There are a variety of ways that keys can be distributed, including via a certificate authority.
However, the approach chosen for the CMA minimizes the amount of infrastructure that is
required to create a User Link solution, yet is upwards compatible with more elaborate
approaches.

Specifically, public keys are exchanged as part of a dynamic process that occurs each time a

User Link-enabled application9 or user Link component islaunched. This approach enables a
high-degree of security while minimizing the effort and cost to develop and deploy User Link

solutions.

A two-step binding processis used to dynamically distribute an application’s public key. The
process depends upon the use of secret passcodes that are assigned to user Link-enabled
applications (specifically, applications that are capable of being designated for authenticating
users) and User Link components. An application or component uses its passcode to proveits
identity when it presentsits public key. A passcode is a complex, arbitrary alphanumeric
string.

° Not all applications need a public key. Applications that need public keys are those that are
designated for authenticating users, and those that use the authentication repository.

Version CM-1.0 Copyright 1999, Health Level Seven 119



Context Management Specification, Technology and Subject-Independent Component Architecture

A passcodeis not actually transmitted when a secure binding is established. Instead, a secure
hash function is used to produce a message authentication code. A message authentication
code is a secure hash value produced from a data stream that consists of data that is openly
communicated between two parties, and “ secret” data that they both know but do not openly
communicate. In the CMA, a passcode serves as the shared secret.

The binding process involves a“hindeg’ and a*binder.” In order to bind, a bindee must have a
passcode. Both the bindee and the binder must have knowledge of the passcode. The means for
providing the bindee and binder with a passcode are not specified in the CMA. However,
requirements and guidelines are described in Section 10.3.4.1, Passcode Generation
Requirements.

The following table describes the relationships between User Link-enabled applications and
User Link componentsin terms of the secure binding process:

Bindee Binder

Context Participant Application Context Manager

Context Participant Application Authentication Repository
Mapping Agent Context Manager

The bindee initiates the binding process with the binder. The bindee assumesiit knows the
identity of the binder, but will prove the binder’s identity as part of the binding process.
Similarly, the binder will establish the identity of the bindee as part of the binding process.

The following interactions then occur:

1. Thebindee symbolically identifiesitsaf to the binder. The binder usesthis information
to locate the binder’ s copy of the bindee' s passcode. The passcode is not transmitted
by the bindee.

2. Thebinder sends back its public key, and a message authentication code. Thiscodeis
a secure hash value computed from a data stream formulated from the binder’s public
key and the binder’ s copy of the bindee s passcode.

3. Thehindee uses the public key it has received and its copy of its passcode to formulate
a data stream from which it also computes a secure hash value. (The hash algorithm it
uses must be the same as the one that the binder used.) The bindee compares the
resulting hash value to the message authentication code. If the two match, then the

120 Copyright 1999, Health Level Seven Version CM-1.0



Context Management Specification, Technology and Subject-Independent Component Architecture

binder iswho it claimsto be and the public key received by the bindee indeed bel ongs
to the binder.

4. Thehindee again identifiesitsdf to the binder and sends its public key, along with a
new message authentication code. This code is a secure hash value computed from a
data stream formulated from the bindee' s public key and the binde€’ s copy of its
passcode.

5. Thebinder usesthe public key it has received and its copy of the binde€ s passcode to
formulate a data stream from which it also computes a secure hash value. (The hash
algorithm it uses must be the same as the one that the bindee used.) The binder
compares the resulting hash value to the message authentication code. If the two
match, then the bindee iswho it claimsto be and the public key received by the binder
indeed belongs to the bindee.

An application requires a passcode for binding with the context manager. This passcodeisa
secret known only to the application and the context manager.

An application aso requires a passcode for binding with the authentication repository. This
passcode is a secret known only to the application and the authentication repository. An
application that binds to both the context manager and the authentication repository shall use
different passcodes for each binding.

10.3.4.1 Passcode Generation Requirements

Passcodes are similar to passwords used by people. However, because passcodes are only used
by computer programs, they can be much longer and complex than passwords typically are.
This makes passcodes extremely hard to guess, even when brute force techniques are
employed.

An application passcode shall be a character string comprised of no less than one hundred
(128) characters and no greater than two-hundred fifty-six (256) characters. A passcode shall
only be comprised of alphanumeric characters, aswell asthe underscore () and dash (-)
characters. A passcode shall be arbitrary but shall not contain any words or phrases.

An application’ s passcode may be generated such that the same passcode is used for every
instance of the application everywhere. Thisisthe least secure means of generating passcodes,
because a security breech affects every instance of the application.

An application’ s passcode may be generated such that the same passcode is used for every
instance of the application at a particular site. Thisisamoderately secure means of generating
passcodes, because a security breech isat least limited to a particular Site.

Version CM-1.0 Copyright 1999, Health Level Seven 121



Context Management Specification, Technology and Subject-Independent Component Architecture

An application’ s passcode may be generated such that a unique passcode is used for each
desktop upon which the application is used. Thisisthe most secure means of generating
passcodes because a security breech islimited to a single desktop. Thisis the recommended
approach.

10.3.4.2 Protecting Passcodes

Passcodes must remain secret. There are numerous ways in which this can be achieved. The
specific approach isleft as an implementation decision for applications and the various context
management components.

However, the following approach is recommended for applications. The assumption isthat any
application that is used to authenticate users probably uses a server to maintain user account
and authorization information. The application might be organized using a client/server
architecture, or aweb server architecture.

The principle challenge is how to create an application such that the portion of the application
that serves as a context participant has a secure means to store and retrieve its passcode. In the
case of client/server systems, an approach could be to store the passcode on each clinical
desktop upon which the client has been loaded. In web systems, an approach could be to
transmit the passcode from the web server to the desktop. Both of these approaches introduce
substantial security risks that would require great effort to defend againgt.

An dternativeisfor an application to Storeits passcode in a server, whereit can be more
readily protected (including literally placed under lock and key). This could be the
application’ s database server, or it could be a separate server whose specific roleisto securely
maintain passcodes.

The server would never actually transmit the passcode. Rather, it would be responsible for
verifying message authentication codes received by the application. It would also be
responsible for computing the application’ s message authentication code.

In this approach, the server must be able to authenticate the identity of the application. The
server must aso be surethat the data it send and receive from the application is not tampered
with whileit isin trangit. Thisimpliesthat the application must have the means for
establishing a trusted relationship with the server in a manner somewhat a kin to the
relationship the application establishes with the context manager or authentication repository.

There are many ways in which the necessary relationship can be implemented. However,
because this rel ationship does not involve interoperation between applications, and because the
optimal approach depends heavily upon the architecture and design of the application, asingle
approach is not specified. Instead, the approach for the server-based maintenance of an
application’ s passcode if |eft as an application design exercise.

122 Copyright 1999, Health Level Seven Version CM-1.0



Context Management Specification, Technology and Subject-Independent Component Architecture

10.3.4.3 Protecting Private Keys

The key distribution process described in Section 10.3.4, Public Key Distribution, does not
prescribe when keys are created. However, once created, a private key must remain the secret
of itsowner for aslong asitisin use.

It is possible to statically create a public key / private key pair for an application or
component. However, this approach requires the use of a persistent sore within which the
public key / private key pair are housed when the application or component is not executing. If
such a store were used, it would need to be defended againgt security attacks. This can be
accomplished, but at the cost of adding complexity to applications or components.

The recommended alternative approach is for an application or component to dynamically
create its key pair when launched. This enables the keys to be kept in memory, and avoids the
complexity of using a persistent store. Whileit is concelvable that an in-memory private key
could be accessed by an intruder, most contemporary operating systems enable a process to
prevent other processes from reading its memory.

10.3.5 System Configuration Requirements

The system configuration capabilities are necessary in order to deploy a User Link system are
summarized as follows:

A means for establishing for the context manager the symbolic names of the
applications that have been designated for authenticating users. It shall be possible to
establish these names on a per-desktop basis. It shall not be possible for anyone but a
system adminigtrator to modify the names known to a context manager.

A means for abtaining the application name and corresponding passcode for each
application that has been designated for authenticating users so for the purpose of
providing this information to the context manager. This process shall be performed
such that the passcode remains a secret known only to the application, the context
manager, and perhaps the system administrator who conveys the information from the
application to the context manager.

A means for abtaining the application name and corresponding passcode for each
application that uses the authentication repository for the purpose of providing this
information to the authentication repository. This process shall be performed such that
the secret passcode remains a secret known only to the application, the authentication
repository, and perhaps the system administrator who conveys the information from
the application to the authentication repository.

A means for obtaining the passcode for the user mapping agent for the purpose of
providing this information to the context manager. This process shall be performed
such that the secret passcode remains a secret known only to the user mapping agent,

Version CM-1.0 Copyright 1999, Health Level Seven 123



Context Management Specification, Technology and Subject-Independent Component Architecture

the context manager, and perhaps the system administrator who conveys the
information from the user mapping agent to the context manager.

There are numerous ways in which these capabilities can be implemented. The specific
approach isleft as an implementation decision for applications and the various context
management components.

10.4Trust Relationships
This section specifies application and component behaviors for realizing the chain of trust.

10.4.1 Trust Between Applications and Context M anager

A User Link-enabled application shall obtain a reference to the context manager’ s principal
interface from the interface reference registry. The application shall interrogate this interface to
obtain areference to the context manager’ s SecureBinding interface.

A User Link-enabled application shall establish a secure binding, per Section 10.3.4, Public
Key Distribution, with the context manager after it has joined the common context system but
before it instigates any user context change transactions. This ensures that the application:

is communicating with the real context manager,
has obtained the real context manager’s public key,
has provided the context manager with its public key.

A User Link-enabled application shall create adigital sgnature to sign the context manager
methods it invokesin order to set context data that includes user subject context items. This
enables the context manager to authenticate the application, and to ensure the integrity of the
communicated context data items.

The context manager shall create a digital signatureto sign returns values it communicates to
an application whenever these values include user subject context items. This enablesthe
application to authenticate the context manager, and to ensure the integrity of the
communicated context data items.

All other interactions between applications and the context manger do not need to follow these
rules.

124 Copyright 1999, Health Level Seven Version CM-1.0



Context Management Specification, Technology and Subject-Independent Component Architecture

10.4.2 Trust Between Context M anager and User M apping Agent

The user mapping agent shall obtain a reference to the context manager’ s principal interface
from the interface reference registry. The user mapping agent shall interrogate this interface to
obtain areference to the context manager’ s SecureBinding interface.

The user mapping agent shall establish a secure binding, per Section 10.3.4, Public Key
Distribution, with the context manager after it hasjoined the common context system but
before it maps any user context data. This ensures that the user mapping:

is communicating with the real context manager,
has obtained thereal context manager’s public key,
has provided the context manager with its public key.

The user mapping agent shall create a digital Sgnature to sgn the context manager methods it
invokes in order to set context data that includes user subject context items. This enables the
context manager to authenticate the user mapping agent, and to ensure the integrity of the
communicated context data items.

The context manager shall create a digital signature to Sign return values it communicates to
the user mapping agent whenever these values includes user subject context items. This enables
the user mapping agent to authenticate the context manager, and to ensure the integrity of the
communicated context data items.

