HL7 Context Management Specification

Technology and Subject-Independent Component Architecture

Component Technology Mapping: ActiveX

Data Definition: Patient Subject

Data Definition: User Subject

User Interface: Microsoft Windows OS

10

11

12

13

14

15

16

17

18

19

20

21

Context Management Specification, Technology and Subject-1ndependent Component Architecture

Health Level Seven Standard

Context Management Specification
Technology- and Subject-Independent Component Architecture
Version CM-1.0

DOCUMENT ID: HL7SIGVI_3 1 99
REVISION ID: March 17, 1999
FILE NAME: hi7_sigvi_arch_ cm_1 0.doc
SUPERCEDES: n/a

Copyright 1999 Health Level Seven

Version CM-1.0 Copyright 1999, Health Level Seven 1

Context Management Specification, Technology and Subject-Independent Component Architecture

Copyright 1999, Health Level Seven Version CM-1.0

QW N ouh~hw N

R
'_\

12

13

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

29

30
31
32
33

35
36

37
38
39
40
41
42
43

45

Context Management Specification, Technology and Subject-Independent Component Architecture

Contents
1 INTRODUCTION .o 11
1.1 CLINICAL CONTEXT iiitttttuiiiiesiieettttiieessseestssieesssesssssstessseesssatesstestsseesteestrseessressrsns 11
1.2 LINKSAND SUBJECTS .. iiittttttiiiesiietttiiseesstsssssaseesseessssaastssssesssssastessseessssasseessessssssssseesseessses 11
1.3 ARCHITECTURE SUMMARY ..etttuuiiiiiiiiitttiiiiiesteesstssateesssiessssssseesssesssssssessteessssseesseesssnnneeesne 13
1.4 READING THIS DOCUMENT 1tuuiiiiiiiettties e ee e st eat s s e e e s s es bbb s e s e s e e sab b s seasseasbba s eeassessbbbanseesseensses 14
2 SCOPE AND OBIECTIVES ... 15
2.1 SPECIFICATION ORGANIZATION Levtttuuiiiiiiiettitiisesssessssseeesstesssseesstests ettt 15
2.2 AASSUM PTIONS/ A SSERTIONS ...tttttttsesssnns 16
2.3 (@)Y N BT =T N O =N 1 = = T 18
3 TECHNOLOGY NEUTRALITY oo 19
4 REQUIREMENTS AND CAPABILITIESc..ooi ittt et 23
5 SYSTEM ARCHITECTURE ... 25
51 [0S = 1Y, L o= TN 25
52 CONTEXT MANAGEMENT RESPONSIBILITY tuttuuiiiiiiiiettsuiiiiiesiiesssuiseesseessssieesssessssesseessss 34
53 CONTEXT CHANGE DETECTION .evtttuuiiiiiiiiettiiiiieeessessssiisessssesssssssessssssssssssessseesssssseesseessssnnns 35
54 CONTEXT DATA REPRESENTATION ...t tiiiiittttiiiieeesseesssaissessssesssssssessssssssseesseesssseesseesss 35
55 CONTEXT DATA ACCESS ..uuuiiiiiiettiieii e ee et eet st e e e s st eab s s e e s s e e s b b s e e s s e e s bbb s e eeseeabbb s e esseessbbaasass 36
5.6 CONTEXT DATA INTERPRETATION 11uuuiiiiiitttttiiieessieessssaseesseesssssssesssssssssseesssesssseesseesss 37
5.6.1 Establishing the Meaning of Context Data I1tem Namescccccooieiiiieniieniie e 38
5.6.2 Establishing the Meaning of Context Data Item Valuescocoooiiiiiiiniiniie e 39
5.6.3 Representing Context Subjects That Cannot Be Uniquely Identifiedcccceoiieinnnns 39
5.6.4 Context Subjects and Item Name FOrmMat...........ccooiuiiiiiiiiie e 40
5.6.5 Standard Context Data ItEMS...........coovviiiiiiii 40
5.6.6 Non-Standard ConteXt Data IEMS ... 41
5.6.7 Representing “NUI” ITeM ValUEScooiiiiiiiiiee e 42
5.6.8 Representing an Empty Context SUDJECTcouiiiiiiiiiiie e 42
5.6.9 Case Sensitivity with Regard to Item Names and Item Valuescccoooiiiiiiniicniiennn, 42
6 COMPONENT MODELcoooiiiii 45
6.1 COMPONENT AND INTERFACE CONCEPTS....ttttiiiiiiiiettitiiieiesssestsisssessssstbsassesssssssssaseesssesssssnnnes 46
6.1.1 Interfaces and REFEIENCES...........ooovvviiiiii 46
6.1.2 INterface INTErTOgATIONcoiuiii ettt 46
6.1.3 PrINCIPal INTEITACE ...t e e 47
6.1.4 Interface REfErenCe REGISIIYooiuiiiiii it 47
6.1.5 Interface Reference Managementooouii i e 47
7 PATIENT LINK THEORY OF OPERATIONcoooiiiii 49
7.1 PATIENT LINK COMPONENT ARCHITECTUREuttuuiiiiiiiittiiiiiiesseesstssseesssesssssasesssesssssssseesseessses 49
7.2 | = RS U= = o SN 50
7.3 PATIENT IMAPPING A GENT cutttuiiiiiiitttitsieeesseeatbtssseesssessbasseesseessbbaseesssessbbaasseessesssbaassseesseessses 51
7.4 CONTEXT CHANGE TRANSACTIONS. ... iiiiittttieieeesseestts s s eesssessbasseessssssba s sessseessbbaseesseessrsannsss 51
7.5 JOINING THE COMMON CONTEXT SYSTEM tuuuiiiiiiiitiiiiiiiiesieettiisseeesseesbbssssesssessssasnssesssessssssnseessnes 52
7.6 CONTEXT CHANGE TRANSACTIONS. ... i iiiiietttieieeesieestbis s s e essesssaa s eessssstba s seesseessbsseesserssssannsns 53
7.7 TRANSACTIONAL CONSISTENCY tuuuuiiiiiiietiiiiiieesiesstsiassesssessssseesssessssseesssessssnseesseesseaane 53
7.8 CONTEXT CHANGE NOTIFICATION PROCESSottt ettt eaa e e e s 54
79 LEAVING A COMMON CONTEXT SYSTEM ...iiiiitiiiiiieeiiirtiiiiieesssesstisssesssesssssssesssessssssseesseessses 56

Version CM-1.0 Copyright 1999, Health Level Seven 3

QOO ~NOUITDS WNPF

e
N

=Y
w

NNDNNNNNNNRPERPRRPERER
O~NOU PR WNREPOOONO Ol

N
©

NP OOWw~NO O WNPFPOOWNO O WN kO

Context Management Specification, Technology and Subject-Independent Component Architecture

7.10 BEHAVIORAL DETAILS. .. etetieitttt ettt ettt ettt sab et e s st e e e s eabe e e e s abe e e e e bb e e e e anbee e e s anbeeaeannreaans 56
7.10.1 Application Behavior When it Cannot Cancel Context Changes..........ccccooeveriieineeenneene 56
7.10.2 Application Behavior When it Does Not Understand Context Identifiersccccceee... 57
7.10.3 Application Behavior with Regard to an Empty Contextcccovieiiiiiiniiieinieeiee 57
7.10.4 SUPVEYING DBLAIS ...ttt et 57

7.11 COMMON CLINICAL CONTEXT USE MODELuviiiiiiieie ettt ettt e s 59
7.11.1 Lifecycle of COMMON CONEXL.........oiiiiiiiieiiie ittt st e e eea e 60
7.11.2 Context Selection Change USE CaSE........uuiiuiiiiiieiiie ettt 63
7.11.3 Abnormal Termination of Common Context USE CaSeccuvirereriiieriieiiieniee e 72

7.12 STAT ADMISSIONS.....tteteeuteeaeatteeaeateeeeaasbeeeeaaabeeaaabee e e s aabeeeeaaabeeeeabbe e e e aabeeeeeasbeeeeaanbeeesansneeesanres 74

7.13 OPTIMIZATIONS .t tutteeeeetteee e ettt e e e abee e e s aabe e e e e abbe e e e e bbe e e e aabeeeeaabe e e e abbe e e e anbeeeeenbeeeeanbeeeeannneeesanreas 74

7.14 THE SIMPLEST APPLICATION . ¢ utttteitteeasauteeaesauteeasauseeeasasseeasaseeeasanseeesaasseeasasseeesanseeasansseeesannens 75

8 IMAPPING AGENTS ..ottt ettt ettt e e bt e bt e nb e e st e e nbeenbeenbe e 77

8.1 ASSUMPTIONS AND A SSERTIONSeeteiutteeeesutreeasaureeassasseeasaseeaesassesasaaseeeesasesessasseesssassesesansenessnns 77

8.2 INTERFACES. ...ttt ttttteesttee e e ettt e e s aab et e e s kbt e e e aab et e e e s be e e e et ee e e e aabe e e e snbe e e e aabbe e e s anbeeeeanbeeesanbeeeesanrenananns 78

8.3 THEORY OF OPERATIONttttetttttaeatteeasauteeasaasteeasauseeeaaasseeasasseeesanseeeaaasseeasaseeeasanseeasansseeesansens 79
8.3.1 Initializing a Context System When a Mapping Agent is Present............cccccceviieiieinncenn 80
8.3.2 Terminating a Context System When a Mapping Agent iS Present..........ccocceveeeiieeenneen 81
8.3.3 Distinguishing Between Mapping Agents and Context Participantsc.cccccevvveiinnnns 82
8.34 Mapping Agent Updates t0 CONEXE DALaueeiiieiiiiieiiie e 83
8.3.5 Conditions for Mapping Agent Invalidation of Context Changescccceoveverieenieennnnn. 83
8.3.6 Treatment of Mapping Agent Invalidation of Context Changes..........ccccevieiieiieeinieen 85
8.3.7 Mapping Null-Valued TAeNtIfiersoouii i 86
8.3.8 INitializing MapPiNg AGENTScueie ettt b e st et nees 87
8.3.9 Handling Mapping Agent FailUrescoouiiiiiiiiiie e 88

84 MAPPING AGENT EFFECT ON APPLICATION SECURITY POLICIEScoiiiiiiiieiiieieerieee e 88

8.5 IDENTIFYING MAPPING AGENT IMPLEMENTATIONS.tttteeuteeeeiaureeessseeeessnreeassssseeessnseesssnsenessnns 89

8.6 PERFORMANCE COSTS AND OPTIMIZATIONSvtteiutteeesuteeaeateeaessureeeesasseessaasseessaseeassanseesssnsseeens 89

9 USER LINK THEORY OF OPERATIONciiiiiiiiieiie ettt 91

9.1 USER LINK TERMS. ...t eitttteeittee ettt e ettt e sttt e e st e e s sttt e e s bee e e e eabe e e e e abe e e e e nb e e e e anbeeaesanbeeaeannrneans 92

9.2 DESKTOP ASSUMPTIONScceiutteteeauttraeaauteeasatseaasauseeassasseeasasseaesaabeeaaaasseeeeaasseeasanbeeeesanseeasansneeens 92

9.3 USER SUBUJECT ..etete ettt ettt ettt ettt e e sttt e e e s it et e e e aab e e e e o abee e e e aab e e a2 e abe e e e e bbe e e s ambeeaesanbeeaeannrnaens 92

94 USER AUTHENTICATION DATA ISNOT PART OF THE USER CONTEXT ...uvviiieiiieeeesiee e 93

9.5 USER LINK COMMON CONTEXT SYSTEM DESCRIPTION ...cciiiiiiiieeitieeesiieeessieeeessreeeessneeeessnneeens 94
951 USEr MAPPING AGENT ...ttt ettt et e e ate e e be e e be e e sbe e e anbeeanbeaanbeaans 94
9.5.2 Context Management INTEITACESuii it 95
9.5.3 AUthentiCation REPOSITONYioiiiiiiie ettt 95
954 Overall User Link Component ArChiteCtUIE...........oouiiiiii e 96

9.6 USER LINK SIGN-ON PROCESSutttieiittieeeitieaesateeaessiteeasssseaesssteeessasseeasassseeasanseeassanseeessssseeens 97

9.7 DESIGNATING APPLICATIONS FOR USER AUTHENTICATIONvviieiiiieeeiireeaesireeessreeaessneeeasanneeens 97

9.8 SIGNING ON TO APPLICATIONS NOT DESIGNATED FOR AUTHENTICATING USERS........coviiiieeenneen. 98

9.9 APPLICATION BEHAVIOR WHEN LAUNCHED ...ccciutiiieiiiieaeaiieeeesiteeaesieeeessreeaesssneeassnseesssnneeaeanes 99

9.10 MULTIPLE CONTEXT SUBJIECTS. ¢ euutteeeiuretasatreaasaureeasaauseeasasseaesassseassassssassassesesansessssanseeessnsseeens 99
9.10.1 The Effect of Multiple Subjects on the Meaning of “Link™...........ccccccoiiiiiiiniiniiieeniee 99
9.10.2 Context Manager Support for Multiple Context SUDJECTSccooiiiiiiiniiiiicee 100
9.10.3 Effect of Multiple Subjects on Context Change Transactioncccocceeieeeneeeiinennnnn. 101
9.104 Context Manager Treatment of Multi-Subject Context Data...........ccccceeviiiiiiiiieinneen 102
9.10.5 Effect of Multiple Subjects on Mapping AgQeNntscceiieieiiieniie e 102
9.10.6 Application Treatment of Multiple SUDJECTS.........ocviiiiiiiiii e 103

9.11 ACCESS CONTROL LIST S, ttiieiitieeeeeittee ettt e e sbee e e s asbe e e e sbte e e s sabee e e s asbe e e e abbeeesaabeeeesanreeeeanreeans 103

9.12 EMPTY CONTEXTS ..tttieiitieaeittie e e ettt e e s ettt e e skttt e e sttt e e s sabe e e e e kb e e e e e bbe e e e ambae e e s anbee e e snbe e e e annreeeeanres 103

9.13 CHANGING USERS......ciiiiitttieeitteee sttt e et a sttt e e e et et e e e asbe e e e s b et e e e aabee e e s bbe e e e aabeeeesanbeeeeanbeeenanres 103

4 Copyright 1999, Health Level Seven Version CM-1.0

O©Coo~NOULE WNBE

=Y
o

el e Nl <l o
ONOUDRWNER

19

Context Management Specification, Technology and Subject-Independent Component Architecture