All other interactions between the context manager and the user mapping agent do not need to

follow theserules.

10.4.3 Trust Between Applications and Authentication Repository

A User Link-enabled application shall obtain a reference to the authentication repository’s
principal interface from the secure registry. The application shall interrogate thisinterface to
obtain a reference to the authentication repository’ s SecureBinding interface.

A User Link-enabled application shall establish a secure binding, per Section 10.3.4, Public
Key Distribution, with the authentication repository after it has joined the common context
system but before it instigates any user context change transactions. This ensures that the
application:

is communicating with the real authentication repository,
has obtained the real authentication repository’ s public key,

has provided the authentication repository with its public key.

Version CM-1.0 Copyright 1999, Health Level Seven 125



Context Management Specification, Technology and Subject-Independent Component Architecture

A User Link-enabled application shall create a digital sgnature to sign the authentication
repository methodsit invokesin order to set user authentication data. This data shall also be
encrypted by a means chosen by the application, and then encrypted again upon
communication using the authentication repository’ s public key. The repository shall decrypt
the data using its private key only when it needs to service a valid application request to
retrieve the data. The repository shall never decrypt the data from its application-specific
encrypted form.

This enables the authentication repository to authenticate the application, to ensure the
integrity of the communicated authentication data, to keep the authentication data confidential
when it is communicated, and to defend against intrusions into the repository to obtain user
authentication data.

The authentication repository shall create a digital signature to sign user authentication data it
communicates to an application. User authentication data that is communicated back to an
application shall remain encrypted as it was when provided by the application. This data shall
be encrypted again upon communication using the application’s public key.

This enables the application to authenticate the authentication repository, to keep the
authentication data confidential when it is communicated, and to ensure the integrity of the
communicated user authentication data.

All other interactions between applications and the authentication repository do not need to
follow theserules.

10.5Chain of Trust Interactions

The detailed interactions for several use casesinvolving in the chain of trust are illustrated
below. A description for how to interpret the notation used in these diagrams appearsin
Appendix I. The following additional notation is used:

The character “[" indicates the concatenation of two strings, for example, * qrgjxyz’ to
form*“qrsxyz’.

XXSignature(alblc) indicates the digital signature for XX. The signatureis formed by
applying a one-way hash function to the parameter values a, b, and ¢, and then
encrypting the resulting hash value using XX’ s private key.

XXPublicK ey(abcd) indicates that the data “ abcd” is encrypted using the public key
for XX.

XXEncrypt(abcd) indicates that the data “abcd” is encrypted using an encryption
scheme chosen by XX.

126 Copyright 1999, Health Level Seven Version CM-1.0



Context Management Specification, Technology and Subject-Independent Component Architecture

Hash(abcd) indicates a value produced by applying a one-way hash function to the
data “abcd” .

The abbreviation ZZ represents application ZZ, CM represents the context manager,
AR represents the authentication repository, and M A represents the user mapping

agent.
Participating Authentication
Application ZZ Repository
\ InitiateBinding(ZZConnectionCoupon) \
publicKey= ARPublicKey
mac = Hash(ARPublicKey|ZZPasscode)
FinalizeBinding(ZZConnectionCoupon, ZZPublicKey, Hash(ZZPublicKey|ZZPasscode))
GetAuthenticationData(ZZConnectionCoupon, "robs", ", ZZSignature(Hash(ZZConnectionCoupon|robs)))
Logon “robs” not found! H
Repository has no o U

user data for “robs” so
Application ZZ
queries user for his
authentication data.
Application ZZ then
populates

repository with
encrypted

user authentication
data.

SetAuthenticationData(ZZConnectionCoupon, "robs", "password", ARPublicKey(ZZEncrypt(robs_password)),
ZZSignature((Hash(ZZConnectionCoupon|robs|password|ARFublicKey(ZZEncrypt(robs_password))))

I nteraction Diagram 17: Populating Authentication Repository with User Authentication Data

Verson CM-1.0

Copyright 1999, Health Level Seven 127



Context Management Specification, Technology and Subject-Independent Component Architecture

User Application AA Context User Link Participating Participating
trusted to Manager Mapping Agent Application YY Application ZZ

User
enters'robs" and

User authenticated

—_StartContextChanges()

contextcoupon=45678

SetltemValues(98765,<"user.id.|ogon.3M_Clinical_Workstation">, <"robs">, 45678, AASignature(Hash(98765|user.id.logon.3M_Clinical_Workstation|robs|45678)))

Is this one of the designated
user authenication

applications?

Yes, do the set.

EndContextChanges()

ContextChangesPending()

—

GetltemValues("User.*", 456[78)

itemValues = <*robs">,
signature = CMSignature(tHash(45678|robs))

SetltemValues(90092, <"user.id.logon.HP_CdreVue">, <"Rob_Seliger">, 45678, MASignature(Hash(90092|user.id.logon|Rob_Seliger|45678)))

Is this the
M authentic user
mapping agent?

Yes, do the SetltemValues.

ContextChangesPending()

ContextChangesPending()

i I

PublishChangesDecision() T

ContextChangesAccepted()

ContextChangesAccepted()

]
L
User has
access to L
appiication. GetltemValues("User.*", 45678)
T itemValues = <"robs” ><" Rob_Seliger">
signature = CMSignature(Hash(robs|Rob_Seliger|45678))
L] _ GetltemValues("User.*") |
itemValues = <"robs"><"Rob_Seliger">
signature = CMSignature(Hash(robs|Rob_Seliger|45678))
Chain of Trust: Participating applications trust user was authenticated by a trusted application ﬁ
User logged-on

I nteraction Diagram 18: User Link Context Change Transaction

128 Copyright 1999, Health Level Seven Version CM-1.0



Context Management Specification, Technology and Subject-Independent Component Architecture

11 Interface Definitions

It isassumed that an underlying technology infrastructure that supports distributed objectsis
used to implement a common context system, although a specific technology is not assumed.
However, the capabilities of Microsoft’s COM-based Automation technology are considered as
abasdine. Thisimpliesthat the architecture must work well within the constraints of

Microsoft Automation, including issues that pertain to performance and supported data types.

An abgtract set of CMA component interface definitions is described bel ow. These interfaces
are defined using a precise and concise interface definition language (IDL) created for
specifying the CMA. ThisIDL is not meant to be a comprehensive interface specification
language. Only the capabilities that are required for specifying CMA component interfaces are
included in the IDL.

A CMA-specific IDL is used because existing interface specification languages have direct or
indirect tiesto specific technologies. For example, OMG’ s IDL impliesthat the interfaces are
implemented usng CORBA-based technology. Microsoft’s MIDL requires that the interfaces
areimplemented usng COM/DCOM technology. The use of these specification languages
confuses and possibly compromises the technol ogy-neutrality of the CMA specification.

Experience has shown that the interface constructs represented in IDL defined bel ow can be
easly mapped to interfaces that can be implemented using a specific technology such as
ActiveX, CORBA, Java, or HTTP. The mapping for each specific technology appearsin a
separate Context Management specification document.

11.1Interface Definition Language

The interface definition language (IDL) used in this document enables specifying the following
facts about a component interface:

- Theinterface’ s symbolic name.

- The set of component properties and methods that can be accessed via the interface.
- The name and data type of each property, and optional restrictions (e.g., read-only).
- The names and data types for each method' sinput and outpults.

- The names and data content for each method’ s exceptions.

The IDL also defines a set of smple data types and the capahility to represent sequences of
these types.

Version CM-1.0 Copyright 1999, Health Level Seven 129



Context Management Specification, Technology and Subject-Independent Component Architecture

In the following sections, IDL reserved words are shown in bold font. Identifiers are shown in
italics. An identifier isan aphanumeric string that starts with an alphabetic character.

11.1.1 Interface Definition Body

The body of an interface definition creates alexical scope distinct from all other interface
definitions. The body of an interface is specified as:

interface interfacenane { ... }

Interfacenameis the symbolic name of the interface. The curly brackets delimit the scope of
the interface’ s body.

The body of an interface begins with the declaration of any exceptions that can be raised by
methods defined for the interface. The details of declaring exceptions are discussed later.

The properties that can be accessed through the interface are listed next. A property isa data
valuethat can beread or set viathe interface:

dat at ype propertynane

Datatype is the data type for the property. Thetypeis one of the smple types defined below,
as denoted by the appropriate IDL reserved word.

Propertyname is the symbolic name of the property. A property’ s name must be distinct as
compared to the names of other properties, methods, and exceptions defined within the same
lexical scope.

Properties can also be sequences. Sequences are described bel ow.

Properties can berestricted to read-only:

readonl y dat atype propertynane
The value of aread-only property can beread, but not set, via the interface.

Finally, the methods are listed:

nmet hodnane inputs ( ... ) outputs ( .... ) exceptions ( ... )

Methodname is the symbolic name of the method. A method’ s name must be digtinct as
compared to the names of other properties, methods, and exceptions defined within the same
lexical scope.

The method’ s inputs, outputs, and exceptions follow the method’ s name. If a method does not
have any inputs, outputs, or exceptions, then only white space should appear between the
appropriate set of parentheses.

130 Copyright 1999, Health Level Seven Version CM-1.0



Context Management Specification, Technology and Subject-Independent Component Architecture

Each input and output is defined as.

dat at ype nane

Datatype isthe data type for the input or output. The type is one of the smple types defined
bel ow, as denoted by the appropriate IDL reserved word. In an actual interface definition, the
appropriate IDL reserved word is used to indicate the type. Inputs and outputs can also be
sequences. Sequences are described bel ow.

Name is the symboalic name of the input or output. The name of inputs for a method must be
distinct for the method. The name of each output for a method must be distinct for the method.

Multiple inputs and outputs are separated by a comma.
Exceptions are listed only by their name. Multiple exceptions are separated by a comma.

11.1.2 Simple Data Types

The following smple data types are supported. The reserved words used to indicate each type
are shown:

byte Eight uninterpreted bits

short 16-bit signed integer

| ong 32-hit signed integer

fl oat 32-hit floating point number

doubl e 64-bit floating point number

bool ean Indicates true, or false

string A gtring of characters

date A specific year/month/day/time, with a precision of one second, and including

the time zone

type An enumeration that denotes each of these data types (except t ype) aswell as
the special types null (valid value not known) and empty (data type not known)

vari ant A tagged union of all of these data types (includingt ype and var i ant)

The concrete representations of these data types are not defined. They depend upon the
interface implementation technol ogy.

Version CM-1.0 Copyright 1999, Health Level Seven 131



Context Management Specification, Technology and Subject-Independent Component Architecture

11.1.3 Exception Declaration

An exception declaration introduces an exception that can be raised by one or more of the
methods defined for the interface within whose lexical scope the exception declaration appears.
Each exception declaration indicates the exception name and an optional set of data values.
The name denates the exception and the data val ues provide additional run-time information
about the reason for the exception.

An exception declaration is specified as:
exception nanme { ... }
Name is the symbolic name of the exception. An exception’s name must be distinct as

compared to the names of other properties, methods, and exceptions defined within the same
lexical scope.