9.14 LOGGING-OFF AND APPLICATION TERMINATIONuviiiiiiiieeesiteeassireeesareeassamseeassnsseeasssneesssnsens 104
9.15 AUTOMATIC LOG-OFF ..ottt ettt ettt ettt et ettt e s st e e e s st e e e e abbe e e e aabee e e s aabeeeeannreeans 107
9.16 REAUTHENTICATION TIME=OUT ..itttieiiutieeestiee e e ettt e e s sabee e e ssbe e e s sbbe e e s smbaeaesanbeeaesnbeeasannneeesanres 107
9.17 BUSY APPLICATIONSutttieitttta ettt e e e ettt e e sttt e e s e bte e e s aabee e e s abbe e e e s bbe e e e aabaeeesanbeeeesnbeeaeannreeesanres 108
9.18 Co-EXISTENCE WITH APPLICATIONS NOT USER LINK-ENABLED.......ctiiiiiiieeiiieee et 109
9.19 POPULATING THE USER MAPPING AGENT .ctteieeitieeeesteeeesaiteeesssteaassbaeassamseeasssseeassnseesssnnes 109
9.20 AUTHENTICATION REPOSITORYeviiiiitieeeitieeeeatteaesastee e e sttt e e s sabeeeesasbeeassnbeaesanbneeesanreeessnneaans 110
9.20.1 Repository Implementation CONSIAEIatioNSceeiiiriiiiiiiie e 111
9.20.2 Populating the REPOSITONYcoiuiiiiiiiiiee ettt 111
10 CHAIN OF TRUST ...ttt sttt sb e bt sb st e e abeestnesrnenreens 113
10.1 USER CONTEXT CHANGE TRANSACTIONS AND THE CHAIN OF TRUSTcvviiiiiiiee et e 113
10.2 CREATING THE CHAIN OF TRUST ... tttieeiittea e sttt e e sttt e e s ritee e e sste e e s ssbee e s ssbsaasanseeeasanbeeaesnneeessnses 113
10.2.1 ODBJECE INFrASIIUCTUIES ...ttt ettt ettt eees 114
10.2.2 Secure CommuNICations ProtOCOIScoouuiiiiiiiiii e 114
10.2.3 Security BUIAING BIOCKScoouiiiiiiiie et 115
10.2.4 Security Attacks On the Chain Of TrUSE........ccoii i 117
10.2.5 Chain of Trust Implementation Limitations............cccveiiiiiiiiiiiiciee e 119
10.3 DIGITAL SIGNATURES AND CMA COMPONENTSuttieiutieeeitterasaireeesaseeeesasseeassasseeasssseesssnsees 120
10.3.1 Public Key / Private Key Encryption as a Means for Generating Signatures 120
10.3.2 Incorporation of Signatures into the Context Management Architecture......................... 122
10.3.3 Computing @ Digital SIgNAtUIE........coouieiiie e 124
10.3.4 PUDBIIC KeY DIStIIDULIONciiiiieiiieiiie ettt 125
10.34.1 Passcode Generation REQUITEMENTSccueiueerieieiiereeeesieesteetesteeseeeeesseeseeeeesseeneesneesseensesses 127
10.3.4.2 ProteCting PaSSCOOEScuviiierieeie ettt ettt ee st e sttt esteeneeeseesteeeeeneesseeseanean 128
10.3.4.3 ProteCting Private KEYSoiieie ettt ettt e st ente e steeneeeneesseeeeeneas 129
10.3.5 System Configuration REQUITEMENTSc..iiiiiiiiii e 129
10.3.6 Defending Against Replay AttaCKS.c.oiiiiiiiieiie e 130
10.4 T RUST RELATIONSHIPS. ... ttttetittieaeatteeasstseeesasteeassabseaesaabeeeesasbeeasabseeesaabeeeesanbeeaeaneeeasanreeananns 131
104.1 Trust Between Applications and Context Managerccooceeiuieiieinieeniee e siee e 131
10.4.2 Trust Between Context Manager and User Mapping Agent............cccooveeeniieniienienninens 131
10.4.3 Trust Between Applications and Authentication RePOSItOrYcccooieeeiiieiiiieiiieiiieens 132
10.5 CHAIN OF TRUST INTERACTIONS.......tttteeiuttttesatteeeesteeeesasteeeessseeasauseeasaassseasaseeessanseeassasseeessnsens 133
11 INTERFACE DEFINITIONS. ..ottt 137
111 INTERFACE DEFINITION LANGUAGEcttiieitieieeiteee e sttt e e sttt e e s stee e e ssbee e s snee e e s smneeaesanbeeaesnneaens 137
1111 Interface Definition BOAYcc.ooiuiiiiiiii e 138
11.1.2 SIMPIE DALA TYPES. .. eteeinteee ittt ettt ettt et e e ettt e sbe e be e e sbaeesbaeesnbeaabeaan 139
11.1.3 EXCEPLION DECIAIALION.eiiiiie ittt 140
11.1.4 Lo [N L<] g (o0 T TP U PO PP PP UPPPRTPPPI 140
11.15 INEITACE RETEIEINCES. ... ittt 141
11.1.6 PrINCIPAl INTEITACE ...t 141
11.1.7 QUATITYING NAIMES. ... ettt ettt et e et e e e sebe e abe e e be e e nteee e 141
11.2 INTERFACE IMPLEMENTATION ISSUES.ceiiitiiiiiiiiei ettt e e sttee e s st e et e s bee e e s snee e e nnbe e e e snneee s 142
1121 NotImplemented EXCEPLION........ciuii ittt 142
11.2.2 GeneralFailure EXCEPLIONei ittt 142
11.2.3 COoUPON REPIESENTATION ...ttt sttt et e et e et e eees 142
11.2.4 Format for Application NAMES ..ot 142
11.2.5 EXIraneous CONtEXE TLEMS........uiii e e e 143
11.2.6 Forcing the Termination of a Context Change Transactioncccovviiiieniieniieennnn. 143
11.2.7 Character-Encoded Binary Data...........cocuieiuiiiiiiaiiie e 145
11.2.8 Representing Message Authentication Codes, Signatures and Public Keys..................... 146
11.2.9 Representing Basic Data TYPES S STHNQScoiuieiiieiiieiiiee it eiee e 146
11.2.10 Pre-Defined Mapping AGeNt COUPONSueiiieieriiieriiieiiieaniee et siee et e st eesieeesieee e 147

Version CM-1.0 Copyright 1999, Health Level Seven 5

OCO~NOUITRARWN -

48

49

50
51

Context Management Specification, Technology and Subject-Independent Component Architecture

11.3 INTERFACES. ...ttt itet ettt st sttt b e sh e st s s an e e e b e e e sb s e e sa bt e sar e e e r e e e sbae e sar e e sar e e er s 149
11.31 AuthenticationRePOSITOrY (AR)oi ittt 149
11.3.11 (004141 AP OP PP PSP 149
11.31.2 DUSCOMMECL ...ttt ettt btttk bbbt bbbt bbb e bt bt bt bbbt bt bt eb e bt et e ebe et et e ebeere e 150
11.31.3 SELAULNENTI CALTONDE@LEL ... eveeeeiiteste ettt sttt be st sbesbesbesbesbesresreneens 150
11314 Del eteAULNENtICaLIONDALA.........coveviitiiiiiteiieie ittt b e bbb e 151
11.315 GELAULNENTICAIONDELA. ... vttt sttt bbb sbesbesbesbesbesbesbesresreseens 152
11.3.2 (O00] 1) (1D L L= W (O 5) TP PP UUR TP 154
11321 GELITEMNBIMES ...ttt r e e et e ar e s e e e nr e e n e s re e reennesreenr e s 154
11322 D LI EEMS. ...ttt bbbt bbb bRttt bbb bbb bbb e 155
11.3.2.3 SETEMVAIUBS. ...ttt bbbt bbbttt b e et e b e be st et e sbeebesbesbesbenrens 156
11324 GEULEMVBIUES ...ttt bbbttt ettt ettt e st et et e abesbesbesbesnens 157
11.3.3 ConteXtMANAGET (CIM) ...ttt e ettt e st e et e nre e e 159
11.331 M OStRECENTCONTEXECOUPON ...ttt e teeeiee et et e sbe e be e beesabeesaeeesbeeabeeanbeesnneesneeeseeenees 160
11332 JOINCOMIMONCONEEXL ...ttt ettt sttt sttt e b see st sbe st e et e st e sbe et e b e ebesbeabesbesbeabesbesrennas 160
11.3.3.3 L eaVECOMMONCONTEXL ...ttt e sttt r e e b e nn e seear e nesneesreenennnas 161
11.3.34 S 1 (00001 (= (01 7= e =SS 161
11.3.35 00 (011 (O =T L= USSP 162
11.3.36 UNAOCONEXECNANGES. evveiteeeeeeesieesieeeesieesteeeesseeseeeneesteesseeneesseeseeaneesseenseaneesseenseaneesseensesnees 163
11.3.3.7 PUDbIi ShChanGESDECISIONceiieiiiiesie ettt e st nteereesteeneeaneesreeseanean 164
11.3.38 S0 o 1= a0 | et 7= 4 o) o ST 164
11.3.3.9 RESUMEPAITI CIPELION. ...ttt e ste et e st see st e steenee st e eeeeneesseenseemeesseeeeeneesseenseanean 165
11.34 ContextPartiCipant (CP)oi ittt 167
11.34.1 (@00]01 (= (@010 =S = 0o [oo S 167
11.3.4.2 (@00]01 (X (@ 7= 90 1= ST AN o o1 o]0 [P 168
11.34.3 ContexXtChangESCaNCEIEAccueei ettt et ee s e steeneesseeseeeneesseeneeenes 168
11344 CommONCONEXITEMMINGBLEA.eiviitiitirierierierie ettt b et sbesbesreseeseen 169
11.3.45 1o USSP 169
11.35 ImplementationInformation (1) ... 170
11.351 COMPONENENGITIE.ttt ettt ettt et et ettt be e et e e s aeeesbee e beeebeeambeaambeesbeeanbeeabenanneans 170
11.35.2 REVIMIGJOTNUM ...ttt ettt et e ee e et enteente st e eeeemee st e eeeeneeateeneeeneesseenseanean 170
11.35.3 REVIVIINOTNUITY ...kttt bbbttt bbbttt b bttt b et be st e b b re e 170
11.354 PAIENUMIDET ...ttt bbbttt bbbt b e b e b e b e bt besbe b e abenre e 170
11.355 IMTANUFBCEUTEY ...tttk bbb bbbkttt bbbt bt bt e bt bt b e be b e b e b e sre e 170
11.356 TAIGELOS.. ..ottt sttt sttt e bbb bRt E e Rt R R e R Rt b e Rt Rt bt bt bbb e bt et ebeerenns 170
11.35.7 TAIGELIOSREV ...ttt bbbt b bR E bbbt b b bbb bbbt renns 171
11.358 WHENINSEATEA ...ttt ettt b e eb et e bt esbe b e sbe b e 171
11.3.6 MaPPINGAGENT (IMA) ...ttt sttt et et e e st e e e snbeeaneeas 172
11.36.1 (@00]01 (= (@010 S-S = 0o [oo USSP 172
11.3.6.2 1o USSP 172
11.3.7 SECUFEBINGING (SB) .. .veeitiiiitiie ittt ettt ettt ettt ettt e b e e eae e snbe e bee e 174
11.37.1 INIEBEEBINGING ..ottt ettt e e e te et este e s ee st e e et eneesseeneeemeeaseeeeeneesreeneeanean 174
11.3.7.2 FiNAlIZEBINGING . ..ttt ettt et et ete e teenteeseesteeeeeneesteenseanean 176
11.3.8 SECUrECONIEXIDALA (SD) ...iteieiiiieiitie ittt ettt ettt et e e e sebe e snae e bee e 178
11.38.1 GELITEMNBIMES ...ttt e et e e s e e nr e e nnesreenreennenreenre s 178
11.38.2 SETEMVAIUBS. ...ttt bbbttt ettt e et e sb e beebe b e abeebesbesbesbenrens 178
11.38.3 GEULEMVBIUES ...ttt bbbttt b e bt et e b e b e e be et e st e ebesbesbearennens 179
12 BACKWARDS COMPATIBILITY L.ttt 181
APPENDIX: DIAGRAMMING CONVENTIONS ... 183
GO S S ARY ittt h e b E e e ekt e e e b bt e e e eR b bt e e e R be e e e e bee e e e anbe e e e araeeeaa 189
6 Copyright 1999, Health Level Seven Version CM-1.0

10

11
12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

Context Management Specification, Technology and Subject-Independent Component Architecture

Figures

Figure 1: Patient Linked APPliCALIONSc.eie ittt saee e saee e 12
Figure 2: Organization of HL7 Context Management Specification Documents...........ccccceeveeenieenne 15
Figure 3: Overall Role of the CMA SPeCifiCatioN.cooiiiiiiiiiieie e 18
Figure 4: COM/Java/lCORBA INteroperabilityecveereeiiieiieiiesiee et 21
Figure 5: Patient Selection Change USE CaSE..........uei ittt 28
Figure 6: Patient Context Automatically Changes within all Context Participant Applications......... 29
Figure 7: User Informed of Potential Data Loss and Cancels Context Change............ccccoveeevieeniennns 30

Figure 8: User forces Application AAA to Become Out of Synchrony with other Context Participants31

Figure 9: Context Participant Not Responding to Selection Change Request...........ccocoveveeeiieenieens 32
Figure 10: User Accepts Consequences of going ahead with Patient Selection Change with all

F N o o] Ter= (o gL O RPRR 33
Figure 11: Patient Link Component ArChiteCIUNE..........cooiviiaiiieiiee e 50
Figure 12: Patient Link Context Change PrOCESS..........coiiiiiiiia ettt 52
Figure 13: Common Clinical Context USE MOGE!cooiiiiiiiiiiii e 59
Figure 14: Common Context LifecyCle USE Case.......ocui ittt 60
Figure 15: Context Selection Change USE CaSEccicueiiiiiaiiie e riee ettt e e saee e sanee s 63
Figure 16: Abnormal Termination of Common Context USE Casecevereieiieeriee e 72
Figure 17: User Link Component ArChItECIUNccouiiiiiiieiie et siee ettt 96
Figure 18: User LinK Sign-0On PrOCESS........cuieiiiaiiieiiee ettt e teessbee e saee e saee e sbessbeessbeessaeeesnseesns 97
Figure 19: User Subject Context Data Mapped for Different Applications.............cccevceeiiiiineeennen. 109
Figure 20: SIgNING A MESSAGE.eeiuueiitei ettt ettt e ate et e e stee e saee e ssbe e s beeaabeeasbseesaseesnbeesbeeaabeeesaeens 122
Figure 21: Forming Signature Using Method Parametersccooiveeieeiiii e 123
Tables

Table 1: User Link-Enabled Application Behavior for Termination and Log-Offccccocceevene 105
Table 2: Chain of Trust Attacks and DEfENSESccoieiiiiieieeree e 118
Table 3: Handling Transaction INstigator FallUre ..o 144
Table 4: Character Representations for BasiC Dala TYPEScovuvieiieeiierinieie et 147

Version CM-1.0 Copyright 1999, Health Level Seven 7

10

11
12

13
14

15

16

17

18

19

20

21

22

23

24

Context Management Specification, Technology and Subject-Independent Component Architecture

Interaction Diagrams

Interaction Diagram 1: Common Context LIfECYCIE.......ouii it 61
Interaction Diagram 2: Suspending/Resuming Context PartiCipation.............cccoceveieiiieenensiieeene 62
Interaction Diagram 3: All applications accept the Changes...........cccooieeiiiiiii e 64
Interaction Diagram 4: An application conditionally accepts the changes; user decides to cancel

o 0= 0o = PSPPI 65
Interaction Diagram 5: An application does not respond t0 SUIVEYooveevieeeieienee e 66
Interaction Diagram 6: An application does not respond to change notification.............ccccoceeeeenee. 67
Interaction Diagram 7: An application responds after context change transaction has completed......68
Interaction Diagram 8: A non-surveyed application participates in context change...........c.ccceveeennee. 69

Interaction Diagram 9: An application conditionally accepts the changes; user decides to accept
CONSEOUENCES OF ChBNGE.... ..t e ettt ettt et sa bt be e st e e b e e e sae e e sabeesabe e e beeeanneas 70

Interaction Diagram 10: An application conditionally accepts the changes; user breaks link with

COMIMON CONMEEXE ...ttt ettt e b e sb e e se e e s b e e e b e e e sb e e e se e e san e e e nre e e arne s 71
Interaction Diagram 11: Abnormal Termination of Common CONtEXTcccevieeerereiiieeniee e 73
Interaction Diagram 12: Simplest APPlICALION..........uii it 76
Interaction Diagram 13: Context Change Transaction with Mapping Agentcccoeveveeieenieeene 82
Interaction Diagram 14: Mapping Agent Invalidates Context Change Transaction..............ccoceee.e. 87
Interaction Diagram 15: User Logs Off From One AppliCation............cooieeeiieiiiiiiiie e 106
Interaction Diagram 16: User Logs-Off From DeSKIOP.........cueiiveriiiireiiee e siee e 106
Interaction Diagram 17: Populating Authentication Repository with User Authentication Data......134
Interaction Diagram 18: User Link Context Change TranSaCtion............ccceevueeiiernieeeneeesiee e 135

8 Copyright 1999, Health Level Seven Version CM-1.0

[

o oA WDN

Context Management Specification, Technology and Subject-Independent Component Architecture

Preface

This document was prepared by Robert Seliger, Sentillion, Inc., on behalf of Health Level
Seven's Specia Interest Group for Visua Integration (formerly the Clinical Context Object
Workgroup --- CCOW). Comments about the organization or wording of the document should
be directed to the author (robs@sentillion.com). Comments about technica content should be
directed to ccow@list.mc.duke.edu.

Version CM-1.0 Copyright 1999, Health Level Seven 9

Context Management Specification, Technology and Subject-Independent Component Architecture

10 Copyright 1999, Health Level Seven Version CM-1.0

[

o oA WDN

~

10
11
12
13

14

15
16

17

18
19

20

21
22
23
24
25

26

27
28
29

1

Context Management Specification, Technology and Subject-Independent Component Architecture

Introduction

This document specifies the Health Level Seven Context Management Architecture (CMA).
This architecture enables multiple applications to be automatically coordinated and
synchronized in clinically meaningful ways at the point-of-use. The architecture specified in
this document establishes the basis for bringing interoperability among healthcare applications
to the point-of-use, such as the clinical desktop.

1.1 Clinical Context

Clinical context is state information that a user establishes and modifies while interacting with
healthcare applications at the point-of-use (e.g., aclinical desktop). The context is common
because it establishes parameters that should uniformly affect the behavior or operation of
multiple healthcare applications. The context needs to be managed so that the user has away
of controlling it, and so that applications have away of robustly coordinating their behavior as
the context changes.

Examples of clinical context includes but are not limited to:

The identity of a patient whose data the user wants to view or update viathe
applications.

The identity of the user who wants to access the applications.

A moment in time around which tempora data displays should be centered by the
applications.

A particular patient encounter that the user wants to review viathe applications.

Healthcare application devel opers often implement a common clinical context capability for
their own applications. However, there are currently no standards that enable independently-
developed applications to share acommon clinical context. Further, with the diversity of
application programming technologies currently available, a common context solution should
strive to be applicable to at least severa of the dominant and emerging technologies.

1.2 Links and Subjects

The approach taken for the CMA is to define the architecture that enables applications to
establish asingle link based upon a set of clinical subjects of common interest. The
applications automatically and cooperatively change their state whenever the user sets a new

Version CM-1.0 Copyright 1999, Health Level Seven 11

10
11
12
13

14
15
16

17
18

19
20

Context Management Specification, Technology and Subject-1ndependent Component Architecture

value for one or more of these subjects. Two link subjects are defined as core to the CMA, and
are therefore introduced in this document:

Patient, which enables the user to select the patient of interest once from any
application as the means to automatically “tune” all of the applications to the selected
patient.

User, which enables the user to securely logon once to any application as the means to
automatically “tune” al of the applications to the user.

Applications that share the same common context are said to comprise acommon context
system. These applications have established and maintain a common context link. There is only
one link, while there can be multiple subjects. However, in the vernacular that arose as the
CMA was being developed, it became useful to refer specific link subjects. This has given rise
to the terms such as Patient Link and User Link. An example of a set of Patient Linked
applicationsis shown in Figure 1.

Phi1E Hetild facr oo | | v

L S B Poma goica Ly e He

BlalipgfAmExe @@ sAIA wEH &
e Medcaon | Amt | Pt | On | Doousents |
oo
Gmkmied Pt i W ook ca Floeerd
Lt W
! it
10T TR STREET T T .
EIHBHEII'I Ea | vedesbacn [
e P Sorid Semusty
a2 amn
Nancy i
| Ermemnrme gk Eaath
1 BiF e MU
Furlow | , P
b Coslisimsasgs Parimpared B

FYTEST SESSION'Z Tiee only to werify conligucaticn,

Figure 1: Patient Linked Applications

The architecture for Patient Link was devel oped prior to the extensions defined for User Link.
In particular, User Link introduced substantial additional security-related capabilities. This
specification presents a single consolidated view of the overall CMA.

The CMA enables additional subjects to be defined in a manner that does not require changes
to the architecture. This capability is the basis for extensible standards-based context

12 Copyright 1999, Health Level Seven Version CM-1.0

N -

N o o0~ W

oo

10
11

12
13
14

15
16
17
18
19

20
21
22

23
24
25
26
27

28
29
30
31

32

Context Management Specification, Technology and Subject-Independent Component Architecture

management solutions that can evolve to address new requirements without requiring massive
architecture or application implementation changes.

1.3 Architecture Summary

The CMA defines the interfaces between applications, known as context participants, and a
coordinating component, known as the context manager. The CMA aso defines the policies
that govern the use of these interfaces and the interaction among and between CMA-compliant
applications can components.

Applications that share acommon context with each other, and the context manager that
mediates the applications, are collectively referred to as a common context system.
Applications only need to interact with the context manager in order to participate in a
common context system.

The data that defines the common clinical context for acommon context system resides in the
context manager. The data is organized as a set of name/value pairs that are grouped by
context subject (e.g., patient, user, etc.).

When the user performs an application gesture that instructs the application to change the
common clinical context (e.g., the user has selected a different patient), the application starts a
context change transaction. Context items can be added or removed, or have their values
changed, during a context change transaction. Only one transaction can be in progress a a
time.

When the application that instigated the transaction has completed its changes to the context
data, the context manager conducts a two-phase process to coordinate the propagation of the
context changes to the other applications.

In the first phase, the context manager surveys the other applications to determine which ones
can apply the new context, and which ones either cannot, or prefer not to. An application
cannot apply the changes if it is blocked, for example if it iswaiting for the user to enter data.
An application might prefer not to apply the new context if, for example, doing so might cause
the user to loose work-in-progress.

The context manager informs the instigating application of the survey results. If al of the
applications are willing to apply the new context, then they are all instructed to do so. If at
least one of the surveyed applications is blocked (“busy”) or prefers to keep the previous
context, then the user is asked by the instigating application to decide how to proceed:

The user can cancel the context change.

Version CM-1.0 Copyright 1999, Health Level Seven 13

10
11
12
13
14

15
16
17
18
19

20

21
22
23
24
25
26

27
28
29
30
31

32
33

35

Context Management Specification, Technology and Subject-Independent Component Architecture

The user can break the link between the instigating application and the other
applications. The new context is then applied only to the instigating application, while
the other applications remain linked together and tuned to the previous context.

The user can apply the changes anyway (as long as there are no busy applications).

The context manager broadcasts the decision to all of the context participants to complete the
second phase of the transaction. This approach ensures that the link among application is never
broken unless the user has performed an explicit gesture instructing that the link be broken.

Mapping agents are an optional CMA components that provide an automatic means for adding
data to the common context. The additional data augments the context such that all of the
participant applications can “tune” to the same subject even when they do not necessarily have
acommon way to identify the subject. The specific job of a mapping agent isto map the
context data set by the application that instigated a context change transaction to data that can
be interpreted by the other context participant applications. A mapping agent only interacts
with the context manager, so its existence is transparent to the applications.

Finaly, for situations in which the secure conveyance of a context change is required, the
“chain of trust” is defined. In the chain of trust, the applications and components in a context
system use digital signatures to identify themselvesin a manner that can be readily
authenticated but not easily violated. The chain of trust allows only trusted applications and
components to interact within a common context system.

1.4 Reading This Document

This document presents a comprehensive specification of the HL7 Context Management
Architecture. The precision of the specification becomes increasingly more detailed as the
document progresses. Severa of the early chapters present concepts that underlie the
architecture and lead the reader through the rationale for various architectural choices, while
all of the chaptersin this document include information that the reader should find pertinent to
the explanation of the CMA.

However, Chapters 5 through 11 all contain normative content and as such should be regarded
asthe core of the CMA specification. In particular, Chapter 11, Interface Definitions,
concludes the core specification with the complete set of CMA interface definitions, including
methods and their argument signatures. These interfaces are ultimately the basis for the
implementation of applications and components that conform to the CMA specification.

A compliant CMA application or component shall implement the relevant set of CMA
interfaces exactly as specified. A compliant application or component implementation shall
adhere to these interface definitions and to the policies specified throughout this document that
govern the use and behavior of these interfaces.

14 Copyright 1999, Health Level Seven Version CM-1.0

a b~ wDN =

© 00 N O

10

11
12
13
14
15

16
17

18
19

Context Management Specification, Technology and Subject-Independent Component Architecture

2 Scope and Objectives

The HL7 Context Management Architecture (CMA) enables independently developed
applications to share data that describes a common clinical context. This document emphasizes
the policies, protocols, software interfaces, and responsibilities applications must implement
and adhere to as participants in a shared context system.

A common context system is comprised of applications launched directly or indirectly by a
particular clinical end-user, wherein the applications share the same context data. Also
included in this system is a context management facility that enables applications to share the
context data.

2.1 Specification Organization

It is beyond the scope of this document to provide all of the details that are needed in order to
fully implement a conformant CMA system. The necessary additional details are coveredin a
series of companion specification documents. Asillustrated in Figure 2, these documents are
organized to facilitate the process of defining additional link subjects and to accelerate the
process of realizing the CMA using any one of avariety of technologies.

Technology Neutral Context
Management Architecture
Specification

Technology Specific

' Component Mapping
Specification

\ Technology-Neutral
Subject Data Definition
Specifications Technol ogy 1
Q Q Technlogy 2 Q
Subject A

Subject B Q Technology 3
Subject C

~

Technlogy X %
Technology Specific User Technology Y Q

Interface Specifications
Technlogy Z

Figure 2: Organization of HL7 Context Management Specification Documents

The context management subjects and technologies that are of interest are determined by the
HL7 constituency. Thereisan HL7 context management data definition specification

Version CM-1.0 Copyright 1999, Health Level Seven 15

10
11
12

13
14

15
16
17
18
19

20
21

22

23
24

25
26

Context Management Specification, Technology and Subject-Independent Component Architecture

document for each of the standard link subjects. Each document defines the data el ements that
comprise alink subject. Concurrent with the publication of this document, the following
documents have been devel oped:

Health Level-Seven Standard Context Management Specification,
Data Definition: Patient Subject, Version CM-1.0

Health Level-Seven Standard Context Management Specification,
Data Definition: User Subject, Version CM-1.0

Thereisan HL7 context management user interface specification document for each of the
user interface technologies with which CMA-enabled applications can be implemented. Each
document reflects the user interface requirements established in this document in terms of a
technol ogy-specific look-and-feel. Concurrent with the publication of this document, the
following document has been devel oped:

Health Level-Seven Standard Context Management Specification,
User Interface: Microsoft Windows OS, Verson CM-1.0

Finaly, thereis an HL7 context management component technology mapping specification
document for each of the component technologies that can be used to implement the CMA.
Each document provides the technol ogy-specific details needed to implement CM A-compliant
applications and the associated CMA components, as specified in this document. Concurrent
with the publication of this document, the following document has been devel oped:

Health Level-Seven Standard Context Management Specification,
Component Technology Mapping: ActiveX, Verson CM-1.0

2.2 Assumptions/Assertions

Key assertions and assumptions that were made during the course of developing the CMA are
indicated below:

The architecture does not intend to solve nor isit a substitute for solving the patient
identification probl em'. However, the architecture does attempt to accommodate

Yin general, patients cannot be reliably identified using their given name because given names are
not necessarily unique. Identifiers can be assigned, but often a single person accumulates multiple
patient identifiers over time. Thisis because the assigned identifiers are not universally unique, and
generally only refer to a population of patients known to a particular healthcare institution, or known
to asite within an institution. Government assigned identifiers, such as a social security number, may
not be unique, or may change over time. In general, there is currently no ssmple and reliable way to
identify the same patient across all possible systems that might contain data pertinent to the patient.

16 Copyright 1999, Health Level Seven Version CM-1.0

10
11
12
13
14

15
16

17
18
19

20
21
22
23

24
25
26
27

28
29
30

31
32
33

Context Management Specification, Technology and Subject-Independent Component Architecture

established means for achieving consistent interpretations of patient identification
information.

Architectural support for context data other than that which is used to identify patients
is a non-objective to the extent it complicates the architecture. However, the
architecture is currently applicable to awide range of context data elements.

Architectural support for distributed applications is a non-objective to the extent it
complicates the architecture. However, the architecture is currently applicable to
distributed as well as co-located applications.

Context management is not aform of data interchange nor isit a substitute for data
interchange. However, the common context might contain data that can also be
obtained by an application through data i nterchange mechanisms such as those based
upon HL7 (e.g., apatient’s name or date of birth in addition to a patient identifier).
When such datais provided, it is only as a means to smplify or optimize the sharing
of common context.

The context management facility is not visible to the clinical end-user. However, it
might be visible to a systems integrator or systems administrator.

The architecture is intended for usein clinical systemsthat are configured by an IT
staff. Ad-hoc installation and configuration of acommon context system by the
clinical user is a non-objective to the extent it complicates the architecture.

Thereis at most one context management facility per clinical desktop. However,
applications shall work correctly with any facility implementation that conforms with
the CMA specification. It isthe decison of the IT staff asto which facility
implementation is actually used by aclinical system.

Implementation complexities will be shifted to the context management facility, as
opposed to the applications, whenever this tactic is practical and reasonable.
Minimizing the burden for the application developer is valued as an essentia element
for attracting the participation of the widest possible array of applications.

It is assumed that the clinical data used by applications that share a common clinica
context are appropriately synchronized (e.g., via back-end data interchange) to the
degree necessary to ensure the consistent interpretation of the common context.

It is assumed that any application that has been activated by the user can be used to set
the user’s common clinical context as long as the application conforms to the CMA
specification. This enables multiple applications to provide context setting capabilities,
which is convenient for the user.

Version CM-1.0 Copyright 1999, Health Level Seven 17

a b~ WO DN PP

© 00 N O

10

11
12
13
14

15

Context Management Specification, Technology and Subject-Independent Component Architecture

It is assumed that any application that does not understand or is otherwise unable or
unwilling (e.g., for security reasons) to respond to a change in the common clinical
context will ignore the change. However, any application that chooses to ignore a
context change must clearly indicate its decision, for example by blanking its data

display and/or minimizing itself.

2.3 CMA Design Center

The CMA specification is primarily aimed at enabling interoperability in the form of
application control by the end user. Applications that interoperate in this manner appear to the
user as visualy integrated. Thisis because the user can see ways in which the applications

interoperate.

Thisisin contrast to traditiona healthcare standards, which have been primarily aimed at
enabling interoperability in the form of data interchange between applications. Further, the
design focus for the CMA specification is applications that have a means for interchanging
clinical data. The overall role of the CMA specification isillustrated in Figure 3.

Not CMA Design Focus

CMA Desian Focus

Application
#1

(No Data Interchange)

Common
Clinical Context

“visual integration”

Application
#2

Application
#3

Database

[\\
Eb&/
- -

“data integration”

Common
Clinical Data

Figure 3: Overall Role of the CMA Specification

18 Copyright 1999, Health Level Seven Version CM-1.0

N O 0o 0N

oo

10

11

12
13

14
15

16
17

18
19

20

21

22
23

24
25
26

27
28
29

30
31

Context Management Specification, Technology and Subject-Independent Component Architecture

3 Technology Neutrality

As recently as one year ago, it would have sufficed to architect and implement a common
clinical context solution that was targeted specifically for the Microsoft Window platforms.
With the recent explosion of Web-based technologies, such as Java, this restriction is no longer
practical. Fortunately, it is possible to architect a solution that is not predicated upon a specific
technology. Specifically, in the architecture described in this document, the concept of
technology neutrality is also applied.

The term “technology neutral” does not mean that any technology is applicable. Rather, it
means that the common clinical context approach should work equally well with any one of a
candidate set of relevant technologies.

The candidate technologies considered for this document are based upon market leadership:

Inter-component communication: via Microsoft Automation through COM/DCOM;
viaany CORBA 2.0 compliant object request broker.

Programming languages: any language that can be interfaced with Microsoft
Automation and/or CORBA (e.g., VisualBasic®, C++, Java, MUMPS).

Operating Systems: Windows 95®; Windows NT®; any platform that can host a Java
virtual machine.

The primary reason that technology neutrality is practical is because all of these technologies
have alot in common, including:

They are al based upon object-oriented principles.
They are al embraced by Microsoft or are readily available on Microsoft platforms.

These two points have an interesting consequence: the technol ogies are compatible and
interoperable. This makesit alot easier to be technology neutral. For example:

CORBA supports multiple programming languages. Support aready exists for C,
C++, Smdlltalk, Java, and MUMPS. Objects implemented in any of these languages
can transparently interoperate using CORBA..