Exception data values are specified as:

dat at ype name ;

Datatype is the data type for the exception value. The typeis one of the smple types defined
above, as denoted by the appropriate IDL reserved word. 1n an actual interface definition, the
appropriate IDL reserved word is used to indicate the type. Exception values can aso be
sequences. Sequences are described bel ow.

Name is the symboalic name of the exception value. The name of each value for an exception
must be distinct for the exception.

11.1.4 Sequences

A sequenceisa single-dimensional vector of sequential data values. Each data value is denoted
by an index whose typeislong. The values for these indices are sequential. The value of the
first index is not specified; this value depends upon the interface implementation technology.

A sequence with no regtrictions on the quantity of valuesit can contain is specified as:

dat at ype[ ] nane

Datatype is the data type of the valuesin the sequence. Thetypeis one of the smpletypes
defined above, as denoted by the appropriate IDL reserved word. Name is the name of the
property, input or output, or exception data value.

132 Copyright 1999, Health Level Seven Version CM-1.0



Context Management Specification, Technology and Subject-Independent Component Architecture

A sequence with restrictions on the quantity of valuesit can contain is specified as.

dat at ype[ quantity] nane

Quantity is a numeric value that indicates the maximum quantity of values that the sequence
can contain. A sequence may contain less than this quantity. The means by which the quantity
of values in a sequence is determined depends upon the interface implementation technol ogy.

11.1.5 Interface References

An interface reference enables access to a specific interface to a specific instance of a
component that implements the interface. The interface reference data type represents an
interface reference. The type of a property, method input, method output, and exception data
value can be an interface reference;

i nt er f acenane nane

Interfacenameis the name of the interface that the reference represents. Name is the name of
the property, input or output, or exception data value.

11.1.6 Principal Interface

Thereserved word Principal isthe interface name for a component’s principal interface. The
role of a component’s principal interfaceis discussed in Section 6.1, Component and

I nterface Concepts. The type of a property, method input, method output, and exception data
value can be an interface reference to a principal interface:

Princi pal nane

Name is the name of the property, input or output, or exception data value.

11.1.7 Qualifying Names

IntheIDL thereis never a casein which the names of properties, methods, and exceptions
defined in onelexical scope are referenced in another lexical scope. However, when
documenting the interfacesit can be useful to indicate the scope within which a particular
property, method, or exception name has been defined.

The convention for doing so is to formulate a qualified name comprised of the name of the
interface within whose scope the property, method, or exception of interest was defined,
followed by a pair of colons (::) followed by the name of the property, method, or exception,
for example:

Cont ext Manager : : Joi nCommonCont ext

denotes the method JoinCommonContext as defined for the interface ContextManager.

Version CM-1.0 Copyright 1999, Health Level Seven 133



Context Management Specification, Technology and Subject-Independent Component Architecture

11.2Interface Implementation Issues
This section describes requirementsthat all CMA interface implementations must respect.

11.2.1 Notlmplemented Exception

In the event that a method is not implemented, the exception Notlmplemented shall be raised.
This exception can beraised, for example, when a method has been deprecated and is no longer
implemented by a CMA component.

11.2.2 Coupon Representation

A participant coupon isaan arbitrary 32-bit number, represented as the CMA IDL datatype
long, that is assigned by a common context manager to easily identify each application that
joins a common context system. An application is assigned a participant coupon when it joinsa
common context system. It subsequently uses the coupon to identify itsalf when performing
methods on the context manager.

A context coupon is an arbitrary 32-bit number that is assigned by a common context manager
to each sat of self-consstent changes to the common context data. In other words, if the
common context contains the patient’ s name and the patient’ s medical record number, then
each time these val ues are changed together, a new coupon is assigned.

Participant coupons and context coupons are guaranteed to have unique values for the duration
of a common context session (i.e., from the time the first application joins to the time the last
application leaves). The distinguished value of O is never assigned as a valid coupon value.

11.2.3 Format for Application Names

Several interfaces require that an application providea CMA IDL st ri ng that containsa

symbolic name for the application. This string is generally used to distinguish one application
from another.

This string shall only be comprised of alphanumeric characters, aswell as the underscore ()
character.

Additionally, an application that is capable of allowing multiple instances of itself to execute
on the same desktop shall append to the end of its symbolic name the number-score character
(#) followed by a gtring that distinguishes one instance of the application from another.

The composition of the appended string is not specified, as long as no two running instances of
the application running on a particular desktop use the same appended string at the same time.
The appended string shall only be comprised of alphanumeric characters, aswell asthe
underscore (_) character.

134 Copyright 1999, Health Level Seven Version CM-1.0



Context Management Specification, Technology and Subject-Independent Component Architecture

An example of this convention is:

3M dinical _Wrkstation#0
3BM dinical _Wrkstation#l
BM dinical _Wrkstation#2

Application names formed as such shall be interpreted as representing the same logical
application (e.g., 3M_Clinical_Workstation) while also representing distinct running instances
of the application (i.e, threeinstances of 3M_Clinical_Workstation).

11.2.4 Extraneous Context Items

Context participants shall robustly deal with the situation in which context data items that they
do not recognize are nevertheless part of the common context. This might occur, for example,
in a syssem comprised of context participants that have been implemented using different
versions of the CMA data definition specifications. A participant implemented using an earlier
version of these specifications might not recognize context items defined in subsequent versions
of the specifications. Context participants shall Smply ignore context data items whose names
they do not recognize.

Similarly, context managers shall allow any context data item for any CMA-defined subject to
be part of the context, as long as the name for the item is properly formatted.

11.2.5 Forcing the Termination of a Context Change Transaction

The context manager may need to force the termination of a context change transaction when it
appearsthat theinstigator of the transaction has failed before compl eting the transaction.
Specifically, it is recommended that any context manager method that can result in the
ContextManager:: TransactionlnProgress exception being thrown should first explicitly confirm
that the transaction ingtigator is ill alive.

Most context manager implementationswill employ atimer to monitor the activity of a
transaction ingtigator. If the instigator does not perform the necessary operations on the context
manager’ sinterfacesin atimely manner, it can be inferred that the ingtigator has failed. The
method ContextParticipant::Ping is defined to enable the context manager to probe a context
participant to determineits liveliness. The context manager may additionally confirm the
liveliness of a context participant using technol ogy-specific mechanisms.

The duration of these timers, and the use of confirmation techniques, are implementation-
dependent.

The context manager shall clean-up after the failure of the instigator by performing the
following actions:

1. The coupon assigned by the manager for the transaction is invalidated.

Version CM-1.0 Copyright 1999, Health Level Seven 135



Context Management Specification, Technology and Subject-Independent Component Architecture

2. Thetransaction-specific version of the context data are discarded.

3. The coupon and context data associ ated with the most recently committed transaction

are unaffected.

4. The context manager’sinternal stateis set to indicate that thereis no longer a
transaction in progress.

Additional actions depend upon when the context manager determines that the ingtigator has
failed, as described in the table bel ow.

Instigator fails ...

Leaving systemsin the
following state ...

Context manager cleans-up
by ...

before ending the transaction (see
ContextManager::EndContext
Changes)

a context change transaction is
in progress, although surveying
has not yet been performed

performing the actions
described above

after ending the transaction but
before publishing its decision to
accept or cancel the changes (see
ContextManager::Publish
ChangesDecision)

acontext changeisin progress
and the surveyed participants
are waiting for the survey
decison

publishing the fact that the
context changes have been
canceled and then performing
the actions described above

11.2.6 Character-Encoded Binary Data

Several of the CMA component interfaces use CMA IDL st ri ng parameters that contain
character-encoded binary data. The following representation of character-encoded binary data
shall be applied for all such parameters'.

Each byte of data shall be represented by two printable characters. The four high bits of the
byte (i.e., the high octet) shall be represented by the left character. The four low bits of the
byte (i.e, the low octet) shall be represented by the right character.

An array of bytes shall be represented by character-encodings such that the left most character-
encoded byte in the string represents the data byte at lowest array index. The encoding follows

19 Base64 encodi ng was not selected as a character-encoding scheme for binary data, as the added
compression offered by the scheme is of minimal advantage for the CMA, wherein only relatively
small quantities of binary data are transmitted.

136

Copyright 1999, Health Level Seven

Verson CM-1.0




Context Management Specification, Technology and Subject-Independent Component Architecture

sequentially, such that the right most character-encoded byte in the string represents the data
byte at the highest array index.

Each four bits of data (i.e., an octet) is represented by an ASCI| character as follows:

Data Char acter
(Octet)

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

or
or
or
or
or
or

MTMUOUOT>O©0~NOoOUDWNERO

-~ 0O QO O T QD

Binary data that is character-encoded as a string shall not include white space or any other
characters other than the ones shown in the table above. The character-encoded string is not
case senditive. An example of binary data character-encoded per these conventionsis:

Binary Data: 00000001 11101001 11000111 1000010

Char acter-Encoded String: 01E9C782

11.2.7 Representing M essage Authentication Codes, Signatures and Public Keys

Message authentication codes, digital signatures, public keys are used as input or output
parameters for several of the methods defined for CMA component interfaces. The CMA IDL
data type for each of these parametersisst ri ng. Each string contains character-encoded
binary data, encoded per Section 11.2.6, Character-Encoded Binary Data.

The binary data that is encoded is technol ogy-specific. Each of the HL7 Context Management
Technology Mapping Specifications indicates the binary data types needed for a particular
technol ogy-specific implementation. It is necessary that both the sender and receiver of a
message authentication code, digital signature, or public key agree upon the format of the

Version CM-1.0 Copyright 1999, Health Level Seven 137



Context Management Specification, Technology and Subject-Independent Component Architecture

underlying binary data type, and the algorithms used to create the data. The method
SecureBinding::InitiateBinding, defined in 11.3.7.1, enables this agreement to be established.

11.2.8 Representing Basic Data Types as Strings

Several of the CMA component interfaces use input or output parameters whose values are
computed from the string representations of data values of various types. For example, digital
sgnatures are computed from a one-way hash value, which is, in turn, computed from a string
formed by concatenating alist of data values, each of which is represented as a string.

The following data types shall be represented as strings using the formats described. The
ASCII character set shall be used for the encodings:

Type

bool ean

short

| ong
dat e
string

fl oat

doubl e

138

String Representation

O, if false
1, if true

dddd, whered is anumeric character
representing a decimal digit and the
number of characters depends upon
the value of the number.

Sameasfor short .
mm/dd/yy hh:mm:ss
Asis.

dddd.dddd, whered isanumeric
character representing a decimal
digit. The number of digits before
the decima point depends on the
magnitude of the number, and the
number of digits after the decimal
point depends on the precision.

Same as float, except that there can
be more digits.

Copyright 1999, Health Level Seven

Comments

Leading minus sSgn (-dddd) if
number is negative. No plus
dgnif podtive.

Caseis preserved.

Leading minus sign
(-dddd.dddd) if number is
negative. No plus sign if
positive.

Verson CM-1.0



Context Management Specification, Technology and Subject-Independent Component Architecture

byt e bb, where b is a hexadecimal digit. Lower case for aphabetic
The byte is represented as unsigned. characters that represent hex
digits(i.e, a, b, ¢, d, g f).

Version CM-1.0 Copyright 1999, Health Level Seven 139



Context Management Specification, Technology and Subject-Independent Component Architecture

11.3Interfaces
This section specifies the methods for each of the CMA interfaces.

11.3.1 AuthenticationRepository (AR)

i nterface AuthenticationRepository {
exception AuthenticationFailed { string reason; }
excepti on UnknownApplication {}
excepti on UnknownConnection {}
excepti on LogonNot Found { string | ogonNane; }
exception UnknownDat aFormat { string dataFormat; }

Connect

i nputs(string applicationName)
out put s(l ong connecti onCoupon)
rai ses()

Di sconnect

i nput s(l ong connecti onCoupon)
out put s()

r ai ses( UnknownConnect i on)

Set Aut hent i cat i onDat a

i nputs(l ong connecti onCoupon, string | ogonNane, string dataFornmat,
string userData, string appSi gnature)

out put s()

r ai ses( UnknownConnecti on, Authenticati onFail ed)

Del et eAut hent i cat i onDat a

i nput s(l ong connecti onCoupon, string | ogonNane, string dataFornmat,
string appSi gnature)

out put s()

r ai ses( UnknownConnecti on, AuthenticationFail ed, LogonNot Found,
UnknownDat aFor mat )

Get Aut hent i cati onDat a

i nput s(l ong connecti onCoupon, string | ogonNare, string dataFormat
string appSi gnature)

out puts(string userData, string repositorySignature)

r ai ses( UnknownConnecti on, AuthenticationFail ed, LogonNot Found,
UnknownDat aFor mat )

11.3.1.1 Connect

This method enables an application to establish a connection with the authentication
repository. An application must have a connection before it can set or get user authentication
data.

140 Copyright 1999, Health Level Seven Version CM-1.0



Context Management Specification, Technology and Subject-Independent Component Architecture

The value of the input applicationName is a succinct string that contains the application’s
symbolic name. The output connectionCoupon is the value of a connection coupon that the
application can subsequently use to denote itsalf when performing other authentication
repository methods.

The exception UnknownApplication israised if the input applicationName does not represent
an application currently known to the authentication repository.

11.3.1.2 Disconnect

This method enables an application to disconnect from the authentication repository. An
application shall disconnect before it terminates. The value of the input connectionCoupon
denotes the application.

The exception UnknownConnection is raised if the input connectionCoupon does not denote an
application currently connected to the authentication repository.

11.3.1.3 SetAuthenticationData

This method enables an application to store authentication data for a particular user’slogon
name within the authentication repository. This method a so enables an application to update
authentication data for a particular user’slogon name that it has already stored in the
repository.

The value of the input connectionCoupon denates the application, the value of the input
logonName is a user’ slogon name, the value of the input userData is the application-specific
data used to authenticate the user, and the value of the input appSgnature is the application’s
digital signature. This signature enables the authentication repository to authenticate that the
request to set the authentication data came from the application denoted by the value of
connectionCoupon, and that the values of connectionCoupon, logonName, dataFormat, and
userData, were not tampered with between the time they were sent and were received.

Concatenating the string representations of the following inputs in the order listed shall form
the data from which a message digest is computed by the application:

connectionCoupon
logonName
dataFormat
userData

An application shall compute its digital signature by encrypting the message digest with its
private key.

Version CM-1.0 Copyright 1999, Health Level Seven 141



Context Management Specification, Technology and Subject-Independent Component Architecture

The value of the input dataFormat is an application-defined string that is used when an
application needs to maintain multiple forms of authentication data for a user (e.g., password,
thumbprint image, etc.). If only one form of authentication data is needed, this string can be
empty. Multiple calls of SetAuthenticationData are required to set different forms of
authentication data for a particular user. The value of dataFormat for each call should indicate
the form of authentication data to be stored.

The value of the input user Data contains user authentication data that has been encrypted by
the application usng an encryption technigue chosen by the application. This data is character-
encoded per Section 11.2.6, Character-Encoded Binary Data. The structure of the encoded
binary data is application-dependent and is not specified.

The exception UnknownConnection is raised if the input coupon does not denote an application
that is currently connected to the repository.

The exception AuthenticationFailed is raised if the process of authentication determines that
the signature is not the signature for the application denoted by the input connectionCoupon or
that the input parameter’ s val ues have been tampered with.

11.3.1.4 DeleteAuthenticationData

This method enables an application to delete from the authentication repository the
authentication data that it previoudy stored for a particular logon name. Both the logon name
and the associated authentication data are deleted.

The value of the input connectionCoupon denates the application and the value of the input
logonName is the logon name to be deleted.

The value of the input dataFormat is an application-defined string that is used when an
application maintains multiple forms of authentication data for a user (e.g., password,
thumbprint image, etc.) within the repository. If this string is empty, then al of the forms of
authentication data stored for the user are deleted. If this string is not empty, then just the
denoted form of authentication data is deleted.

The value of the input appSgnature isthe application’ sdigital sSgnature.

Concatenating the string representations of the following inputs in the order listed shall form
the data from which a message digest is computed by the application:

connectionCoupon
logonName

dataFormat

142 Copyright 1999, Health Level Seven Version CM-1.0



Context Management Specification, Technology and Subject-Independent Component Architecture

An application shall computeits digital signature by encrypting the message digest with its
private key.

This signature enables the authentication repository to authenticate that the request to delete
the authentication data came from the application denoted by the value of connectionCoupon,
and that the values of coupon, logonName, and dataFormat were not tampered with between
the time they were sent and were received.

The exception UnknownConnection is raised if the input connectionCoupon does not denote an
application that is currently connected to the repository.

The exception AuthenticationFailed is raised if the process of authentication determines that
the signature is not the signature for the application denoted by the input connectionCoupon or
that the input parameter values have been tampered with.

The exception LogonNotFound israised if user authentication data corresponding to the logon
name denoted by the input logonName does not reside in the repository.

The exception UnknownDataFormat israised if the form of authentication data denoted by the
input dataFormat is not found in the repository.

11.3.1.5 GetAuthenticationData

This method enables an application to retrieve from the authentication repository the
authentication data previoudy stored for a particular user’slogon name. The value of the input
connectionCoupondenotes the application, the value of the input logonName is a user’slogon
name, and the value of the input appSgnature is the application’s digital sgnature.

This signature enabl es the authentication repository to authenticate that the request to get the
authentication data came from the application denoted by the value of connectionCoupon, and
that the values of coupon, logonName, and dataFormat were not tampered with between the
time they were sent and were received.

Concatenating the string representations of the following inputs in the order listed shall form
the data from which a message digest is computed by the application:

connectionCoupon
logonName
dataFormat

An application shall compute its digital signature by encrypting the message digest with its
private key.

Version CM-1.0 Copyright 1999, Health Level Seven 143



Context Management Specification, Technology and Subject-Independent Component Architecture

The value of the input dataFormat is an application-defined string that is used when an
application needs to maintain multiple forms of authentication data for a user (e.g., password,
thumb-print image, etc.). If only one form of data is used, this string can be empty. Multiple
calls of GetAuthenticationData are required to get different forms of authentication data for a
particular user. The value of dataFormat for each call should indicate the form of
authentication data to be retrieved.

The value of the output userData is the application-specific data used to authenticate the user.
The output user Data remains encrypted, asit was when it was stored by the application using
SetAuthenticationData.

The output userData shall be used as the data from which a message digest is computed by the
application. The authentication repository shall computeits digital signature by encrypting the
message digest with its private key.

This signature enabl es the application to authenticate that the authentication data returned by
this method came from the authentication repository and that the value of userData was not
tampered with between the time it was sent and was received.

The exception UnknownConnection is raised if the input connectionCoupon does not denote an
application that is currently connected to the repository.

The exception AuthenticationFailed is raised if the process of authentication determines that
the signature is not the signature for the application denoted by the input connectionCoupon or
that the input parameter values have been tampered with.

The exception LogonNotFound israised if user authentication data corresponding to the logon
name denoted by the input logonName does not reside in the repository.

The exception UnknownDataFormat israised if the form of authentication data denoted by the
input dataFormat is not found in the repository.

144 Copyright 1999, Health Level Seven Version CM-1.0



Context Management Specification, Technology and Subject-Independent Component Architecture

11.3.2 ContextData (CD)

i nterface ContextData {
exception UnknownPartici pant { |ong partici pant Coupon; }
exception UnknownltemNane { string itenmNane; }
exception BadltemNameFormat { string itemNane; string reason }
exception Badltenmlype { string itemNanme; type actual;
type expected; }
exception BadltenValue { string itenmNane; variant itemval ue;
string reason; }
excepti on NaneVal ueCount M smat ch {1 ong numNanes; | ong nunVal ues }
excepti on ChangesNot Possi bl e {}
excepti on ChangesNot Al | owed {}
exception I nvalidCont ext Coupon {}

Get | t emNanes

i nput s(l1 ong cont ext Coupon)
out puts(string[] nanes)

rai ses(I nval i dCont ext Coupon)

Del etel tens

i nputs(l ong partici pant Coupon, string[] itemNanes,
| ong cont ext Coupon)

out put s()

rai ses(Not I nTransacti on, UnknownParti ci pant, |nvalidContext Coupon
Badl t enNanmeFor mat, Unknownl t emNane, ChangesNot Possi bl e,
ChangesNot Al | owed)

Set | t enVal ues

i nputs(l ong partici pant Coupon, string[] itemNanes,
variant[] itenVal ues, |ong context Coupon)

out put s()

rai ses(Not I nTransacti on, UnknownParti ci pant, |nvalidContext Coupon
NaneVal ueCount M smat ch, BadltemNaneFor met, Badltenilype
Badl t enVal ue, ChangesNot Possi bl e, ChangesNot Al | owed)

Get I t enVal ues

i nputs(string[] itemNanes, bool ean onl yChanges, |ong cont ext Coupon)
out puts(variant[] itenVal ues)

rai ses( 1 nval i dCont ext Coupon, BadltenmNanmeFor mat, Unknownlt enNane)

}

11.3.2.1 GetltemNames

This method enables a participant in acommon context system to obtain the names of the
common context items.

This method can be performed outside the scope of a context change transaction. In this case,
the value of the input contextCoupon must denote the most recently committed transaction.
The output itemNames is a sequence containing the item names that represent the state of the
common context as it was when the most recently committed transaction was completed.

Version CM-1.0 Copyright 1999, Health Level Seven 145



Context Management Specification, Technology and Subject-Independent Component Architecture

This method can also be performed within the scope a context change transaction that is
currently in progress. In this case, the input contextCoupon must dencte the current
transaction. The output itemNames contains the item names that represent the state of the
common context asit has been established so far by the transaction. The output itemNamesis
empty (i.e. zero ements) until a participant explicitly setsitem values viathe

ContextData: : SetltemV al ues method within the scope of the transaction.

The exception InvalidContextCoupon israised if the input contextCoupon does not denote the
most recently committed transaction or the transaction currently in progress.

11.3.2.2 Deleteltems

Note: This method has been deemed extraneous and is being deprecated. In a future version
of this specification context managers may chose to not implement this method even though it
remains part of the ContextData interface definition.