COM supports multiple programming languages. Support aready exists for C++,
VisualBasic, ObjectPascal, Java, and MUMPS. Objects implemented in any of these
languages can transparently interoperate using COM.

Most vendor’'s CORBA object request brokers enable CORBA objects to transparently
interoperate with COM objects.

Version CM-1.0 Copyright 1999, Health Level Seven 19

A W

© 00 N O O

10

11
12

Context Management Specification, Technology and Subject-Independent Component Architecture

Microsoft’ s Java virtual machine enables Java objects (applets) to transparently
interoperate with COM objects.

Java objects (applets) can transparently communicate with remote Java objects using
the Java Remote Method Invocation (RMI) mechanism.

Given the synergistic state of the dominant object technol ogies, the emphasis of this document
is on the structure of the common context system, the roles and responsibilities of the
components that comprise the system, the precise definition of the interfaces they need to
implement in order to be participants, the interactions between the components (via their
interfaces), and a host of architectural decisions that are intended to result in arobust,
practical, and useful common context solution.

Figure 4 illustrates a COM-encapsul ated Java object that interoperates with other COM
objects, and C++ and Java CORBA objects that interoperates with other CORBA objects.

20 Copyright 1999, Health Level Seven Version CM-1.0

Context Management Specification, Technology and Subject-Independent Component Architecture

aCOM
Object

IDispatch

-

C++ /

CORBA

Object
C++
Object
Request
Broker
Library

Host platform

IUnknown

J - com-

encapsulated
Java object

(applet)

Microsoft Java
Virtual Machine

Windows
platform

Tool-generated
C++ CORBA
Interface Stubs

Virtua
Machine-
provided COM

wrapper

Tool-generated
Java CORBA
Interface Stubs

CORBA
Object
(applet)

Any Java
Virtual Machine

Host platform

Figure 4: COM/Java/CORBA Interoperability

Version CM-1.0 Copyright 1999, Health Level Seven

21

Context Management Specification, Technology and Subject-Independent Component Architecture

22 Copyright 1999, Health Level Seven Version CM-1.0

[

a b~ wDN

10
11

12
13
14

15
16

17
18

19
20

21
22

23
24

25

Context Management Specification, Technology and Subject-Independent Component Architecture

4 Requirements and Capabilities

The architecture described in this document is intended to serve as an extensible basis for
future, more advanced, common clinical context capabilities. However, for now, an attempt
will be made to focus on the immediate issue of developing arobust solution for sharing a
common patient selection context.

In a complete solution, at least the following issues need to be addressed:
Extensibility - how can new context el ements be easily added in the future?

Coordination - how can applications be coordinated so that they respond to context
setting changes in an orchestrated and manageable manner?

Flexibility - how can applications and common context managers be structured so that
they implement only the capabilities that they need?

Performance - how can applications and common context managers be structured so
that their temporal performance and utilization of computing resources is acceptable to
the end-user?

Localizability - how are internationalization issues addressed (e.g., local character
sets, etc.)?

Scalability - how is the performance of a common context system affected by the
quantity of active applications?

Applicability - how should context information be structured and managed so that
application behaviors are useful to the end user?

Usahility - what are the policies that govern the use of acommon context such that the
resulting application behaviors are intuitive and reasonable?

Verifiability - how will the correctness of independently developed common context
implementations be verified?

Architectural approaches that address these issues are presented next.

Version CM-1.0 Copyright 1999, Health Level Seven 23

Context Management Specification, Technology and Subject-Independent Component Architecture

24 Copyright 1999, Health Level Seven Version CM-1.0

A W DN

10

11

12
13

14
15

16

17

18

19
20
21

22

23
24
25
26
27

Context Management Specification, Technology and Subject-Independent Component Architecture

5 System Architecture

At the most abstract level, the Context Management Architecture (CMA) provides away for
independent applications to share data that describe a common clinical context. However, the
CMA must provide solutions for the following problems:

What is the general use model for a common context, from the user’s perspective?
Where does the responsibility for context management reside?
How are changes to context data detected by applications?

How is context data organized and represented so that it can be uniformly understood
by applications?

How is context data accessed by applications?
How is the meaning of context data consistently interpreted by applications?

Before drilling into the details of the complete CMA, this chapter presents approaches and
associated trade-offs for the problems listed above.

5.1 Use-Model

There are many possible use-maodels for acommon clinical context.

The extremes of application support for making context changes are represented by:
Context changes can be performed only viaasingle, distinguished, application.
Context changes can be performed via any application.

In the model chosen for the CMA, context changes can be performed via any application. This
is because it is not reasonable to assume the universal existence of a distinguished application,
and it is beyond the interests and scope of HL7 to specify one.

The extremes of application behavior when context changes are made are represented by:

When the user changes the context, the changes are automatically communicated to all
of the applications that share the context. Applications that are able and willing to
apply the context changes do so immediately. Applications that are unable or unwilling
to apply the context changes maintain their current context. It is assumed that the user
can easly determine which context an application is using.

Version CM-1.0 Copyright 1999, Health Level Seven 25

A W N P

o1

10

11
12
13
14

15
16

17
18
19
20

21
22
23
24
25
26
27
28

29
30
31
32
33

35
36

Context Management Specification, Technology and Subject-Independent Component Architecture

When the user changes the context, the changes are automatically communicated to all
of the applications that share the context. However, the context changes are only
allowed if al of the applications are able and willing to apply the context changes
immediately.

The model developed for the CMA is ahybrid of these two extremes that attemptsto enable a
high degree of automatic context management while also emphasizing clinical safety:

The likelihood that applications can become uncoordinated with regard to a common
clinical context is minimized.

The circumstances that can prevent context changes from being automatically applied
are expected to be infrequent.

The CMA model aso respects the challenges of retrofitting common context capabilities into
existing healthcare applications. Only modest assumptions about the capabilities of these
applications and technology used to develop them are presumed. The CMA model isas
follows:

All or part of the common context can be set by the user from any application for
which providing this capability is functionally relevant.

When the user changes the context, the change is automatically communicated to all of
the applications that share the context. The applications are expected to apply the new
context in aclinically meaningful manner. In general, applications are also expected to
apply the context changes immediately. Exceptions are described below.

An application may choose to defer applying a context change until some timein the
future. For example, an application that retrieves large medical image files (that
require substantial processing) might choose to not retrieve images each time a
different patient is selected as part of the clinical context. Instead, the application
might wait for an explicit directive or gesture from the user before actually retrieving
the image. An application that behaves in this manner must be sure that it does not
show data for an earlier context. Blanking-out its data displays or minimizing itself are
possible ways that this can be accomplished.

An application for which a change in the context might result in the loss of work
performed by the user can request that the user explicitly decide whether to proceed
with the context change anyway, or to cancel the change. The solicitation of user input
is performed by the application that is being used to change the context. The
solicitation includes an identification of the application for which work might be lost
and a description of the work that might be lost. An application that behavesin this
manner is expected to be able to discard its work in progress and apply the context
changesif instructed to do so. For example, a medication ordering application might

26 Copyright 1999, Health Level Seven Version CM-1.0

N -

© 00 N O O AW

10

11
12
13
14
15
16

17
18
19
20
21
22
23
24
25

26
27
28
29
30
31

Context Management Specification, Technology and Subject-Independent Component Architecture

indicate that the inputs for a medication order that has not yet been completed by the
user will be lost if the context is changed to a different patient.

When an application is unable to respond to a context change, perhaps because the
user left it waiting for user input, the user is asked to explicitly decide about how to
proceed. The solicitation of user input is performed by the application that is being
used to change the context. The solicitation includes the identification of the non-
responsive application and indicates that the application cannot respond to a context
change. For patient safety reasons, when there are applications that cannot respond to
the changes, context changes will not be automatically applied to the applications that
share a common context.

When it is not desirable or possible for context changes to be automatically applied,
either because there are applications for which work might be lost, or there are busy
applications that cannot be notified about context changes, the user can explicitly
interact with these applications to correct the situation, and then apply the context
changes. For example, the user might complete or terminate a dialog that was | eft open
in order to enable an application to apply the context changes.

When it is not desirable or possible for context changes to be automatically applied,
the user can also decide to apply the context change only to the application that is
being used to change the context. The decision to do thisistypically in response to an
interruption during which the user needs to momentarily divert her attention to a
different context for a specific application. The application is, in effect, disconnected
from the common context, and must clearly indicate this fact to the user in avisua
manner. The application can be subsequently instructed by the user to reconnect and
apply the common context. The common context may have changed between the time
the application was disconnected and the time it is reconnected to the common context.

A high-level summary of the interactions between applications when a clinical patient context
is changed isillustrated below. Figure 5 illustrates the use case actors (i.e. external forces)
involved in a context change such as a patient selection. (The actors are the user plus
applications, al of which are represented in the Jacobson modeling technique as stick figures.)
Figure 6 through Figure 10 illustrate some possible instances of the Patient Selection Change
Use Case from the user’ s perspective. Not all possible instances of this use case are provided.

Version CM-1.0 Copyright 1999, Health Level Seven 27

10
11

12
13
14
15
16

17
18

19
20
21

Context Management Specification, Technology and Subject-Independent Component Architecture

Participates In Participates In E 3
Healthcare
Healthcare

Application

Application
Patient Selection Change

|

Chooses

*

Authorized User

Figure 5: Patient Selection Change Use Case

Theinitial condition for each of the use case instances is that the currently selected patient is
Jane Doe. In each instance, the user changes the common clinical context by selecting the
patient Sam Smith. Some possible aternative outcomes follow:

28

Figure 6 illustrates all applications reacting to the context change by changing their
context to the patient “Sam Smith.”

Figure 7 illustrates an application (Application DDD) conditionally accepting the
context change and providing information describing work that could be lost if a
context change occurs at this time. The user deciding to cancel the change is shown.

Figure 8 illustrates a use case instance similar to Figure 7. However, the possible
outcome of the user deciding to force a context change within Application AAA while
the other applications remain with the original context is shown. This exemplifies
Application AAA disconnecting from the common context system. Once disconnected,
Application AAA’s context is no longer in synchrony with the other applications.

Figure 9 illustrates healthcare application DDD not responding to a selection change
request in atimely fashion. The user deciding to cancel the change is shown.

Figure 10 illustrates the user being notified of potential data loss if selection change
proceeds. The user accepting these consequences and proceeding with the changeis
shown.

Copyright 1999, Health Level Seven Version CM-1.0

Context Management Specification, Technology and Subject-Independent Component Architecture

User Application AAA Application BBB Application CCC Application DDD

Sel¢cted patient is "Jane Doe"

| choose "Sam Smith"
select "Sam Smith"

select "Sam Smith"

select "Sam Smith"

change to
"Sam Smith" o

—

"Sam Smith"

change to
"Sam Smith"

| change to
"Sam Smith"

I change to
{"Sam Smith"

Selected patient is "Sam Smith" ﬁ

Figure 6: Patient Context Automatically Changes within all Context Participant Applications

Version CM-1.0 Copyright 1999, Health Level Seven 29

Context Management Specification, Technology and Subject-Independent Component Architecture

I choose "Sam Smith"

Application AAA Application BBB

Application CCC

Selected patient is "Jane Doe"

|

Application DDD warns
"You could lose work."

. select "Sam Smith"

select "Sam Smith"

select "Sam Smith"

Application DDD

change accepted

change accepted

= can | change

selection?

—

can | change
- selection?

—

can | change
selection?

S

Cancel selection

conditionally accept: "You could lose work."
cancel selection
cancel selection tj
cancel selection \—J

Selected patient remains "Jane

Poe"

2 Figure 7: User Informed of Potential Data Loss and Cancels Context Change

30

Copyright 1999, Health Level Seven

Verson CM-1.0

2

I choose "Sam Smith"

Application AAA

Application BBB

Application CCC

Context Management Specification, Technology and Subject-Independent Component Architecture

Application DDD

Selected patient is "Jane Doe"

|

> select "Sam Smith"

Application DDD warns
"You could lose work."

select "Sam Smith"

select "Sam Smith"

change accepted

can | change
selection?

change accepted

conditionally accepted: "You could lose work."

can | change
selection?

Apply only to
AAA

"Sam Smith"

cancel selection

cancel selection

cancel selection

=

Selected patient
is "Sam Smith"

can | change
selection?

Selected patient is "Jane Doe"

Figure 8: User forces Application AAA to Become Out of Synchrony with other Context Participants

Verson CM-1.0

Copyright 1999, Health Level Seven

31

Context Management Specification, Technology and Subject-Independent Component Architecture

User Application AAA Application BBB Application CCC Application DDD

Selected patient is "Jane Doe" ﬁ

I choose "Sam Smith"

AR select "Sam Smith"

select "Sam Smith"

select "Sam Smith"

Application DDD
= does not
| can | change respond to
L selection? selection
change request.
change accepted :l
can | change
LJ \; | selection?

| -

change accepted

Application DDD

did not respond
to selection

change request.

1
|

Cancel selection

1
| |
L]

cancel selection

cancel selection LJ

cancel selection LJ

Selected patient is "Jane Dpe" ﬁ

Figure 9: Context Participant Not Responding to Selection Change Request

32 Copyright 1999, Health Level Seven Version CM-1.0

Context Management Specification, Technology and Subject-Independent Component Architecture

User Application AAA Application BBB Application CCC Application DDD

Selected patient is "Jane Doe"

| choose "Sam Smith"

select "Sam Smith"

select "Sam Smith"

select "Sam Smith"

= can | change
selection?

can | change

\; selection?
change accepted T %I

can |
LJ change

selection?

conditionally accept: "You could lgse work." ’7 ;
Application DDD warns u \;

change accepted

"You could lose work."

Go ahead with selection change

\;J u accept selection change

accept selection change tj

accept selection change

Selected patient is "Sam Smith"

Figure 10: User Accepts Consequences of going ahead with Patient Selection Change with all Applications

Version CM-1.0 Copyright 1999, Health Level Seven 33

N

10
11
12

13
14
15
16
17

18
19
20
21
22

23

24
25
26

27
28

29
30

Context Management Specification, Technology and Subject-Independent Component Architecture

5.2 Context Management Responsibility

There are two fundamenta schemes for architecting the responsibility for context management:

Distributed: The responsibility for managing the common context is uniformly
distributed among the applications. There is no central point of common context
management.

Centralized: The responsibility for managing the common context is centralized in a
common facility that is responsible for coordinating the sharing of the context among
the applications.

In the distributed model, applications must either all know about each other, or at least form a
completely connected graph within which each application knows at least one other
application. Thisis necessary in order for the applications to communicate context and control
data among themselves.

Further, each application has the responsihility to act as a server for the common context in
addition to acting as a client of the context. Thisisto offset the fact that thereis no centra
point of ownership for the context, so each application must be capable of being an owner.
This may be elegant, but it does introduce implementation complexities and burdens on all
applications.

In the centralized model, applications only need to know about a common service or resource.
This service off-loads from the applications much of the burden of maintaining and managing
the common context. While a centralized service represents a single point of failure and a
potential performance bottleneck, it is neverthel ess the approach that is pursued in this
document. The primary reasons include:

It is smpler from the perspective of the application devel oper.

The consequence of the service being a single point of failure is offset by the fact that
the service and the applications it serves are typically co-resident on the same personal
computer. Failures, if any, will be localized to asingle user.

The consequence of the service being a performance bottleneck is offset by the fact
that the applications are far more likely to become the performance bottlenecks.

Given this basic system structure, the approaches for the other major architectural issues are
summarized next.

34 Copyright 1999, Health Level Seven Version CM-1.0

N

10

11
12
13
14
15

16
17
18
19
20
21

22
23
24

25

26
27

28
29
30
31

32
33

Context Management Specification, Technology and Subject-Independent Component Architecture

5.3 Context Change Detection

There are at least two distinct categories of architectural approaches for realizing acommon
clinical context system:

Pull-model: A shared component is used to maintain the shared context data.
Applications update this resource to change the data. Other applications periodically
poll the component to determine if the data has changed.

Push-model: A shared component is used to maintain the shared context data. This
component notifies applications whenever the data is changed. In order to receive a
notification, an application must have first explicitly indicated its interest in being
notified.

Both models have advantages and disadvantages. For example, the pull model is smpler to
implement (e.g., does not require applications to handle asynchronous notifications), but can
lead to performance prablems due to polling even when the context data has not changed.
Conversely, the push model can be the basis for better performance, but introduces additional
implementation complexity.

Both models introduce the additional challenges of synchronizing concurrent access to the
context data (e.g., to prevent two applications from attempting to change the data at the same
time). In addition, both models must deal with failures modes that can occur when independent
applications (i.e., applications that may be implemented as separate executables) are involved.
For example, an application that crashes in the middle of changing the context data may leave
the context data in an inconsistent state.

Given this analysis, the approach that is taken for the CMA is perhaps best described as a
robust push-model. Thisis apush model that deals with synchronization and partial failure
issues.

5.4 Context Data Representation

There are at least three distinct categories of architectural approaches for representing the
common context data:

Fully-populated objects: Objects are defined with properties and methods that model
the real-world entities that they represent (e.g., a patient, a provider, etc.). These
objects may be complex and involve arich structure (e.g., are comprised of alogical
network of objects).

Fully-populated messages: Messages (asin “HL7 messages’) are used to convey
detailed information about the context data.

Version CM-1.0 Copyright 1999, Health Level Seven 35

A W N P

© 00 N O O

10

11
12
13
14
15

16
17
18
19
20
21
22

23
24
25
26
27
28

29

30
31
32

33

Context Management Specification, Technology and Subject-Independent Component Architecture

Name-value pairs: A set of name-value pairs represent only key summary information
about the common context (e.g., just the patient’s name and medical record number).
The symbolic name for an item describes its meaning. The data types for the items
come from a set of smple primitive data types.

The fully-populated object approach is perhaps the purest approach, but is subject to
performance concerns. Copies of the objects could be produced and then communicated to each
application every time the state of the primary copy changes. However, thisinvolvesthe
performance cost of marshaling the objects. The problem is further compounded by the fact
that marshaling capability would need to be explicitly implemented in either CORBA or COM.
(Java RMI implicitly supports the capability to communicate objects by value.)

The fully-popul ated message approach is actually a stylized way of marshaling objects. While

it is appealing to think of leveraging existing healthcare standards such as HL 7, it is non-trivial
to implement the parsers and trandators to create and interpret these messages. Even if such an
implementation was commercially available, it is not clear that it would be desirable to require

that all of the applicationsin a shared context system be able to support HL7 messages.

The name-value pair approach represents the compromise that is pursued in this document.
Using smple primitive data types enables the values of the items to be easily communicated
between processes. Performance concerns are mitigated because an application will be able to
examine the values of only those items of interest in a single out-of-process access. (The
application smply indicates the names of the itemswhose valuesit isinterested in.) The
approach is also readily extensible, as new items (i.e., new name-value pairs) can easily be
added to the set of items.

All of the context data representation approaches described above are subject to establishing
semantic agreement about the meaning of the data. Thisis true whether the context datais
represented as objects, messages, or name-value pairs. The process for establishing this
agreement is beyond the scope of the CMA, and isinstead specified in a series of HL7 context
management subject-specific data definition documents. These data definitions are key to
implementing a plug-and-play common clinical context system.

5.5 Context Data Access

Any common context architecture must provide away for an application that has just started
to obtain itsinitia view of the common context. The pull-model implicitly solves this problem.
With the push-model, there are two basic approaches:

When the application joins the common context system, the necessary datais pushed
to it.

36 Copyright 1999, Health Level Seven Version CM-1.0

10
11
12

13
14
15
16
17
18

19
20
21
22
23
24

25
26
27
28

29

30
31
32
33

Context Management Specification, Technology and Subject-Independent Component Architecture

The data can be accessed from a well-known location, such as afile, or from the
component that is responsible for pushing changes to the context system participants.
Thisis, in effect, a speciaized use of the pull-scheme.

The approach to this problem is linked to the approach by which applications access the
context data for updating it, and the approach by which applications obtain the values for the
context data when it has changed.

The options are straightforward:

Each application maintains a copy of the context data. As changes occur, each
application updates its local copy accordingly.

A central “authentic” copy of the context datais maintained. Context data updates are
directed by applications to this copy. Applications access this copy in order to inspect
changes.

The approach in which each application maintains its own copy of the context data has an
eleganceto it. However, in the absence of an authentic copy, an application that has gotten out
of synchrony with its peers may have a difficult time restoring its notion of the common
context. Further, the communication costs of keeping all applications in synchrony can become
significant, particularly as the complexity and size of the common context increases over time
as additional common context items are defined.

The approach that is taken for the CMA isto maintain a single authentic copy of the common
context for each common context system. Applications can choose to cache context data or
they can smply access the authentic copy whenever they need to. Applications can also
selectively read or write specific context data name-value pairs. Further, when the context
changes, an application is only informed about the change and is not provided with the data
that has changed. The application can selectively access this data when it needs to.

This approach was chosen as a balance between performance and complexity. Performance
issues are addressed by enabling applications to have selective access to context data.
Complexity issues are addressed by not forcing applications to maintain their own copy of the
common context data.

5.6 Context Data Interpretation

In order for applications to apply common context datain a clinically consistent manner, they
must interpret the meaning of the datain a uniform manner. With context items represented as
name-value pairs, applications must be able to uniformly interpret both the meaning of the
name and the value of a context item, or determine that it cannot correctly interpret the item.

Version CM-1.0 Copyright 1999, Health Level Seven 37

o oA WDN B

o

10
11
12

13
14
15
16

17

18
19

20
21

22
23

24
25
26
27
28
29

30
31
32
33

Context Management Specification, Technology and Subject-Independent Component Architecture

Context data items logically represent two categories of information: data that identifies a real-
world entity or concept (such as a specific patient or a specific encounter), and data that can be
used to corroborate the identity data. Identity information is required in order to establish a
common context between applications that involves a real-world entity or concept.
Corroborating data can be used by applications and/or users as a basis for checking further
that the identified entity or concept is what was expected.

For example, a patient’s name can rarely be used to uniquely identify a patient. Typicaly, a
medical record number or similar identifier that is generally unique over some population of
patients for one or more clinical systemsis used. However, these identifiers are rarely
meaningful to the user. Corroborating data might be comprised of the patient’s name, sex, and
data of birth. This data provides applications and/or the user with an additional means to check
that the identified patient is the intended patient.

The clinical context is considered to have changed in a meaningful manner when identifier data
is changed. Applications are notified of changes to the context when identifier data, and
possibly corroboration data, are changed. Changes to corroboration data that are not
accompanied by associated changes to identifier data are not meaningful and are rejected.

5.6.1 Establishing the Meaning of Context Data Item Names

Given this approach of organizing context data itemsinto identity and corroborating data, there
are two basic techniques for establishing the meaning of context item names:

Apply a Context Management-specific information modeling process to identify and
define candidate clinical context item names and meanings.

Leverage names and their meaning as established by existing healthcare standards,
such as the HL7 messaging standard.

The approach that is taken for the CMA isthat existing HL7 messaging terms and their
meaning will be used as the default source for clinical context item names. New item names
and associated meanings will be created only when the HL7 messaging standard is not
applicable. The standard set of clinical context data context item names are specified in
separate HL 7 context management data definition specification documents. Only the specified
set of context dataitems shall be implemented by conformant systems.

The reason for this approach is that the value-added for HL7 context management is not in
defining clinical content, but rather in enabling new forms of clinically-rooted desktop-based
interoperability between independently-developed healthcare applications. Thereislittle
incentive to create new information models and develop new clinical concepts when there are
existing concepts, such as those already specified for HL7 messaging, which can be leveraged.

38 Copyright 1999, Health Level Seven Version CM-1.0

o oA WDN P

10
11

12
13
14

15

16
17
18

19
20
21
22
23

24
25
26
27

28
29
30
31
32
33

Context Management Specification, Technology and Subject-Independent Component Architecture

5.6.2 Establishing the Meaning of Context Data Item Values

The abstract data types used to represent context data item values will aso be leveraged from
the HL7 messaging standard. These types may be represented as strings encoded using a
simple subset of the HL7 character encoding rules. These types may also be mapped into
convenient technol ogy-specific data types. The actua clinical context data context item data
types are specified in the HL7 context management data definition specification documents.

There are two basic approaches for establishing the meaning of context item values:

Assume that each item has a value that can be globally interpreted by all of the
applications that share a common clinical context.

Provide multiple values for each item name such that each value represents that same
real-world entity or concept. Each application can apply the value it understands.

In some cases, it is safe to assume that a context item’s value can be globally interpreted by al
applications. For example, if a patient’s date of birth is defined to be a corroborating context
dataitem, the value of thisitem has a single global interpretation.

5.6.3 Representing Context Subjects That Cannot Be Uniquely Identified

Unfortunately, it is not possible to assume that all context subjects, such as patients, can be
identified using globally unique identifier values. For example, a patient cannot necessarily be
globally identified using a single identifier, such as a medical record number.

However, in these cases, there may be multiple synonymous identifier values, each of whichis
pertinent to a subset of the applications that share a common context. For example, a hospital
and its affiliated clinics may assign their own medical record numbers to the same patient
population. Applications, such as master patient index systems, enable tracking and mapping
between these values. The result is multiple distinct values that identify the same patient.

It is not the purview of the CMA to resolve global identification issues. It is within the scope of
the CMA to at least recognize that multiple identifier values may be necessary. Therefore, the
approach taken in this document is to support multiple identifier values for context items when
necessary.

An item that can have multiple values is actually represented as multiple items that have a
common name prefix but use a distinct name suffix. The prefix for an item, and the constraints
on values for the suffix, is defined in the HL7 context management subject-specific data
definition specification document within which the item is defined. The suffixes are configured
into an application using an application-specific process when the application isinstalled at a
site.

Version CM-1.0 Copyright 1999, Health Level Seven 39

10
11
12
13

14

15

16
17
18

19
20
21

22

23

24
25
26

27

28
29
30
31

Context Management Specification, Technology and Subject-Independent Component Architecture

The values for such items are provided either by an application when it changes the clinical
context, or by an external mapping agent. (See Chapter 8, Mapping Agent.)

Immediately following the item subject label isa short string that indicates the role of the item
in terms of whether it representsidentifier data or corroborating data. The string “id” shall
indicate the role of identifier data. The string “co” shall indicate the role of corroborating data.

5.6.4 Context Subjects and Item Name Format

All context items are organized by subject. Each subject represents a real-world entity or
concept that isidentified as part of the overall common clinical context.

Standard subject labels are defined in the HL7 context management subject-specific data
definition specification documents. The labels comprise the first part of each context data item
name. Examples of possible subject labels are “Patient” and “User”. Item name elements are
separated by a period (.). Words in multi-word item name el ements are separated by an
underscore ().

The general format of a context data item nameis:

Item_subject_label.roleitem_name_prefix.optiona_item_name_suffix

Examples of the name format for possible context dataitems is shown below. The name for the
items that represent a patient’s medical record numbers (MRN) for both a hospital and its
affiliated clinic (assuming that they use different medical record numbers):

“Patient.|d. MRN.St_Elsewhere Hospital”

“Patient.|d. MRN.St_Elsewhere Clinic”
The name for an item that represents a patient’ s date of birth might be:
“Patient.co.date_of bhirth”

The actua subject labels, item names, and rules for generating an item name suffix are
specified in each the HL7 context management subject-specific data definition specification
documents.

5.6.5 Standard Context Data Items

Each of the standard HL7 CMA subjects and associated context data items are defined in a
corresponding HL 7 context management subject-specific data definition specification
document. This includes the two core subjects, patient, and user, and their respective context
dataitems.

40 Copyright 1999, Health Level Seven Version CM-1.0

A W N P

o O

10

11
12
13
14
15

16
17
18
19

20

21

22
23

24
25
26
27
28
29

Context Management Specification, Technology and Subject-Independent Component Architecture

5.6.6 Non-Standard Context Data Items

Organizations, such as healthcare provider institutions and vendors, may define their own
context data items. These items may be in addition to the standard items defined for the
standard subjects. Non-standard subjects shall not be defined.

The names for such items shall only use the item role denoted by the string “zz” 2 This makes
it smple to distinguish standard and non-standard context data items. However, it is not
possible to indicate in an item’s name as to whether it is an identifier or corroborating data.

The item name prefix for a non-standard item can be the same as a standard item name prefix,
although this approach is discouraged because it can be confusing. An organization should
choose item name prefixes that are different from the standard item name prefixes.

Each such item shall always include an organizationally-defined suffix. This suffix shall denote
the organization that defined the non-standard item. It can be the case that non-standard items
defined by multiple different organizations will be part of the same system’ s context data set.
To prevent conflicts among data item names, an organization is encouraged to choose a suffix
that is unlikely to be the same as a suffix defined by another organization.

The assignment, format, and content of this suffix is not currently managed or specified by
HL7. In the future, HL7 will assign identifiers, per ISO/IEC 8824:1990(E) clause 28, that
enable an organization to have a unique suffix or set of suffixes. Organizations that choose to
use such an identifier will be guaranteed that their identifier is unique.

An example of a non-standard item representing the next of kin for a patient is:
“Patient.zz.next_of_kin.Galaxy_Medical_Systems”

Non-standard subjects shall not be defined using “zz" items. The use of subjects other than the
standard subjects defined by HL7 is non-conformant.

Organizations that define and/or use non-standard items should do so with the understanding
that applications that use these items may not easily interoperate with applications that do not
use the items. However, the definition of non-standard context data items can be an expedient
for implementing context management systems with specific, extended, capabilities.
Nevertheless, organizations are encouraged to work with HL7 to define new standard context
dataitems and subjects, and limit the use of non-standard items to interim solutions.

% The use of “zz” is motivated by the HL7 2.3 Data Interchange specification, in which Z segments
represent non-standard message segments.

Version CM-1.0 Copyright 1999, Health Level Seven 41

a b~ W N B

10

11
12

13

14

15

16
17
18

19

20
21
22
23

24

25

26

27

Context Management Specification, Technology and Subject-Independent Component Architecture

5.6.7 Representing “Null” Item Values

The value of a context identifier item or corroborating data item can be set to the distinguished
value of null to indicate that the item does not have avalid value. This capability provides a
means for an application to explicitly indicate it has not set avalid value for a particular
context item. For example, setting the value of the identifier whose nameis:

“Patient.|d. MRN.St_Elsewhere Hospital”
to null indicates that the application has not set avalid value for this identifier.

The actual representation of null is technology-dependent and is specified in each of the HL7
context management technology mapping specification documents.

5.6.8 Representing an Empty Context Subject

A context subject is empty when areal-world entity or concept is not currently identified. For
example, for the patient subject, this means that a patient is not currently identified.

An empty context subject is represented in either of two ways:
- There are no context identifier items.
- There are context identifier items, but the values for all of theseitems are null.

Theinitial state for all subjects in the context isthat they do not contain any identifier items.
See Section 7.6, Context Change Transactions. An application can explicitly establish an
empty context. See Section 7.10.3, Application Behavior with Regard to an Empty Context.

5.6.9 Case Sensitivity with Regard to Item Names and Item Values

Context item names are case insengitive. This means that case is not to be used for the
purposes of comparing names. Further, the case used to represent the same item name can be
different for different applications, and the case used to represent a particular item’s name at
one time need not necessarily be the same at a later time. For example, the item names:

“Patient.|d. MRN.St_Elsewhere_Hospital”
“patient.id.mrn.st_elsewhere_hospital”
“PATIENT.ID.MRN.ST_EL SEWHERE_HOSPITAL”

are dl equivaent.

42 Copyright 1999, Health Level Seven Version CM-1.0

w N

~N o o1 b~

10

11
12

13
14

15
16

17
18

19
20

21

22
23

24
25

Context Management Specification, Technology and Subject-Independent Component Architecture

A context item whose value is represented as a character string is also case insensitive, unless
otherwise noted in the HL7 context management subject-specific data definition specification
document that defines the item.

However, for consistency with the situations in which item values are case senditive, the case
used to represent the value for a particular item is preserved once the value has been set. The
casing for the item’s value is maintained until a different value is subsequently established for
the item.

For example, the following flow of eventsis alowed:

1.

An application sets the value of “Patient.|d. MRN.St_Elsewhere Hospital” to
“RS779238XZW".