This method enables an application in a common context system to remove an item from the
set of common context items. The application or mapping agent denotes itself with its
participant coupon as the value of the input participantCoupon. The value of the input
contextCoupon must denote the current context change transaction, as obtained by the
ingtigator of the transaction when it performed the ContextManager:: StartContextChanges
method.

The exception NotinTransaction israised if there is no change transaction currently in
progress.

The exception UnknownParticipant israised if the input participantCoupon does not denote an
application or mapping agent that is currently a participant in the common context system.

The exception InvalidContextCoupon israised if the context coupon parameter does not denote
the transaction currently in progress.

The exception BadltemNameFormat israised if the format of an item named for deletion does
not conform with the specification for theitem in the rdevant HL7 Context Management Data
Definition Specification.

The exception UnknownltemNameis raised if one or more of the items named for deletion is
not the name of an item in the context asit stands under the current transaction.

The exception ChangesNotPossible israised if the ContextData::Deleteltems method is
invoked after the ContextManager::EndContextChanges method has already been invoked for
the transaction currently in progress.

146 Copyright 1999, Health Level Seven Version CM-1.0



Context Management Specification, Technology and Subject-Independent Component Architecture

The exception ChangesNotAllowed is raised by ContextData::Deleteltems if a mapping agent
attempts to del ete context items.

11.3.2.3 SetltemValues

This method enables an application or mapping agent in a common context system to set the
value of one or more common context items. The application or mapping agent denotes itself
with its participant coupon as the value of the input participantCoupon. The names of the
context items to be set are contained in the input sequence itemNames. The values for each of
these items are contained in the input sequence itemValues Thei™ dement in itemValuesisthe
value for theitem named by thei™ eement in itemNames.

If an item named in itemNames is not currently an item in the common context, it will be
added. The data type for a newly added item is the same as the data type of the element in
itemValuesthat contains the item’s value.

This method can only be performed within the scope of a context change transaction. The
value of the input contextCoupon must denote the current transaction.

The exception NotinTransaction israised if there is no change transaction currently in
progress.

The exception UnknownParticipant israised if the input participantCoupon does not denote an
application or mapping agent that is currently a participant in the common context system.

The exception InvalidContextCoupon israised if the input contextCoupon does not denote the
transaction currently in progress.

The exception NameVaueCountMismatch is raised if the number of itemsin the input
nitemNames does not match the number of itemsin the input itemValues.

The exception BadltemNameFormat israised if the format of an item named for deletion does

not conform with the specification for theitem in the rdevant HL7 Context Management Data
Definition Specification.

The exception BadltemType israised if the data type for one or more of the items whose value

isto be st is not the same as the expected data type.

The exception BaditemVaueisraised if the data value for one or more of the items whose
valueisto be set is determined to be unacceptable. This exception is used by context manager
implementations that enforce semantic congtraints on the common context. Not all context
manager implementations will do this.

The exception ChangesNotPossible is raised if the ContextData:: SetltemValues method is
invoked by an application after the ContextManager::EndContextChanges method has already

Version CM-1.0 Copyright 1999, Health Level Seven 147



Context Management Specification, Technology and Subject-Independent Component Architecture

been invoked for the transaction currently in progress. (This exception isnot raised if a
mapping agent invokes ContextData:: SetltemValues after ContextManager.)

The exception ChangesNotAllowed israised if a mapping agent attemptsto set avaluefor a
context item for which a value has already been set by the application that instigated the
context change transaction.

11.3.2.4 GetltemValues

This method enables a participant in a common context system to obtain the value of one or
more context items. The items of interest areindicated in the input sequence itemNames. These
names can be fully-qualified item names, which meansthat the al of the fields for an item’s
name are explicitly specified (e.g., "Patient.|d. MRN.St_Elsewhere_Hospital").

Alternatively, awild card represented by an asterisk (*) can be used in place of a specific
string for any of theitem name fields except for the subject field (which islexically thefirst
field on theleft). Thewild card enables a participant to obtain one or more items without
having to specify complete item names.

If awild card isused, it must appear in only the last field specified in the item name string
(which islexically the last field on the right). Additional field names and/or wild cards must
not appear after awild card (i.e, lexically to the right of the wild card). Examples of properly
formatted items names include:

“Patient.*” matches all of the identifier and corroborating items for the patient subject
“Patient.Id.*” matches all of the patient identifier items

“Patient.ld.MRN.*” matches al of the patient identifiers that are site-specific medical
record numbers

Conversdly, “Patient.1d.*.*” and “Patient.1d.*.St_Elsawhere Hospital” are examples of
improperly formatted item names.

The sequence output itemVal ues contains the values of all of the items whose names match the
set of names specified in the input itemNames. A specific item’s value will beincluded at most
oncein itemValues, even if its name matches more than one of the names specified in
itemNames. For example, even if itemNames includes the names:

“Patient.Id. MRN.St_Elsawhere Hospital”
and:

“Patient.Id.*”

148 Copyright 1999, Health Level Seven Version CM-1.0



Context Management Specification, Technology and Subject-Independent Component Architecture

the value for the item named “ Patient.|d.MRN.St_Elsewhere Hospital” will beincluded only
oncein itemValues

The dements in the sequence itemVal ues alternate between the complete name of an item
(represented as a string) and the corresponding item value (represented by the appropriate data
type). For example, if severa context data items are returned, then the first dement in the list
isthe name of the first item, the second dement in thelist isthe value of the first item, the third
dement in thelis is the name of the second item, the fourth dement in thelis is the value of
the second item, and so on.

This method can be performed outside the scope of a context change transaction. In this case,
the value of the input contextCoupon must denote the most recently committed transaction.
Theitem valuesthat are returned represent the state of the common context as it existed when
the most recently committed transaction was completed. By setting the value of the input
onlyChangesto indicate true a participant can assert that it only wants the values of the
context items that were changed by the committed transaction as compared to the context prior
to the transaction.

This method can also be performed within the scope a context change transaction. In this case,
the context coupon parameter must denote the current transaction. The item values that are
returned represent the state of the common context as it has been established by the transaction
(which may gtill bein progress). By setting the value of the input onlyChanges to indicate true
a participant can assert that it only wants the values of the context items that have been
changed so far by the current transaction.

The exception InvalidContextCoupon israised if the input contextCoupon does not denote the
most recently committed transaction or the transaction currently in progress.

The exception BadltemNameFormat israised if the format of an item named for deletion does
not conform with the specification for theitem in the rdevant HL7 Context Management Data
Definition Specification.

The exception UnknownltemName israised if one or more of the items named is not the name
of an item in the context as it stands under the current transaction.

Version CM-1.0 Copyright 1999, Health Level Seven 149



Context Management Specification, Technology and Subject-Independent Component Architecture

11.3.3 ContextM anager (CM)

i nterface Context Manager {
exception UnknownPartici pant { |ong partici pant Coupon; }
exception Transacti onlnProgress { string instigatorNane; }
exception NotlnTransaction {}
exception InvalidTransaction { string reason; }
exception TooManyPartici pants { | ong howvany; }
excepti on ChangesNot Ended {}
excepti on Accept Not Possi ble {}
excepti on UndoNot Possi ble {}
exception I nvalidCont ext Coupon {}

readonly | ong Most Recent Cont ext Coupon

Joi nCommonCont ext
i nput s(Cont ext Parti ci pant contextPartici pant,
string applicati onNanme, bool ean survey, bool ean wait)
out put s(l ong parti ci pant Coupon)
rai ses( ToovanyParti ci pants, Transactionl nProgress)

LeaveCommonCont ext

i nputs(l ong partici pant Coupon)
out put s()

rai ses( UnknownParti ci pant)

St ar t Cont ext Changes

i nputs(l ong partici pant Coupon)

out put s(l ong cont ext Coupon)

rai ses(UnknownParti ci pant, Transacti onl nProgress,
I nval i dTr ansacti on)

EndCont ext Changes
i nput s(l1 ong cont ext Coupon)
out put s(bool ean noConti nue, string[] responses)
rai ses( 1 nval i dCont ext Coupon, Not | nTransacti on
I nval i dTr ansacti on)

UndoCont ext Changes

i nput s(l1 ong cont ext Coupon)

out put s()

rai ses( 1 nval i dCont ext Coupon, Not | nTransacti on, UndoNot Possi bl e)

150 Copyright 1999, Health Level Seven Version CM-1.0



Context Management Specification, Technology and Subject-Independent Component Architecture

Publ i shChangesDeci si on

i nput s(l ong cont ext Coupon, string deci sion)

out put s()

rai ses(Not I nTransacti on, |nvalidContext Coupon, ChangesNot Ended,
Accept Not Possi bl e)

SuspendParti ci pati on

i nputs(l ong partici pant Coupon)
out put s()

rai ses( UnknownParti ci pant)

ResuneParti ci pation

i nputs(l ong partici pantCoupon, bool ean wait)

out put s()

rai ses(UnknownParti ci pant, Transacti onl nProgress)

11.3.3.1 MostRecentContextCoupon

This read-only property contains the value of the context coupon that represents the most
recently committed changes to the common context data. Even if there is a change transaction
in progress, this property’ s value represents the previoudy committed transaction. If no
transactions have been committed, the value of this property isO.

11.3.3.2 JoinCommonContext

This method enables an application to join a common context system. The application must
provide areference to its ContextParticipant interface as the value of the input
contextParticipant. The value of the input applicationName is a succinct string that can be
used to easly and clearly identify the application to the user. The application can aso indicate
whether it wantsto participate in context change surveys (the value of the input survey
indicates true), or that it just wantsto be informed when a context change has been accepted
(the value of theinput survey indicates false).

An application can only join a common context system between context change transactions. If
no transaction isin progress, the application is able to immediately join the context change
system.

If atransaction isin progress and the value of the input wait indicates true, this method will
block until the transaction completes. It is recommended that an application that iswilling to
wait also display a message to the user indicating that it is attempting to join a common
context system. If atransaction isin progress and the value of the input wait indicates false,
this method immediately raises the exception TransactionlnProgress.

The output participantCoupon is the value of the participant coupon that the application can
subsequently use to denote itself when performing other ContextManager methods.

Version CM-1.0 Copyright 1999, Health Level Seven 151



Context Management Specification, Technology and Subject-Independent Component Architecture

The exception TooManyParticipantsis raised if the context manager is unable to accommodate
an additional common context participant.

11.3.3.3 LeaveCommonContext

This method enables an application that is a participant in a common context system to leave
the system. The application denotesitself using its participant coupon as the value of the input
participantCoupon. Once this method returns, the application is free to terminate.

In order to avoid a deadlock condition, this method does not block. If this method was allowed
to block, it would be possible for an application to block while the context manager was
attempting to perform a method on the application’ s ContextParticipant interface. For single-
threaded applications, this could cause a deadlock.

Conseguently, if a context change transaction isin progress when this method is called, the
application may ill be notified about the context change even though it has left the common
context. The application is free to ignore this notification or may not even be capabl e of
responding. The context manager will robustly handle the failure of an application to respond.

The exception UnknownParticipant israised if the input participantCoupon does not denote an
application that is currently a participant in the common context system.

11.3.3.4 StartContextChanges

This method enables an application to indicate that it wants to start changing the common
context. The application denotes itsalf with its participant coupon as the value of the input
participantCoupon. A context change transaction isinitiated. Actual changesto the context
data are conducted via the ContextData interface. The output contextCoupon is the value of
the context coupon that has been assigned by the context manager to dencte the change
transaction.

The context manager will automatically terminate context change transaction if it does not
detect activity on its ContextData interface or if the ContextManager::EndContextChanges
method is not performed in atimely manner. The amount of time that the manager will wait
before terminating the transaction depends upon the manager’ s implementation.

The exception UnknownParticipant israised if the input participantCoupon does not denote an
application that is currently a participant in the common context system.

The exception TransactionlnProgressisraised if a context change transaction is aready in
progress.

The exception InvalidTransaction israised if a suspended application calls this method.

152 Copyright 1999, Health Level Seven Version CM-1.0



Context Management Specification, Technology and Subject-Independent Component Architecture

11.3.3.5 EndContextChanges

This method enables the application that instigated a context change transaction to indicate that
it has completed its changes to the common context. The value of the input contextCoupon
denotes the transaction currently in progress. This method initiates the two-step change
notification process and returns after the first phase of the natification processis conducted by
the context manager. During the first phase, the applications in the common context system are
surveyed to determine their ability or willingnessto apply the context changes. The
ContextParticipant:: ContextChangesPending method is performed on each application in the
survey.

The output responses is a sequence of strings that is used to convey the results of the survey to
the application that ingtigated a context change transaction.

If all of the applications surveyed indicate that they are willing to accept the context changes,
then the output sequence responses is empty (i.e. zero e ements) and the output noContinueis
false. The sequence is empty because there is no useful information to be conveyed about the
applications that have accepted, other than the fact that they all accepted. The method
ContextManager::PublishChangesDecision with the decision accept shall be subsequently
performed by the ingtigating application to communicate to the other applications the decision
to accept the context changes and to complete the transaction.

If there are surveyed applications that either are unable to provide a response to the survey
(e.g., because they are “busy”), or that want to inform the user that work-in-progress might be
lost if the context is changed, then the return value contains a string for each such application.
The application that invoked this method is expected to display the strings to the user and to
obtain guidance about how to proceed.

The output noContinue indicates true if the mapping agent invalidated the transaction, or at
least one of the surveyed applicationsis“busy”. It isnot possible for the user to continueto
apply the context change transaction if the value of noContinue istrue. The only option the
user hasisto cancel the change or to disconnect the instigating application from the common
context system. For either user decision, the method
ContextManager::PublishChangesDecis on with the decision cancel shall be performed by the
ingtigating application.

If the mapping agent has naot invalidated the transaction and there are no busy applications
(i.e., noContinue isfalse), but there are applications that have conditionally accepted the
context changes, the user can instruct the ingtigating application to apply the context changes
anyway, cancel the changes, or to disconnect from the common context system.

The method ContextManager::PublishChangesDecision with the decision accept shall be
subsequently performed by the instigating application to complete the transaction if the user
decides to apply the context changes.

Version CM-1.0 Copyright 1999, Health Level Seven 153



Context Management Specification, Technology and Subject-Independent Component Architecture

The method ContextManager::PublishChangesDecision with the decison cancel shall be
subsequently performed by the instigating application to complete the transaction if the user
decidesto cancel the context changes or to disconnect the ingtigating application from the
common context system.

The exception InvalidContextCoupon israised if the input contextCoupon does not denote the
transaction currently in progress.

The exception NotinTransaction israised if there is no change transaction currently in
progress.

The exception InvalidTransaction israised if the context data changes do not include at least
oneitem that is an identifier (e.g., context data cannot be comprised of just corroborating
data). Thisexception isalso raised if the context data changes include one or moreidentifier
items but the values specified for al of these itemsis empty.

11.3.3.6 UndoContextChanges

This method enables an application to discard any context data changes that it has already
made. The context coupon parameter denotes the transaction currently in progress. The
current transaction is brought to a close and the context coupon is no longer valid.

The exception InvalidContextCoupon israised if the input contextCoupon does not denote the
transaction currently in progress.

The exception NotinTransaction israised if there is no change transaction currently in
progress.

The exception UndoNotPossibleis raised if the method ContextManager::UndoContext-
Changesis attempted after the ContextManager::EndContextChanges method has been
performed during the course of the current transaction.

11.3.3.7 PublishChangesDecision

This method enables the application that instigated a context change transaction to inform the
other applicationsin a context system about whether the changes are to be applied or have
been canceled. The value of the input contextCoupon denotes the transaction currently in

progress.

The decision to accept the changes shall be published when the context changes areto be
applied. The only times that context changes cannot be applied are when there were
applications for which it was not possible to obtain a survey response (e.g., these applications
were “busy”) or when a mapping agent invalidates the transaction.

154 Copyright 1999, Health Level Seven Version CM-1.0



Context Management Specification, Technology and Subject-Independent Component Architecture

The decison to cancd the changes shall be published when the context changes are to be
discarded.

If the decision isto accept the changes, the value of the value of the output decision parameter
is*“accept”. If the decison isto cancd the changes, the value of the output decisionis
“cancd”.

Once the decision has been published, the change transaction is complete.

The exception InvalidContextCoupon israised if the input contextCoupon does not denote the
transaction currently in progress.

The exception NotinTransaction israised if there is no change transaction currently in
progress.

The exception ChangesNotEnded israised if the method EndContextChanges has not yet been
performed during the course of the current transaction.

The exception AcceptNotPossibleisraised if the decision to be published is accept but there
were applications for which it was not possible to obtain a survey response (e.g., these
applications were blocked). The decision accept in this caseis erroneous. This exception
defends againg this case should it arise due to an application programming error.

11.3.3.8 SuspendParticipation

This method enables an application to indicate that it wants to suspend its active participation
in a common context system while remaining registered as a participant. The application
denotesitself with its participant coupon as the value of the input participantCoupon. It
should be apparent to the user that the application is not displaying context-sensitive data, for
example, the application might be minimized so that no data display can be seen.

Suspending participation is not the same as leaving the common context. Instead, this method
provides an optimization for applications that temporarily do not want to track context
changes. This enables an application to perform computational tasks without being interrupted
by context changes.

This method also enables an application to minimize its use of computational resourcesif itis
in a gate (e.g., minimized) in which responding to context changes provides no benefit to the
user. The application can subsequently resume its participation in the common context via the
ContextManager::ResumeParticipation method. The application will not be surveyed, nor will
it be informed of changes to the common context until the application invokes the
ContextManager::ResumeParti cipation method.

Version CM-1.0 Copyright 1999, Health Level Seven 155



Context Management Specification, Technology and Subject-Independent Component Architecture

In order to avoid a deadlock condition, this method does not block. If this method was allowed
to block, it would be possible for an application to block while the context manager was
attempting to perform a method on the application’ s ContextParticipant interface. For single-
threaded applications, this could cause a deadlock.

Conseguently, if a context change transaction isin progress when this method is called, the
application may still be notified about the context change. The application isfreetoignorethis
notification or may not even be capable of responding. The context manager will robustly
handle the failure of an application to respond.

This method has no effect if the application has aready suspended its participation.
A suspended application cannat instigate a context change transaction.

Context manager implementations are encouraged to periodically confirm that suspended
context participants are till running. Thisisto avoid the Situation in which context manager
continues to allocate internal resources to a suspended participant that subsequently fails
without first informing the context manager that it is leaving the common context system.

This method is an alternative to leaving the common context system. Context managers can be
implemented to support a maximum number of participants. If an application leaves a context
system, it risks not being ableto rgoin. In contrast, by suspending its participation, this
possihility is avoided.

The exception UnknownParticipant israised if the input participantCoupon does not denote an
application that is currently a participant in the common context system.

11.3.3.9 ResumeParticipation

This method enables an application to indicate that it wants to resume active participation in a
common context system. The application denotes itsdlf with its participant coupon as the value
of the input participantCoupon. Upon resuming, an application must automatically ensure that
it has established synchrony with the current context.

The application denotesitsalf with its participant coupon. This method has no effect if the
application did not previoudy invoke the ContextManager:: SuspendParticipation.

An application can only resume its participation a common context system between context
change transactions. If no transaction isin progress, the application is able to immediately
resume participation in the context change system.

If atransaction isin progress and the value of the input wait indicates true, this method will
block until the transaction completes. It is recommended that an application that iswilling to
wait also display a message to the user indicating that it is attempting to resume participation

156 Copyright 1999, Health Level Seven Version CM-1.0



Context Management Specification, Technology and Subject-Independent Component Architecture

in a common context system. If atransaction isin progress and the value of the input wait
indicates false, this method immediately rai ses the exception TransactionlnProgress.

The exception UnknownParticipant israised if the input participantCoupon does not denote an
application that is currently a participant in the common context system.

Version CM-1.0 Copyright 1999, Health Level Seven 157



Context Management Specification, Technology and Subject-Independent Component Architecture

11.3.4 ContextParticipant (CP)

i nterface ContextParticipant {
Cont ext ChangesPendi ng
i nput s(l1 ong cont ext Coupon)
out puts(string decision, string reason)
rai ses()

Cont ext ChangesAccept ed

i nput s(l1 ong cont ext Coupon)
out put s()

rai ses()

Cont ext ChangesCancel ed

i nput s(l1 ong cont ext Coupon)
out put s()

rai ses()

ConmonCont ext Ter mi nat ed
i nputs()

out put s()

rai ses()

Pi ng

i nputs()
out put s()
rai ses()

}

11.3.4.1 ContextChangesPending

This method informs a participant in a common context system that a change to the common
context data is pending. The value of the input contextCoupon denotes the transaction within
which the context changes occurred. The participant shall respond with an indication of how it
wantsto deal with the change:

- Accept the change

- Conditionally accept the change (e.g., because it isin the middle of atask that would
cause significant user work to be lost if a context change was all owed)

An application that accepts the changes is willing to apply the new context data if subsequently
ingtructed to do so (by the ContextParticipant:: ContextChangesA ccepted or
ContextParticipant::ContextChangesCance ed methods).

An application that conditionally accepts the changesis also willing to apply the changes, but
only after informing the user that the application might loose work that the user isin the midst
of performing. The output reason shall contain a succinct but informative description of the
work that might be lost. (The description should not identify the application as this information

158 Copyright 1999, Health Level Seven Version CM-1.0



Context Management Specification, Technology and Subject-Independent Component Architecture

is provided by the application when it joins the common context system.) The application
through which the user ingtigated the context changesis responsible for informing the user of
the situation and obtaining the user’ s decision about how to proceed.

An application that cannot interpret the context data (e.g., does not know who the patient is)
should accept the changes. However, the application should clearly indicate to the user (e.g.,
by displaying a message) that it cannot apply the current context data.

If the response is to accept the changes, the value of the output decision is“accept”. If the
decision isto conditionally accept the changes, the value of the output decision
“accept_conditional”.

If a participant does not respond in atimely manner, it will be interpreted by the context
manager as being busy. The amount of time that the manager will wait before determining that
an application is busy depends upon the manager’ s implementation. This method is nat
performed upon the application that ingtigated the context changes. Instead, the application is
blocked by the manager when it performs ContextM anager::EndContextChanges.