An application gets the value of “Patient.|d.MRN.St_Elsawhere Hospital” as
“RS779238XZW".

An application sets the value of “Patient.|d. MRN.St_Elsewhere Hospital” to
“AS119292RUH".

An application gets the value of “Patient.|d.MRN.St_Elsawhere Hospital” as
“AS119292RUH".

An application sets the value of “Patient.|d. MRN.St_Elsewhere Hospital” to
“rs779238xzw”.

An application gets the value of “Patient.|d.MRN.St_Elsawhere Hospital” as
“rs779238xzw”.

The following flow of eventsis not alowed:

7.

An application sets the value of “Patient.|d. MRN.St_Elsewhere Hospital” to
“RS779238XZW".

An application gets the value of “Patient.|d.MRN.St_Elsewhere Hospital” as
“rs779238xzw”.

Version CM-1.0 Copyright 1999, Health Level Seven

43

Context Management Specification, Technology and Subject-Independent Component Architecture

44 Copyright 1999, Health Level Seven Version CM-1.0

[

a b~ wDN

~N O

10
11

12
13
14
15

16
17
18
19
20

21
22

23
24
25
26
27

28
29
30

Context Management Specification, Technology and Subject-Independent Component Architecture

6 Component Model

The architecture for acommon clinical context system is described in terms of components and
the interfaces they must implement in order to be participantsin the system. Only the
components and interfaces that are germane to the establishment and maintenance of a
common clinical context for a clinical desktop are described.

A role is described for each component, and the policies that govern the intended use of the
interfaces are detailed. These policies can be thought of as the patterns of allowed interactions
between components. Both normal and exceptional interactions are described.

The key components in acommon clinical context system are: a clinical context manager, one
or more context participant applications, and an optional mapping agent for each context
subject.

The context manager coordinates the applications each time there is a context change. It is also
the “owner” of the authentic context for the system. The context participant applications set
and/or get the context from the context manager. They must follow the policies established
later in this document in order to behave as proper context management “ citizens.”

A mapping agent is a service component that from the perspective of an application isa
transparent participant in a context change. A mapping agent’s primary roleisto add
additional subject-specific context identifier items to the context data. Thisis useful when a
subject is known to the various context participant applications via multiple distinct identifiers,
but only one or afew of these identifiers are known to the application that sets the context.

Additional context management components are aso defined, but serve in supporting roles. All
of the necessary components are detailed later in this document.

The context manager does not need to know about the functionality or specific features
implemented by any of the applications. Conversely, al applications perceive the context
manager through a uniform set of interfaces and capabilities. Further, the applications do not
need to know about each other in order to participate in the same context system. Findly, a
mapping agent is transparent to applications, as it interacts only with the context manager.

Applications and the context management components can all be independently implemented
and still interoperate as long as they comply with the CMA specification. The CMA
specification isin turn predicated upon an underlying component model, described next.

Version CM-1.0 Copyright 1999, Health Level Seven 45

o oA WN B

~

10
11
12

13
14
15
16
17
18
19

20
21
22
23
24
25
26

27

28
29
30
31
32

33

35
36

Context Management Specification, Technology and Subject-Independent Component Architecture

6.1 Component and Interface Concepts

The clinical context manager and the applications that participate in a common context system
are modeled in the architecture as components. The component model that is used is a high-
level hybrid of the component models defined by Microsoft for its Component Object Mode
(COM) and by the Object Management Group for its Object Management Architecture
(OMA).

6.1.1 Interfaces and References

In the hybrid model, components have one or more formally-defined object-oriented interfaces.
Each interface defines a semantically related set of operations (methods) that the component is
capable of performing. The interfaces implemented by a component represent the only way that
other components can interact with it. Each interface is denoted by a reference that can be
resolved at run-time to access the component instance that implements the interface.

Each method has a name and a set of inputs, outputs, and exceptions. The inputs enable a
component’s clients to parameterize the behavior of the method each time they request that it
be performed. The outputs enable the component to convey to a client the results that pertain to
having properly performed the method. The exceptions enable the component to convey to a
client the fact that something unexpected was encountered during the course of performing the
method (such as an error condition). A method completes by returning outputs or by raising
exceptions. Methods need not have inputs, outputs, or exceptions.

The methods defined for an interface are invoked using a binary calling sequence. This means
that the component that issued the call does not need to be aware of how the component that
services the call isimplemented. The components might be implemented using different tools
and libraries, and even different programming languages. Further, components can interact
with each other in alocation independent manner. A component only needs a reference to
another component’ s interface to perform calls against the component. Knowledge of the
physical location of a component that services acall is not needed.

6.1.2 Interface Interrogation

The interfaces that a component implements can be determined by other components at run-
time through direct interrogation. The interrogator uses the symbolic name of the interface, or
an identifier that denotes the interface, to indicate the desired interface. If the interface exists,
the component being interrogated returns a reference to the interface. Otherwise an error
indication is returned.

It is assumed that all of the interfaces defined in this document include a common method that
enables interface interrogation. The name and signature for this method is the same for al
components implemented using a particular technology. The details of this method vary for
different implementation technologies and are not specified in this architecture document.

46 Copyright 1999, Health Level Seven Version CM-1.0

N o 0ok WON

oo

10

11
12
13
14
15

16
17
18
19

20
21
22
23

24

25
26
27
28
29

30
31
32
33

35

Context Management Specification, Technology and Subject-Independent Component Architecture

6.1.3 Principal Interface

Every component implements at least one well-known interface, referred to as the component’s
principal interface. The principal interface includes the same interface interrogation method as
a component’s other interfaces. The name of the principa interface is the same for al
components implemented using a particular technology. The principal interface enables
components to perform initia interface interrogations because the name of the principal
interface is known a priori, and because all components implement it.

The details of the principal interface and the methods that it supports vary for different
implementation technologies and are not specified in this architecture document.

6.1.4 Interface Reference Registry

An interface reference registry is a service that contains references to component interfaces.
Components can use the registry to obtain interface references to each other. A reference can
be used to access a component via the referenced interface. Each reference is denoted in the
registry by a symbolic name and/or description. This enables components to |locate references
of interest based upon a symbolic and/or logical description of the reference of interest.

It is assumed that an interface reference registry is provided by the underlying implementation
technology. The means by which interface references are denoted and placed into the registry,
and the means by which components access the registry to retrieve the references, are

technol ogy-dependent.

Theregistry is assumed to be a well-known service that logically resides on each clinica
desktop. This means that each component on a desktop has an a priori technology-specific
means for knowing how to locate the desktop’ s registry. This provides all components on a
desktop with a common means to obtain references to each other.

6.1.5 Interface Reference Management

To ensure orderly system behavior, components must have a means of knowing whether or not
other components possess references to any of its interfaces. This enables a component to
determine when it needs to be in arunning state (because there is at least one other component
that possess a reference), and when it can terminate (because no components possess a
reference). The means by which thisis accomplished is technol ogy-specific.

It is assumed that each component that holds an interface reference performs an implicit or
explicit action, which is technology specific, that indicates it wants to use a particular interface
reference that it has obtained (e.g., from the interface reference registry). It is also assumed
that a component performs an implicit or explicit action, which is technology-specific, when it
no longer intends to use a particular reference. The latter action is referred to as disposing an
interface reference.

Version CM-1.0 Copyright 1999, Health Level Seven 47

Context Management Specification, Technology and Subject-Independent Component Architecture

48 Copyright 1999, Health Level Seven Version CM-1.0

8

9
10

11
12
13

14
15

16
17
18

19
20
21

22
23

24

25

26

27

28

29

Context Management Specification, Technology and Subject-Independent Component Architecture

7 Patient Link Theory of Operation

Patient Link enables the user to select a patient once, from any Patient Link-enabled application, as the
means for automatically “tuning” all of the Patient Link-enabled applications in the common context
system to the same patient.

Patient Link also establishes the foundation for al other context management “links’. For this reason,
many of the fundamental CMA principles and rules are explained in this chapter, but are framed in
terms of Patient Link so as not to become too abstract, and therefore hard to understand.

7.1 Patient Link Component Architecture

The following context management interfaces for Patient Link are modeled and illustrated in Figure 11:
Patient Link Component Architecture:

ContextManager (CM) - implemented by the context manager; used by applications to
join/leave a common context system and to indicate the start/end of a set of changesto the
common context data.

ContextData (CD) - implemented by the context manager; used by applications to set/get the
data items that comprise the common context.

ContextParticipant (CP) - implemented by an application that wants to participate in a
common context system; used by the context manager to inform an application that the context
has changed.

Implementationinformation (1) — implemented by the context manager and mapping agent;
used by applications, context management components, and tools, to obtain details about a
component’ s implementation, including its revision, when it was installed, etc.

Formal definitions of these interfaces, as well as example interactions between the components via
these interfaces, are presented later in this document.

Version CM-1.0 Copyright 1999, Health Level Seven 49

o 01~ W

o

10

11
12
13
14

15
16
17

Context Management Specification, Technology and Subject-Independent Component Architecture

Application #1 Application #N
Implementation Implementation
cp cP
CM CD

@<—Tool, etc.

Context Manager
Implementation

Common
Context
Data

@

Optional Patient Mapping (* Tool, etc.
Agent Implementation

Figure 11: Patient Link Component Architecture

7.2 Patient Subject

The context subject of Patient is defined for Patient Link. The context data identifier item for this
subject is an aplhanumeric patient identifier, such as a medical record number. The patient’s nameis
not used as an identifier.

Thisidentifier is unlikely to be universally unique. However, it is assumed that a population of patients
across which the identifier is unique can be established. Each such population isreferred to as asite, as
itistypical that each population of patients corresponds to a physical site within an overall healthcare
institution.

Consequently, a single patient may be identified using multiple patient subject identifier items. Each
item is differentiated by a different site-specific suffix. An application shall be configurable such that it
can be instructed on-site as to which suffix (of suffices) it isto use when it interacts with the context
manager to set or get patient context data

The format of a patient subject identifier item name includes a site-specific suffix. Use of this suffix,
and the values that may be assigned to this suffix, is at the discretion of each healthcare ingtitution at
which a context management system is deployed.

50 Copyright 1999, Health Level Seven Version CM-1.0

A W N P

~

10
11
12

13

14

15

16
17

18
19

20
21
22

Context Management Specification, Technology and Subject-Independent Component Architecture

In addition to identifier items, the patient subject also supports corroborating data items. The actual
names, meaning, and data types used to represent the values for both patient subject identifier items
and corroborating data items are defined in the document Health Level-Seven Standard Context
Management Specification, Data Definition: Patient Subject.

An example of a patient subject identifier item appears below:

Patient Subject Identifier Item
Example Item Name Format: Example Item Name: Example Item Value:
Pati ent.|ld. MRN. site_name Patient.ld. MRN. St _El sewhere_Hospital RAS1958-12939213- 122

7.3 Patient Mapping Agent

An optiona patient mapping agent is also part of the common context system. The patient mapping
agent maps the identifiers for patients. Whenever an application sets the patient context, the context
manager instructs the patient mapping agent (if present) to provide any additional identifiersit knows
for the patient. The site-suffix for each of the mapped identifier items denotes the site for which the
patient identifier is valid, for example:

Patient Subject Identifier Item

Examples Item Names: Example Item Values:
Patient.|d. MRN. St _El sewher e_Hospi t al 123-456-789Q36
Patient.|d. MRN. General _Hospital 6668-3923-987122

Mapping agents are described in more detail in Chapter 8.

7.4 Context Change Transactions

All changes to the common context are governed by a context change transaction that isinitiated by an
application but is coordinated by the context manager:

An ingtigating application initiates a context change transaction and sets the patient context
within the context manager. This context contains the identity of the patient.

The context manager consults the patient mapping agent (if present) and it adds data to the
context manager’ s patient context. This data includes additional identifiers by which the
patient is known.

Version CM-1.0 Copyright 1999, Health Level Seven 51

N -

o oA W

9
10

11

12
13
14
15

16
17
18
19
20

Context Management Specification, Technology and Subject-Independent Component Architecture

The context manager surveys the other applications, and if the transaction completes, they
obtain pertinent patient context data from the context manager.

The high-level events that transpire when a user selects a patient are summarized in Figure 12. This
description assumes that a patient mapping agent is present. The patient mapping agent is presumed to
know the identifiers for all patients for all applications within the common context system. (See
Chapter 8, Mapping Agents.)

(2) Application tells the context manager to start

acontext change transaction and sets the context s
E}%()g L;asﬁr mS?;C s data to indicate the newly selected patient. (5) Each application indicates
interest from o - whether or not it can apply the
i‘:\ny application (6) If one or more of the applications Application | context.
on the clinical cannot or prefers not to apply the new YY
desktop context, the user is asked to decided

whether to continue, or cancel.

Application
XX
S

A

(4) Context manager tells the other applications that a
patient context has been proposed. The context manac
surveys the applications to determine whether each ca
apply the new context.

(7) Context manager tells each application to apply ne
context, or that the transaction has been cancelled.

Context
Manager

(8) Each application applies tt

(3) Context manager tells patient Application | context if instructed to do so t

mapping agent that context change is Patient 2z context manager. Each applic:
occurring; mapping agent supplies the en gets the new patient context fr
context manager with other identifers byl Mapping context manager.
which the patient is known. Agent

(Optional)

Figure 12: Patient Link Context Change Process

The details for how this process works and the responsibilities of the applications and CMA
components are described next.

7.5 Joining the Common Context System

Applications join acommon context system via the context manager for the system. The context
manager’ s ContextManager interface is used for this purpose. The application obtains a reference to
this interface by interrogating the context manager’s principal interface. A reference to the context
manager’ s principal interface is obtained from the desktop’ s interface reference registry.

An application typically retrieves the current common context data from the context manager’s
ContextData interface in order to establish itsinitial context. A reference to the context manager’s
ContextData interface is obtained by interrogating the context manager’s principal interface or by
interrogating the context manager’ s ContextM anager interface. The context data is represented as a set
of name-value pair items.

52 Copyright 1999, Health Level Seven Version CM-1.0

o oA WN B

~

10
11
12
13

14
15
16
17

18
19

20
21
22
23
24
25

26
27
28

29

30
31
32
33

Context Management Specification, Technology and Subject-Independent Component Architecture

7.6 Context Change Transactions

Once it is a participant within a common context system, the context manager will inform the
application of context data changes through the application’ s ContextParticipant interface. This data
can be changed by any of the participants in the common context system. A participant executes a
context change transaction to effect a context change. The transaction is coordinated by the context
manager and involves the instigator of the transaction as well as the other participants.

The ContextManager interface is for beginning and ending a context change transaction. The
ContextData interface is used for setting the new context data.

When a context change transaction is started, the context manager creates a transaction-specific
version of the context data. This version of the context dataisinitially empty and does not contain any
name-value pair items. Thisisto prevent data from the current context from becoming mixed with the
data for the new context. Items are added to the transaction-specific context data during the course of
the transaction.

This version of the context data is updated during the course of the transaction and is intended to be
visible only to the application that instigated the transaction. All other applications continue to view the
context data as it was when most recently published. The published context data is replaced with the
context data set during the course of the transaction when the transaction completes successfully.

Prior to the first context change transaction, the published set of context dataitems is empty. ltems are
added during the course of subsequent transactions.

While the context manager serves as a holder for the current context data, its semantic understanding
of the meaning of this datais intended to be minimal. Further, the specific items that constitute the
context data are not assumed to be hardwired into the context manager implementation. This enables
new context items to be defined over time without requiring changes to context manager
implementations. This includes context items that represent identifier data as well as corroboration
data.

Only one context change transaction is allowed at atime. Once it has started a change transaction, the
instigator of the transaction is free to update the context data via the context manager’s ContextData
interface.

7.7 Transactional Consistency

In order to ensure that changes to this set of items are self-consistent, a participant must explicitly
begin and end a context data change transaction. All of the context change operations that are
performed within the scope of the transaction are treated as a single logical unit of work. When the
transaction completes, either al of the changes are published, or none of them are. Other participants
that access the ContextData interface to read the context data values will see the values as they were

Version CM-1.0 Copyright 1999, Health Level Seven 53

N -

© 00 N O O AW

10
11
12
13
14

15

16
17
18
19
20

21
22
23
24
25
26
27

28
29
30
31

32
33

Context Management Specification, Technology and Subject-Independent Component Architecture

prior to the transaction. Only the instigator of the transaction will see the values as they are during the
course of the transaction. This prevents other participants from accidentally seeing inconsistent values.