11.3.4.2 ContextChangesAccepted

This method informs a participant in a common context system that the result of the most
recent context change survey was to accept the changes and that the common context data has
indeed been changed. The participant can access the context data via the context manager’s
ContextData interface to obtain the changes. The value of the input contextCoupon denotes the
transaction within which the context changes occurred. This coupon is needed in order to
access the context data.

If it isnot possible to perform this method on an application because it is busy, the context
manager will periodically keep trying until it has successfully performed the method, or until a
new context change transaction isinitiated. Theintervals at which the context manager triesto
retry this method is implementation-dependant.

11.3.4.3 ContextChangesCanceled

This method informs a participant in a common context system that a context change
transaction has been canceled. The value of the input contextCoupon denotes the transaction
that has been canceled.

If it isnot possible to perform this method on an application because it is busy, the context
manager will periodically keep trying until it has successfully performed the method, or until a
new context change transaction isinitiated. Theintervals at which the context manager triesto
retry this method is implementation-dependant.

Version CM-1.0 Copyright 1999, Health Level Seven 159



Context Management Specification, Technology and Subject-Independent Component Architecture

11.3.4.4 CommonContextTerminated

This method informs a participant in a common context system that the system isbeing
terminated. The participant will not be subsequently informed about context changes, nor will
it be able to perform common context changes. If the system is re-established, the participant
must explicitly rgoin the system before performing the ContextManager::JoinCommon-
Context method.

11.3.4.5 Ping

This method provides a means for a context manager to determine whether or not a participant
in a common context system is ill running. This method shall be implemented by al
participants to return immediately. The context manager can then perform this method to probe
a participant when its exisenceisin question.

In performing this method, the context manager will be able to indirectly exercise the
underlying communications infrastructure. The infrastructure will either indicate that the
method was successfully performed, that the method failed because the participant no longer
exigts, or that the method failed but it cannot be determined whether or not the participant
exigs. In thislast case, the manager shall assume that the participant still exists.

160 Copyright 1999, Health Level Seven Version CM-1.0



Context Management Specification, Technology and Subject-Independent Component Architecture

11.3.5 Implementationl nformation (I1)

interface I nplenmentationl nformation {
readonly string Conponent Nane
readonly string RevMaj or Num
readonly string RevM nor Num
readonly string Part Nunber
readonly string Manufacturer
readonly string TargetOS
readonly string Target OSRev
readonly string Wienlnstalled

}

11.3.5.1 ComponentName

This read-only property is the name of the component, specifically, “Patient Link Mapping
Agent”.

11.3.5.2 RevMajorNum

This read-only property is the major number for the software revision for the component, as
assigned by its manufacturer. For example, in the full revision number 2.32, *Z’ isthe major
number and might indicate a particular functional release of the software.

11.3.5.3 RevMinorNum

This read-only property is the minor number of the software revision for the component, as
assigned by its manufacturer. For example, in the full revison number Z.32, *32’ isthe minor
number and might indicate a particular build of the software.

11.3.5.4 PartNumber

This read-only property is the part number that the component’ s manufacturer assigned to the
component.

11.3.5.5 Manufacturer
This read-only property is the name of the organization that developed the component.

11.3.5.6 TargetOS

This read-only property isthe name of the operating system on which the component isable to
execute.

Version CM-1.0 Copyright 1999, Health Level Seven 161



Context Management Specification, Technology and Subject-Independent Component Architecture

11.3.5.7 TargetOsRev

This read-only property isthe revision of the operating system named in target operating
system on which the component is able to execute.

11.3.5.8 Whenlnstalled
This read-only property is the date and time at which the component was installed on its host.

162 Copyright 1999, Health Level Seven Version CM-1.0



Context Management Specification, Technology and Subject-Independent Component Architecture

11.3.6 MappingAgent (MA)

i nterface Mappi ngAgent {
Cont ext ChangesPendi ng
i nput s(1 ong mappi ngAgent Coupon, Princi pal contextMr,
| ong cont ext Coupon)
out puts(string decision, string reason)
rai ses()

Pi ng

i nputs()
out put s()
rai ses()

}

11.3.6.1 ContextChangesPending

This method informs a mapping agent in a common context system that a changeto the
common context data is pending. The value of the input contextCoupon denotes the transaction
within which the context changes occurred. The value of the input mappingAgentCoupon
denotes the mapping agent for the duration of the current change transaction. The value of the
input contextMgr is an interface reference to the context manager’ s principal interface. Thisis
so that the mapping agent can easily obtain the context manager interface(s) it needs.

The agent shall respond with an indication of how it wants to deal with the context change:
The changes arevalid
The changes are invalid

If the changes are valid, then the value of the output decision should be “valid”. If the changes
areinvalid, then the value of the output decision should be “invalid”’. The changes should only
be declared invalid if the set of identifiersin the proposed context data do not al represent the
same patient. If the changes are invalid, then the value of the output reason will contain a
succinct but detailed string describing why the changes were invalid. Otherwise the value of
reason isnull.

11.3.6.2 Ping

This method provides a means for a context manager to determine whether or not a mapping
agent in a common context system is ill running. This method shall be implemented by al
agentsto return immediately. The context manager can then perform this method to probe a
mapping agent when the agent’ s existence isin doubt.

In performing this method, the context manager will be able to indirectly exercise the
underlying communications infrastructure. The infrastructure will either indicate that the

Version CM-1.0 Copyright 1999, Health Level Seven 163



Context Management Specification, Technology and Subject-Independent Component Architecture

method was successfully performed, that the method failed because the agent no longer exists,
or that the method failed but it cannot be determined whether or not the agent exigts. In thislast
case, the manager shall assume that the agent ill exidts.

164 Copyright 1999, Health Level Seven Version CM-1.0



Context Management Specification, Technology and Subject-Independent Component Architecture

11.3.7 SecureBinding (SB)

i nterface SecureBinding {

excepti on UnknownBi ndee {}

exception UnknownPropertyNane { string propertyNane; }

exception BadPropertyType { string propertyNane; type actual;
type expected; }

excepti on BadPropertyVal ue { string propertyNaneg;
variant itenval ue; string reason; }

excepti on NaneVal ueCount M smat ch {1 ong numNanes; | ong nunVal ues }

exception | nproperKeyFormat { string reason; }

exception | nproper MACFormat { string reason; }

exception BindingRejected { string reason; }

exception AuthenticationFailed { string reason; }

I nitiateBi ndi ng

i nputs(l ong partici pant Coupon, string[] propertyNanes,
variant[] propertyVal ues)

out puts(string mac, string binderPublicKey)

r ai ses( UnknownBi ndee, NaneVal ueCount M smat ch,
UnknownPr opert yNanme, BadPropertyType, BadPropertyVal ue,
Bi ndi ngRej ect ed)

Fi nal i zeBi ndi ng

i nputs(l ong |l ong partici pant Coupon, string bi ndeePubli cKey,
string nmac)

out put s()

r ai ses( UnknownBi ndee, | nproper KeyFormat, | nproper MACFor mat ,
Aut henti cati onFai | ed)

}

11.3.7.1 InitiateBinding

This method enables a context management component (“bindeg’) to initiate the process of
establishing a secure binding with another context management component (“binder”). This
method shall be performed only after the bindee has been provided by the binder with a coupon
to denote itself. The value of the input bindeeCoupon is this coupon. The value of
bindeeCoupon depends upon the role bindee and binder, as described on the following page.

Version CM-1.0 Copyright 1999, Health Level Seven 165



Context Management Specification, Technology and Subject-Independent Component Architecture

Bindee Binder Value of bindeeCoupon

Context Context Participant coupon, obtained by the participant

Participant Manager from the context manager via

Application ContextManager::JoinCommonContext.

Context Authentication Connection coupon, obtained by the participant

Participant Repository from the authentication repository via

Application AuthenticationRepository::Connect.

Mapping Context Mapping agent coupon, obtained from the context

Agent Manager manager when it most recently performed
MappingAgent::ContextChangesPending upon the
mapping agent.

As part of the process of establishing a secure binding, it is necessary for the bindee and the
binder to agree upon the properties of the underlying security algorithms that they will usein
subsequent secure interactions. These properties may include the public key / private key
scheme, the number of bits used to represent a key, and the type of one-way hash algorithm
that is to be used to generate message digests and message authentication codes. The specific
properties that must be agreed upon, and the allowed set of values for these properties, are
defined in the each of the HL7 context management technol ogy-specific component mapping
specification documents.

The value of the input sequence propertyNames contains the names of the secure binding-
related properties for which the bindee wishes to establish agreement. The values for each of
these properties are contained in the input sequence propertyValues Thei" dement in
propertyValuesis the value for the property named by thei™ dement in propertyNames. The
data type for a property is the same as the data type of the e ement in propertyValues that
contains the property’ s value.

The output mac is the message authentication code. This code shall be used by the bindee to
prove the identity of the binder, and to ensure that the value of binder PublicKey has not been
tampered with. The value of the output binderPublicKey is the binder’ s public key, and shall
be used by the bindee in all subsequent secure interactions that involve the binder.

The value of binderPublicKey is character-encoded binary data formed by the binder when it
computesits public key / private key pair.

The value of mac is character-encoded binary data formed by the binder’ s computation of a
one-way hash value. This hash value is computed using an input string formed by
concatenating the bindee' s passcode to the end of the character-encoded binary string

166 Copyright 1999, Health Level Seven Version CM-1.0



Context Management Specification, Technology and Subject-Independent Component Architecture

containing the binder’ s public key. This passcode is a secret known only to the bindee and the
binder. Upon receipt of the output mac and binder PublicKey, the bindee independently creates
the same gtring as the binder and performs the same hash computation. If the resulting hash
value matches the value of mac, then the binder shall be considered authentic and the value of
binderPublicKey shall be considered valid.

The agorithms used to compute mac and binder PublicKey are technology-specific. The format
of these outputs are al so technol ogy specific.

The exception UnknownBindeeis raised if the input bindeeCoupon does not dencte a context
management component currently known to the binder.

The exception NameVaueCountMismatch is raised if the number of itemsin the input
propertyNames does not match the number of itemsin the input propertyValues.

The exception BadPropertyTypeisraised if the data type for one or more of the properties
whose valueisto be set is not the same as the expected data type.

The exception BadPropertyValueisraised if the data value for one or more of the properties
whose valueis to be set is determined to be unacceptable or incompatible.

The exception BindingRejected israised if the bindee is not authorized to establish a binding
with the binder. When this exception is raised by the context manager, it means that the context
participant application has not been designated for authenticating users. When this exception is
raised by the authentication repository, it meansthat the repository has not been configured to
serve the application.

11.3.7.2 FinalizeBinding

This method enables bindee to finalize the process of establishing a secure binding with a
context management component. This method shall be performed by a bindee only after it has
successfully performed the method InitiateBinding upon a binder. The bindee denotes itself
using the same value for the input bindeeCoupon that it used when it performed the method
InitiateBinding upon the binder.

Theinput bindeePublicKeyis the bindeg s public key, and shall be used by the binder in all
subsequent secure interactions that involve the bindee. The value of binderPublicKeyis
character-encoded binary data formed by the bindee when it computesiits public key / private

key pair.