This capability relies upon the proper use of context coupons, which are monotonically increasing
identifiers that are assigned each time a change transaction begins. The context manager provides the
instigator of a transaction with the context coupon when it is started. All other participants can only
obtain from the context manager the coupon for the most recently committed transaction. A coupon is
also provided as a parameter to most of the methods defined for the ContextData interface, thereby
enabling the manager to determine whether it should respond in terms of the transaction-in-progress or
the most recently committed transaction.

When the ingtigator of the context changesis done, it informs the context manager that the changes
have been completed. A context manager may unilaterally decide to terminate a transaction and undo
the changes if an application fails to indicate that it is done with its changes in atimely manner. (The
context manager decides how long “timely” is. How this value is determined is an implementation
decision.)

7.8 Context Change Notification Process

When the instigator completes the context changes, the context manager initiates a two-step change
notification process wherein it determines whether to publish the shared context data changes. This
process is inspired by the two-phase commit protocol used in many database systems to ensure
transaction consistency. For the purposes of managing a common clinical context, the protocol has
been smplified.

In the first step of the process, the context manager surveys the applications. Each applicationis
informed that there are a candidate set of context data changes and is asked to indicate whether it can
accept these changes. At this point, applications are provided with the context coupon vaue for this
change transaction. This enables the applications to access the context data changes in order to
consider specific data values as part of their decision about whether to accept the changes. Thisis
accomplished via the context manager’ s ContextData interface. It is possible for a participant to obtain
just the values that have changed.

The context manager gathers the results of the survey and provides them to the application that
instigated the context change. Depending upon the survey responses the application may be freeto go
ahead and publish the changes, or it may need to solicit guidance from the user about how to proceed.
This guidance is required when thereis at |east one surveyed application that:

is unable to apply the context change because it is blocked (e.g., it isa single threaded
application that has a modal dialog open); these applications are referred to as “ busy”

54 Copyright 1999, Health Level Seven Version CM-1.0

o b

10
11
12
13

14
15
16

17
18
19
20
21

22
23

24
25
26
27
28

29
30

Context Management Specification, Technology and Subject-Independent Component Architecture

might lose work performed by the user if it applies the context changes (e.g., the user was in
the process of entering data that would not be applicable in the new context); these applications
arereferred to as having “conditionally accepted” the context changes.

For each application in one of these states, the user is provided with a description that identifies the
application and explains its situation.

When user guidance is required, the following choices are offered:
Cancel - the context change is canceled; the context changes are not published.

Break Link - the context changes are applied just to the application with which the user
initiated the context changes. This application essentialy breaks away from the common
context system until the user explicitly instructs the application to rejoin the system. The
application that has broken away displays a distinct visual cue indicating that its context may
be different from the other applications (e.g., it might display awarning message in a
prominent location)®.

Apply - the context data changes are applied to al of the applications, including those that
indicated that they might loose work performed by the user; this choice is allowed only when
there are no busy applications.

It isthe responsibility of any application that enables the user to instigate a context change to present,
when necessary, a dialog that obtains the user’ s guidance as described above. The appearance of the
dialog and the commands that the user can choose from are specified in each of the HL7 context
management technology-specific user interface specification documents. Thiswill ensure a consistent
and familiar set of interactions for users across CMA-conformant applications.

The ability for any one application to require the user’ s direct involvement in mediating context
changes provides an important efficiency and safety feature.

The efficiency feature addresses the fact that changing the context may cause an application to loose
work performed by the user. Thiswork may be in the form of data entered but not yet saved by the
user, or may bein the form of an expensive computation (such as alengthy database retrieval) that
would need to be re-performed in light of a context change. Allowing the user to decide how to proceed
in these circumstances minimizes the likelihood that the user will unintentionally 1oose work.

The safety feature addresses the fact that it may not always be possible to force an application to
accept changes to the context data. Specifically, thisis the case for blocked, or busy, applications.

iy specific visual cue will be recommended within each of the HL7 context management technol ogy-specific
user interface specification documents.

Version CM-1.0 Copyright 1999, Health Level Seven 55

~N O OB W NP

oo

10
11
12

13
14
15
16

17
18
19
20
21

22

23
24
25
26

27
28

29

30

31
32
33

Context Management Specification, Technology and Subject-Independent Component Architecture

If context changes were automatically applied piecemesal to just the applications that could respond,
applications could become out of synchrony with regard to their clinical context, without the user being
aware of the situation. For example, the user might assume that after a context change, al of the
applications are displaying data for the same patient when in fact they are displaying data for different
patients. The approach described above avoids this problem. Thisis because the only time that an
application can become out of synchrony with regard to the clinical context used by the other
applications is when the user has explicitly instructed it to break away.

In the second step of the two-step change notification process, the applications in the common context
system are informed about whether or not the context changes are to be applied. If al of the surveyed
applications indicate that they accept the changes, then the changes are applied and are reflected as the
new context state. If the user indicates that the changes should be canceled, then the changes are
discarded.

Once a participant has been informed that the context data has changed, it is free to inspect the data to
obtain the new valuesif it has not already done so (again, using the context manager’ s ContextData
interface). The participants can also assume that all of the other participants are applying the same
context data.

In either case, the context change transaction completes when all of the applications have been
informed of the outcome of the survey. If the context manager is unable to inform an application of the
survey outcome, it will keep trying periodically, unless the manager determines that the application has
terminated. The periodic attempt to notify a non-responsive application does not prevent the transaction
from completing, nor will it prevent a new transaction from being started.

7.9 Leaving a Common Context System

When an application terminates, it explicitly leaves the common context system by informing the
context manager viaits ContextManager interface. At thistime, the context manager shall dispose of
any application interface references that it possesses, and the application shall dispose of any context
manager interface references that it possesses.

A diagram of the overall common context system model is presented in Figure 13, followed by
component interaction diagrams that represent typical common context data update transactions.

7.10 Behavioral Details

7.10.1 Application Behavior When it Cannot Cancel Context Changes

It is possible that an application that instigated a context change transaction cannot easily implement
the capability to cancel the transaction. In this case, it is acceptable for the application to not offer
canceling the transaction as an option to the user. The details of how this appears to the user are

56 Copyright 1999, Health Level Seven Version CM-1.0

N

3
4
5
6

o

10

11
12
13
14

15

16
17
18
19
20

21

22
23
24
25
26
27

28
29
30
31

Context Management Specification, Technology and Subject-Independent Component Architecture

specified in each of the HL7 context management technol ogy-specific user interface specification
documents.

7.10.2 Application Behavior When it Does Not Understand Context Identifiers

It is possible that an application is unable to interpret any of the context identifier items that were set
when the current context was established by another application. For example, the selected patient
might not be a patient known to the application.

An application that is unable to interpret any of the identifiers shall till participate in the context
change transaction. This situation is not a basis for the application to prevent the transaction from
proceeding. Specifically, the application shall not use the surveying process to reject the context
change.

However, at the completion of the transaction, the application shall clearly indicate to the user that it is
unable to apply the current context. The application shall not show any patient data. The details of how
this indication appears to the user are specified in each of the HL7 context management technol ogy-
specific user interface specification documents.

7.10.3 Application Behavior with Regard to an Empty Context

The context is empty when a context system isfirst initialized. (See Section 5.6.8, Representing an
Empty Context Subject). When this is the casg, al of the applications in the context system shall
clearly indicate to the user that there is no current context. The details of how this indication appears to
the user are specified in each of the HL7 context management technol ogy-specific user interface
specification documents.

7.10.4 Surveying Details

During the context change survey, the context manager informs each of the applications in the common
context system (except for the application that instigated the changes) that there are pending context
data changes. When an application is surveyed, it shall create avisual cue that indicatesit is about to
change its clinical context before responding to the survey4. It shall not change its context yet. The
context-changes-pending indication shall only be removed once the context manager has informed the
surveyed application about how to proceed.

Under normal circumstances, the application will eventually be notified by the context manager about
whether or not the context changes should be applied. However, if the context manager is unable to
inform the application about how to proceed (e.g., because the application blocked after responding to
the survey but before being notified that the context changes have been accepted), the user will at least

‘A specific visual cue recommended within each of the HL7 context management technol ogy-specific user
interface specification documents.

Version CM-1.0 Copyright 1999, Health Level Seven 57

A W N P

o1

10
11

12
13
14
15

16
17
18

19

20
21

22
23

24

25
26
27
28
29
30

Context Management Specification, Technology and Subject-Independent Component Architecture

be able to determine that the application may not be in synchrony with the other applications. Thisis
because the application is presumably still displaying avisual cue that indicates it might change its
clinical context. The fact that this cueis still being displayed after the context has changed clues the
user that there is a problem with the application.

An application can explicitly respond to a context change notification survey by indicating one of the
following:

Accept: It iswilling to accept the context data changes and to change its interna state
accordingly if the changes are published.

Accept-Conditional: It isin the midst of atask that might cause work to be logt if the user
does not complete the task; if the changes are published it is willing to terminate the task,
accept the context data changes and change its internal state accordingly.

If the changes are subsequently published, an application can defer changing itsinterna state until
some time in the future (for example, when it regains the focus for user-inputs). However, it must offer
avisual cue that indicates it not in synchrony with the new context. For example, it might blank out its
data display or minimize itself.

An application that cannot interpret the context data (e.g., does not know who the patient is) should
accept the changes. However, the application should clearly indicate to the user (e.g., by displaying a
message) that it cannot apply the current context data.

The context manager infers an implicit response from an application under the following conditions:

Terminated: the context manager has determined that the application has terminated without
first informing the context manager

Busy: the context manager has determined that the application is still running but is unable to
answer the survey (e.g., the application is single-threaded and has amodal dialog open)

It is not possible for a surveyed application to explicitly reject, and therefore prevent, a context change.

The context manager gathers the survey responses and returns them to the application that was used to
instigate the context change transaction. Applications that have responded with accept-conditional are
expected to also provide a succinct but informative description of the consequences to the user of
applying the context changes. The context manager then prepends the name of the application
(provided by the application when it joined the common context system) to the description. This
description is shown to the user by the instigating application.

>A specific visual cue is recommended within each of the HL7 context management technol ogy-specific user
interface specification documents.

58 Copyright 1999, Health Level Seven Version CM-1.0

A W N P

[e2 &)

10
11
12
13

14

15
16
17
18

19
20

21
22

Context Management Specification, Technology and Subject-Independent Component Architecture

The context manager also provides the instigating application with a succinct but informative
description about any applications that are busy. This description includes the name of the application.
Thisinformation is provided by the context manager on behalf of these applications, as they are unable
to do so for themselves. This description is aso shown to the user by the instigating application.

Applications that have terminated do not affect the survey process. The context manager considers
such applications to no longer be part of the common context system. Any information that the
manager is maintaining about terminated applications is discarded.

Applications that have suspended their participation in the context are not involved in the survey
process.

Applications that have joined the system but indicated that they do not want to participate in surveys
are not involved in the survey. However, they are informed along with the other participants whenever
the decision to accept the changes is published. (They are not informed about decisions to cancel
changes, as thisinformation would be irrelevant.)

7.11 Common Clinical Context Use Model

The Common Clinical Context Use Modd (Figure 13) illustrates a system with four actors (Authorized
User, Healthcare Application, Context Manager, and a System’s Administrator) applying forces on
three use cases. The use cases are Lifecycle of Common Context, Context Selection Change, and
Abnormal Termination of Common Context.

Common Clinical Context Svstem

Authorized User Context Manager

-

Healthcare Application
Svstem Administrator

Figure 13: Common Clinical Context Use Model

Version CM-1.0 Copyright 1999, Health Level Seven 59

~N O OB W NP

oo

10
11

12

13

14
15

Context Management Specification, Technology and Subject-Independent Component Architecture

The common clinical context system is presented by providing a diagram of each use case followed by
interaction diagrams illustrating different behaviora flows of the associated use case. Each use case
has an associated description, which is provided below. Further, for brevity the specific interface
names (ContextManager, ContextParticipant, and ContextData) are not used; their abbreviations are
used instead (CM, CP, and CD). Also, the word “interface” is abbreviated to “iface’. The diagram
notes (illustrated as a sheet of paper with corner folded over) are from a software developer’s
perspective, not the user of the application.

7.11.1 Lifecycle of Common Context

A common context does not initialy exist. An application must establish the common context. The
common context ceases to exist when there are no longer any applications participating in the common
context. Figure 14, Interaction Diagram 1, and Interaction Diagram 2 illustrate this use case.

Context Manage Healthcare
Application

Coordlnates Establlshes/ends

common context

Common Context Lifecycle

Chooses Patient

Authorized
User

Figure 14: Common Context Lifecycle Use Case

60 Copyright 1999, Health Level Seven Version CM-1.0

Context Management Specification, Technology and Subject-Independent Component Architecture

CM::JoinCommonContext(CP iface of AAA, surveyYes)
D MostRecentContext coupon=0
No items in the context.
I choose "Jane Doe"
— | |
{J CM::StartContextChanges
1 Transaction
Begins
context coupon
CD::SetltemValues *
CM::EndContextChanges Single participant,
- therefore, no survey
survey results empty is required.
CM::PublishChangesDecision("accept") I
"Jane Doe" \J
LJ Transaction
Complete
MostRecentContext coupon has a unique value.
- Items with values now in the context.
Possibly more
transactions.
Exit program

CM:LeaveCommonContext

— Did last participant
leave?

ﬁ e

Yes

Exit

L@

Interaction Diagram 1: Common Context Lifecycle

Version CM-1.0 Copyright 1999, Health Level Seven 61

Context Management Specification, Technology and Subject-Independent Component Architecture

CM::JoinCommonContext(CP iface of AAA, surveyYes)

CM::JoinCommonContext(CP iface of BBB, surveyYes)

CM::JoinCommonContext(CP iface of CCC, surveyYes) \J

CM::SuspendParticipation
I choose "Sam Smith"

]
J

CM::StartContextChanges
CD::SetltemValues [
CM::EndContextChanges
CP::ContextChangesPending
"accept”
P! While suspended participation,
survey results: all applications accept Application CCC is neither
surveyed or notified of context
CM::PublishChangesDecision("accept’) changes.
“Sam Smith*® CP::ContextChangesAccepted
L CM::ResumeParticipation
| choose "Kent Clark" u
CM::StartContextChanges i
CM::SetltemValues u
CM::EndContextChanges u
- CP::ContextChangesPending
"accept”
CP::ContextChangesPending
"accept”
survey results: all applications accept
Application CCC is
CM::PublishChangesDecision("accept”) once agdaln "
surveyed an
CP::ContextChangesAccepted notified of context
"Kent Clark" U changes.
CP::ContextChangesAccepted

Interaction Diagram 2: Suspending/Resuming Context Participation

62 Copyright 1999, Health Level Seven Version CM-1.0

A W N P

o1

Context Management Specification, Technology and Subject-Independent Component Architecture

7.11.2 Context Selection Change Use Case

The Context Selection Change use case assumes a patient context has been established. The user is currently
focused on one application, while severa other healthcare applications may be executing on the same host
machine. The user chooses to change the selected patient from “ Jane Doe” to “Sam Smith”.

Figure 15 illustrates this use case. There are severa possible instances of this use case which are provided in
Interaction Diagram 3 through Interaction Diagram 10.

Chooses Patient Participates In =~ ___—
Authorized /
User HeaIica.re
Application

Context Selection Change

Coordinates

Context Manager

Figure 15: Context Selection Change Use Case

Version CM-1.0 Copyright 1999, Health Level Seven 63

Context Management Specification, Technology and Subject-Independent Component Architecture

Appl on AAA ContextManager

CM::JoinCommonContext(CP iface of AAA, surveyYes)

D CM::JoinCommonContext(CP iface of BBB, surveyYes)

(I
!
L

CM::JoinCommonContext(CP iface of CCC, surveyYes)

I choose "Sam Smith"

-
b

CM::StartContextChanges

CD::SetltemValues

CM::EndContextChanges

CP::ContextChangesPending

“accept”

Possibly
concurrent
surveys. CP::ContextChangesPending

“accept”

survey results: all applications accept

CM::PublishChangesDecision("accept’)

CP::ContextChangesAccepted

Possibly
concurrent
notifications.