Theinput mac is the message authentication code. This code shall be used by the binder to
prove the identity of the bindee, and to ensure that the value of bindeePublicKey has not been
tampered with.

Version CM-1.0 Copyright 1999, Health Level Seven 167



Context Management Specification, Technology and Subject-Independent Component Architecture

The value of mac is character-encoded binary data formed by the bindee' s computation of a
one-way hash value. This hash value is computed using an input string formed by
concatenating the bindee' s passcode to the end of the character-encoded binary string
containing the bindee s public key. This passcode is a secret known only to the bindee and the
binder. Upon receipt of the inputs mac and bindeePublicKey, the binder independently creates
the same gtring as the bindee and performs the same hash computation. If the resulting hash
value matches the value of mac, then the bindee shall be considered authentic and the value of
bindeePublicKey shall be consdered valid.

The agorithms used to compute mac and bindeePublicKey are technol ogy-specific. The
format of these inputs are also technol ogy specific.

The exception UnknownBinding israised if the input bindingCoupon does not denote an
bindee currently known to the binder.

The exception ImproperKeyFormat israised if theinput publicKey is not properly formatted.
The exception ImproperMACFormat israised if theinput mac is not properly formatted.

The exception BindingDenied israised if the input mac does not establish the identity of the
bindee and/or the integrity of the input bindeePublicKey.

168 Copyright 1999, Health Level Seven Version CM-1.0



Context Management Specification, Technology and Subject-Independent Component Architecture

11.3.8 SecureContextData (SD)

i nterface SecureContextData {

exception UnknownltemNane { string itenmNane; }

exception BadltemNameFormat { string itemNane; string reason }

exception Badltenmlype { string itemNanme; type actual;
type expected; }

exception BadltenValue { string itenmNane; variant itemval ue;
string reason; }

excepti on NaneVal ueCount M smat ch {1 ong numNanes; | ong nunVal ues }

excepti on ChangesNot Possi bl e {}

exception SignatureRequired {}

exception AuthenticationFailed { string reason; }

Get | t emNanes

i nput s(l1 ong cont ext Coupon)
out puts(string[] itemnmNanes)
rai ses( 1 nval i dCont ext Coupon)

Set | t enVal ues
i nputs(l ong partici pant Coupon, string[] itemNanes,
variant[] itenVal ues, |ong contextCoupon, string appSignatue)
out put s()
rai ses(Not I nTransacti on, |nvalidContext Coupon, UnknownParti ci pant,
NaneVal ueCount M smat ch, Badlt emNaneFor mat, Badlt enilype,
Badl t enVal ue, ChangesNot Possi bl e, Si gnat ureRequi red,
Aut henti cati onFai | ed)

Get I t enVal ues
i nputs(l ong partici pant Coupon, string[] itemNanes,
bool ean onl yChanges, |ong cont ext Coupon, string appSi gnature)
out puts(variant[] itenVal ues, string managerSi gnature)
rai ses( 1 nval i dCont ext Coupon, UnknownParti ci pant,
Badl t enNanmeFor mat, Unknownl t emNane, Si gnat ureRequired,
Aut henti cati onFai | ed)

}

11.3.8.1 GetltemNames
This method is identical to ContextData: : GetltemNames.

11.3.8.2 SetltemValues

Thismethod is similar to ContextData:: SetltemVaues. The primary difference isthat the
context participant’ sdigital signature shall be provided as the value of the input appSgnature
when user subject item values are among the items to be set. This signature enables the context
manager to authenticate that they came from a designated application or from thereal user
mapping agent, and that the values were not tampered with between the time they were sent
and were received.

Version CM-1.0 Copyright 1999, Health Level Seven 169



Context Management Specification, Technology and Subject-Independent Component Architecture

A sgnatureisnot required when the values for the user subject items are null. This enables
any application to set the user context to empty. When a signature is not provided, the value of
the input appSgnature shall be an empty string (*”).

Concatenating the string representations of the following inputs in the order listed shall form
the data from which a message digest is computed by the participant:

participantCoupon

itemNames (i.e., All the elements in the order that they appear in the array.)
itemValues (i.e., All the elementsin the order that they appear in the array.)
contextCoupon

A participant shall computeitsdigital sgnature by encrypting the message digest with its
private key.

The exception SignatureRequired israised if the value of appSignatureis not adigital
sgnature and a Signatureisrequired in order to perform this method.

The exception AuthenticationFailed israised if adigital signatureisrequired and provided, but
the process of authentication determines that: the application that invoked this method did not
previoudy provideits public key via the interface SecureBinding; that the input appSgnature
has been forged; that the input parameter values have been tampered with; that the participant
has not been designated for performing user context changes.

11.3.8.3 GetltemValues

This method is smilar to ContextData::GetltemValues. The primary differenceisthat the
context manager’ s digital signature shall be provided as the value of the output

manager Sgnature when user subject identifier item values are among the items named for
retrieval. This signature enables the recipient of the item values to authenticate that they came
from the real context manager, and that the values were not tampered with between the time
they were sent and were received.

Concatenating the string representations of the following inputs in the order listed shall form
the data from which a message digest is computed by the context manager:

ItemValues (i.e., All the elements in the order that they appear in the array.)
contextCoupon

The context manager shall compute its digital signature by encrypting the message digest with
its private key.

170 Copyright 1999, Health Level Seven Version CM-1.0



Context Management Specification, Technology and Subject-Independent Component Architecture

The value of the inputs participantCoupon and appSgnature are not currently used and are
defined in anticipation of future uses of this method. In the future, the value of these inputs will
enable the context manager to enforce context data access rights as a function of the context
participant’ s identity and the properties of the requested context items, as listed in the input
itemNames. The value of participantCoupon will denote the participant. The value of
appSgnature will be the digital signature of the participant.

Until stated otherwise in afuture version of this specification, the value of the input
participantCoupon shall be zero (0). The value of the input appSgnature input shall be an
empty string (*”).

The exception SignatureRequired israised if the value of appSignatureis not adigital
sgnature and a signature is required to perform this method.

The exception AuthenticationFailed israised if adigital signatureisrequired and provided, but
the process of authentication determines that: the application that invoked this method did not
previoudy provideits public key via the interface SecureBinding; that the input appSgnature
has been forged; that the input parameter values have been tampered with; that the participant
isnot allowed to access the requested context items.

Version CM-1.0 Copyright 1999, Health Level Seven 171



Context Management Specification, Technology and Subject-Independent Component Architecture

12 Backwards Compatibility

The HL7 Context Management Architecture specified in this document if fully compatible with
the CCOW Patient Link 1.1 Architecture Specification. The CMA, is however, a superset of
the CCOW Architecture.

172 Copyright 1999, Health Level Seven Version CM-1.0



Context Management Specification, Technology and Subject-Independent Component Architecture

Appendix: Diagramming Conventions

There are four types of formal diagrams that are used throughout this document to describe the
CCOW architecture:

A use case diagram depicts the actors (human and/or computer-based) and the roles
that the play when participating in an interesting scenario.

A use case interaction diagram illustrates the high-level interactions between the actors
that participate in the use case.

A component architecture diagram depicts components and their interfaces, and
indicates which interfaces each component use for communicating with other
components.

A component interaction diagram illustrates the series of method invocations that
components perform on each other in order to implement a particular use case.

The conventions for each of these diagrams are explained below. Many of the conventions
were leveraged from Ivar Jacobson’ s text Object-Oriented Software Engineering' In the
future, these conventions will be evolved to comply with the Unified Modding Language
specification, which is il being refined™.

Use Case Diagram
The use case diagramming conventions are;

A stick figure represents an actor, even if the actor is a computer-based entity, such as

x

Healthcare
Application

an application:

' Object-Oriented Software Engineering, Ivar Jacobson, Addison-Wesley, 1994.

* Unified Modeling Language Reference Manual, James Rumbaugh, Grady Booch, Ivar Jacobson,
Addison-Wedley, 1997.

Version CM-1.0 Copyright 1999, Health Level Seven 173



An oval represents a use case. The name of the use case appears next to the oval:

O

Patient Selection Change

An arrow directed from an actor to the use case indicates that the actor participatesin
the use case. A label near the arrow succinctly describes the actorsrolein the use case:

Participates /%

Healthcare
Application

Patient Selection Change

Use Case I nteraction Diagrams
The use case interaction diagramming conventions are:

The interacting actors are depicted by rectangles |abeled with the actor’ s name,
arranged in a horizontal row. A vertical dashed bar descends from each of these
rectangles.

User

An interaction that isinitiated by an actor is represented as an arrow that emanates
from the actor. The arrow terminates on the actor to which the interaction is directed .
Each arrow is labeled with a short description of the interaction it represents:

User Application XXX

| choose patient “Sam Smith”

174 Copyright 1999, Health Level Seven Version CM-1.0



Context Management Specification, Technology and Subject-Independent Component Architecture

A vertical bar indicates the start and end of the actions that an actor performsin
response to an interaction. These actions may include additional interactions:

User Application XXX

L

| choose patient “Sam Smith”

An actor can responsd to an interaction. A response is shown as an arrow labeled with
an indication of the response:

Application XXX

Context Manager

| choose patient “Sam Smith”

The selected patient is now “Sam Smith”

The entire set of interaction arrowsistemporally ordered, from left to right, top to
bottom.

Version CM-1.0 Copyright 1999, Health Level Seven 175



Component Ar chitecture Diagrams
The component architecture diagramming conventions are:

Each component is depicted as a rectangle. The name of the component appears within
therectangle:

Context
Manager

Each of the interfaces implemented by a component isillustrated as a circle tangent to
the rectangle that depicts the component. Each circleislabeed with the name of the
interface it represents. Two or three letter abbreviations are typically used:

oM Context
Manager

A directed arrow connects components that communicate with each other. Arrows
emanate from a client component and point to the server components that it uses. Each
arrow terminates on the circle representing the specific server component interface that
isused. An digtinct arrow is used for each interface for each server component that a
client component uses:

@ Context
@ "™

Application

176 Copyright 1999, Health Level Seven Version CM-1.0



Context Management Specification, Technology and Subject-Independent Component Architecture

Component I nter action Diagrams

The component interaction diagramming conventions are:

The interacting components are depicted by rectangles labeed with the component’s
name, arranged in a horizontal row. A vertical dashed bar descends from each of these

rectangles.

Context Manager

A method that isinvoked by a component is represented as an arrow that emanates
from the bar and that terminates on the bar for component that services the method.

Each arrow is labeled with the name of the method it represents. Examples of actua

parameter values may beincluded for clarity:

Application XXX

Context Manager

PublishChangesDecision(* accept”)

A vertical bar indicates the start and end of the processing that a component performs
in response to a method invocation. This processing may itself include method

invocations:

Application XXX Context

Manager

PublishChangesDecision(* accept”)

Version CM-1.0 Copyright 1999, Health Level Seven

1

177



178

Method return values are indicated when this aids in understanding the use case. A
return value is shown as an arrow labe ed with an indication of the return value:

Context Manager

Application XXX

ContextChangesPending()

“accept”

The entire set of method invocation arrows is temporally ordered, from Ieft to right,

top to bottom.

Copyright 1999, Health Level Seven

Verson CM-1.0