"Sam Smith" U

CP::ContextChangesAccepted

CD::GetltemValues

Possibly
concurrent
queries.

CD::GetltemValues

Interaction Diagram 3: All applications accept the changes

64 Copyright 1999, Health Level Seven Version CM-1.0

User

I choose

.
Application AAA

CM::JoinCommonContext(CP iface to AAA, surveyYes)

ContextManager

]

User is told that AN

Application CCC might

"Are you sure you want

to change?”

CM::StartContextChanges

CM::JoinCommonContext(CP iface to BBB, surveyYes)

Context Management Specification, Technology and Subject-Independent Component Architecture

.
Application BBB

CM::JoinCommonContext(CP iface to CCC, surveyYes)

-
Application CCC

CD::SetitemValues

CM::EndContextChanges

%

survey results:

Application CCC
conditionally accepted
with this consequence.

CP::ContextChangesPending

"accept’

CP::ContextChangesPending

“conditionally accept” and consequences

|
lose work in progress.

User is provided with

cancel

a description of
consequences of a
context change at this

time.

Completes work in progress

CM::PublishChangesDecision("cancel’)

CP::ContextChangesCanceled

CP::ContextChangesCanceled

choose "Sam Smith"

CM::StartContextChanges

Sequence of context
changes re-initiated.

New Transaction Begins

Interaction Diagram 4: An application conditionally accepts the changes; user decides to cancel changes

Verson CM-1.0

Copyright 1999, Health Level Seven

65

Provides
description of
why context
change is only
conditionally

accepted.

Context Management Specification, Technology and Subject-Independent Component Architecture

User is told that N
Application CCC
did not respond to
pending changes
survey.

User waits or N
makes
adjustments so
Application CCC
can handle
selection change.

I choose "Sam Smith"

CM::JoinCommonContext(CP iface to AAA, surveyYes)

"Application CCC not responding.”

cancel selection change

I choose "Sam Smith"

CM::StartContextChanges

CM::JoinCommonContext(CP iface to BBB, surveyYes)

CM::JoinCommonContext(CP iface to CCC, surveyYes)

CD::SetltemValues

CM:EndContextChanges

survey results: Application CCC not responding

CP::ContextChangesPending

“accept”

CP::ContextChangesPending

Application

CM::PublishChangesDecision('cancel”)

CM::StartContextChanges

CP::ContextChangesCanceled

Sequence of context
changes re-initiated.

Interaction Diagram 5: An application does not respond to survey

66

Copyright 1999, Health Level Seven

U New Transaction Begins

Version CM-1.0

Application CCC
not notified of
cancellation.

CCC busy and
does not
respond.

—
|

User

| choose "Sam Smith"

Context Management Specification, Technology and Subject-Independent Component Architecture

-
Application AAA

]

-
ContextManager

]

—‘ CM::JoinCommonContext(CP iface to AAA, surveyYes)

CM::JoinCommonContext(CP iface to BBB, surveyYes)

CM::JoinCommonContext(CP iface to CCC, surveyYes)

-
Application BBB

L

-
Application CCC

]

I

"Sam Smith"

CM::StartContextChanges

CD::SetltemValues [

CM::EndContextChanges U

CP::ContextChangesPending

“accept”

CP::ContextChangesPending

“accept”

survey results: all application accept

CM::PublishChangesDecision("accept”)

CP::ContextChangesAccepted

CP::ContextChangesAccepted

Application CCC

Context Manager
responsible for
attempting to notify
until a new

L transaction begins.

Interaction Diagram 6: An application does not respond to change notification

Verson CM-1.0

Copyright 1999, Health Level Seven 67

Same interaction would
occur if pending changes
were canceled.

busy and does
not respond.

User

| choose "Sam Smith"

Context Management Specification, Technology and Subject-Independent Component Architecture

]

-
Application AAA

I

CM::JoinCommonContext(CP iface to AAA, surveyYes)

-
ContextManager

I

"Application CCC not responding”

CM::StartContextChanges

CM::JoinCommonContext(CP iface to BBB, surveyYes)

-
Application BBB

]

CM::JoinCommonContext(CP iface to CCC, surveyYes)

H

-
Application CCC

I

CD::SetltemValues

CM::EndContextChanges

cancel selection change

survey results: Application CCC not responding

CM::PublishChangesDecision("cancel")

CP::ContextChangesPending

“accept”

CP::ContextChangesPending

CP::ContextChangesCanceled

Transaction Complete

“accept”

CP::ContextChangesCanceled

Late response to
change survey.

Interaction Diagram 7: An application responds after context change transaction has completed

68

Copyright 1999, Health Level Seven

Verson CM-1.0

Context Management Specification, Technology and Subject-Independent Component Architecture

User Application AAA ContextManager Application BBB Application CCC

CM::JoinCommonContext(CP iface of AAA, surveyYesL

CM::JoinCommonContext(CP iface of BBB, surveyYes)

Application does

CM::JoinCommonContext(CP iface of CCC, surveyNo) not want to be

U involved with
context change
I choose "Sam Smith" surveys.
CM::StartContextChanges
CD::SetltemValues
CM::EndContextChanges
CP::ContextChangesPending
[Application
. " CCC not
acce
P surveyed.
survey results: all applications accept L
CM::PublishChangesDecision("accept")
"Sam Smith"
CP::ContextChangesAccepted
L U Application
CP::ContextChangesAccepted CCC notified of

context
U change.

CD::GetltemValues

CD::GetltemValues H

Interaction Diagram 8: A non-surveyed application participates in context change
Version CM-1.0 Copyright 1999, Health Level Seven 69

Context Management Specification, Technology and Subject-Independent Component Architecture

User Application AAA ContextManager Application BBB Application CCC
CM::JoinCommonContext(CP iface to AAA, surveyYes)
CM::JoinCommonContext(CP iface to BBB, surveyYes
H—r CM::JoinCommonContext(CP iface to CCC, surveyYeL)J
| choose "Sam Smith" CM::StartContextChanges \-‘—r H
CD::SetltemValues \-‘J
CM::EndContextChanges \“J
CP::ContextChangesPending
"accept"
CP::ContextChangesPending L
survey results: Application "conditionally accept" and consequences
CCC conditionally accepted

User is told that L\ with this reason.
Application CCC ‘Are you sure y?u want to Provides
might lose work in change? L description of
progress. User is consequences
provided with a accept selection change of context
description of i
conseguences of CM::PublishChangesDecision("accept") change being
context change CP::ContextChangesAccepted accepted.

CP::ContextChangesAccepted H

Interaction Diagram 9: An application conditionally accepts the changes; user decides to accept consequences of change

70 Copyright 1999, Health Level Seven Version CM-1.0

Context Management Specification, Technology and Subject-Independent Component Architecture

User Application AAA ContextManage Application BBB| Application CCC
CM::JoinCommonContext(CP iface to AAA, surveyYes)
CM::JoinCommonContext(CP iface to BBB, surveyYes)
|-H CM::JoinCommonContext(CP iface to CCC, surveyYes) H
| choose "Sam Smith"

CM::StartContextChanges

CD::SetltemValues \"J

CM::EndContextChanges u

CP::ContextChangesPending
"accept"
CP::ContextChangesPending L
survey results: Application "conditionally accept" and consequence
CCC conditionally accepted
with this reason.

Useris told that D Are youhsure);o"u want to =
Application CCC change+ 7 description of
might lose work in) why context
progress. User is Break link change is
provided with a CM::PublishChangesDecision("cancel") only
description of CP::ContextChangesCanceled conditionally
consequences of a accepted.
context change at j U
this time. CP::ContextChangesCanceled

CM::SuspendParticipation

Selected patient is ['Sam Smith" ﬁ Selected patient is previously chosen patient.

Interaction Diagram 10: An application conditionally accepts the changes; user breaks link with common context

Version CM-1.0 Copyright 1999, Health Level Seven 71

a b~ W DN

~N O

10

Context Management Specification, Technology and Subject-Independent Component Architecture

7.11.3 Abnormal Termination of Common Context Use Case

The Abnorma Termination of Common Context Use Case involves a system administrator forcing the
termination of the context manager through some action. The common context participants are notified of the
termination of the common context.

Figure 16 illustrates the abnormal termination use case while Interaction Diagram 11 captures an instance of
this case.

Healthcare
Application

System
Administrator

Is Notified of

D

Abnormal Termination of Common
Congext

Coordinates

Context Manager

Figure 16: Abnormal Termination of Common Context Use Case

72 Copyright 1999, Health Level Seven Version CM-1.0

Context Management Specification, Technology and Subject-Independent Component Architecture

User Application AAA ContextManager Application BBB

CM::JoinCommonContext(CP iface of AAA, surveyYes)

CM::JoinCommonContext(CP iface of BBB, surveyYes)

|

Possibly
several
transactions.

i Some event
causes/tells to

R

CP::CommonContextTerminated

CP::CommonContextTerminated

Interaction Diagram 11: Abnormal Termination of Common Context

Version CM-1.0 Copyright 1999, Health Level Seven 73

N o 0ok WON

© o

10

11
12
13
14

15
16
17
18
19
20

21
22
23

24
25
26

27
28
29
30

31
32
33

Context Management Specification, Technology and Subject-Independent Component Architecture

7.12 Stat Admissions

A stat admission occurs when an application needs to enable the user to record information
about a patient even if an identifier for the patient is not known. In this case, the application
should indicate to the user that it is breaking its participation in the patient context, and then
break its participation upon user confirmation. Thisis because it is not possible for the
application to identify the patient, which is needed in order to change the common context. The
only reasonable recourse is for the application to break its participation in the common context.

7.13 Optimizations

There are severa optimizations that have been designed into the specification. These
optimizations are reflected in the interface specifications described in Chapter 11:

74

An application can indicate that it never wants to participate in the survey conducted
by the context manager when the context data changes. The context manager will
assume that such applications always accept the changes. Read-only data displays
represent a class of applications for which this capability is useful.

An application can selectively suspend its participation in the surveying process
without actually leaving the common context. This enables an application to perform
computational tasks without being interrupted by context changes. This also enables
an application to minimize its use of computational resourcesif it isin a state (e.g.,
minimized) in which responding to context changes provides no benefit to the user.
The application can subsequently resume its participation in the common context.

An application can abtain just the context data values that were altered by the most
recent change transaction. This capability will become increasingly useful as
additional common context data items are defined.

Multiple common context items can be accessed by an application in asingle
invocation of a context manager method. This optimizes performance by reducing the
number of calls an application needs to make to access context items.

When an application is notified about a context change, it is aso provided with the
context coupon value that it needs in order to access the context data. This smplifies
the design of applications because they do not necessarily need to keep track of context
coupon values.

Context managers can be implemented to conduct the change survey and the
subsequent change notifications in a concurrent manner, thereby decreasing the
amount of time it takes to complete these computations.

Copyright 1999, Health Level Seven Version CM-1.0

[

© 00 N O 0o~ W

10

11

12
13

14

15
16

17
18
19
20
21
22
23
24

Context Management Specification, Technology and Subject-Independent Component Architecture

Additional optimizations, such as enabling applicationsto indicate their interest in only being
notified when specific context data items change are candidates for future enhancements.

7.14The Simplest Application

The responsibilities that an application must implement in order to behave properly asa
participant in a common context system depends upon the application’ s functionality.
Applications that need to participate in the context change survey must implement
straightforward but non-trivial behaviors. However, for many applications it will sufficeto
implement avery small set of behaviors. Specifically, the simplest participants are those that
do not participate in the survey, do not set the context data, and only want to be informed when
context changes have been accepted. These applications only need to do the following:

1. Join the common context system viathe context manager’ s ContextM anager interface.

2. Implement the ContextParticipant method that enables the application to be informed
about accepted context changes.

3. Access the context data via the context manager’ s ContextData interface.

4. Leavethe common context system upon termination, via the context manager’s
ContextManager interface.

As Interaction Diagram 12 illustrates below, this amounts to implementing one method for
ContextParticipant. (The others can be stubbed with trivial default behaviors.) It also requires
using two ContextManager methods: one to join and one to leave a common context system.
Finaly, it requires using one ContextData method to access the context data. The application
does not necessarily need to keep track of the value of the context change coupon, as the
context manager each time a change occurs provides the correct coupon vaue to the notified
application. The result is that simple applications are not penalized for being co-participants
with applications that have more sophisticated needs.

Version CM-1.0 Copyright 1999, Health Level Seven 75

Context Management Specification, Technology and Subject-Independent Component Architecture

| choose "Sam Smith"

-
User Application AAA

]

CM::JoinCommonContext(CP iface to AAA, surveyYes)

"Sam Smith"

CM::StartContextChanges

Il

-
ContextManager

]

-
Application BBB

]

CM::JoinCommonContext(CP iface to BBB, surveyNo)

"

CD::SetltemValues

CM::EndContextChanges

survey results: all applications accept

CM::PublishChangesDecision("accept")

Interaction Diagram 12: Simplest Application

76 Copyright 1999, Health Level Seven

Verson CM-1.0

CP::ContextChangesAccepted

CD::GetltemValues

item values

CM::LeaveCommonContext

"

Context Management Specification, Technology and Subject-Independent Component Architecture

1 8 Mapping Agents
2 A mapping agent in a common context system provides a means to automatically supply
3 multiple synonymous identifiers for the same real-world entity or concept even when only one
4 identifier is known to the application used to instigate a context change. This mapping is
5 performed in a manner that is transparent to the user and to the applications in the context
6 system.
7 For example, multiple medical record numbers within a healthcare enterprise might identify a
8 patient. However, each application might only be able to denote a particular patient via just
9 one of these identifiers. When the user selects a patient using such an application, the
10 application sets the new patient context using the patient identifier it knows. The context
11 manager automatically delegates the task of mapping the provided identifier to additional
12 identifiers to a mapping agent. A master patient index system might serve as the basis for
13 implementing a mapping agent capable of mapping patient identifiers.
14 Mapping agents are not necessarily needed in order to realize a useful and correctly
15 functioning common context system. Specifically, mapping agents are not needed when each
16 real-world entity or concept has a single identifier that is already known to all of the
17 applications in the common context system. For example, there are healthcare enterprises that
18 have a uniform way to identify their patients.
19 The specification contained in this chapter is for a Patient Link mapping agent. However, other
20 kinds of mapping agents are envisioned for other types of common clinica context data.
21 Therefore, an attempt has been made to specify the mapping agent in away that will enable
22 forward compatibility with future CMA capabilities, such as additional context subjects.

23 8.1 Assumptions and Assertions

24 It is not an objective of the CMA to define how mapping agents should work or to prescribe or
25 assume a particular mapping agent implementation. Instead, a mapping agent is treated as an
26 abstraction. Interfaces are defined that enable mapping agents to be connected to context

27 managers for the purpose of aiding in the mapping of context identifiers between multiple

28 identifier spaces.

29 Additional assumptions and assertions include:

30 - When present, the mapping agent is the authority within a common context system on
31 the mapping between context identifiers.

Version CM-1.0 Copyright 1999, Health Level Seven 77

w N

~N o o1 b~

oo

10
11
12

13
14
15

16

17
18

19
20
21

22
23
24

25
26

27
28

Context Management Specification, Technology and Subject-Independent Component Architecture

A mapping agent does not alow an identifier to map to more than one real-world
entity or concept (e.g., a patient mapping agent does not allow a patient identifier to
map to more than one patient).

Thereis at most one mapping agent per context subject per clinical desktop. (Behind
the “scenes’ mapping agents may work together, or may be implemented using asingle
common service. However, thisis not visible to the context manager or the context
participants.)

A context manager does not know about the mapping agent implementation; a context
manager only “sees’ a mapping agent through its CMA-defined interface.

Context participant applications do not “know” about the mapping agent (or even if
there is one); the mapping agent does not “know” about context participant
applications.

The mapping agent may reside on a computer that is remote from the computer (s)
upon which the context manager(s) they serve reside; however, these computers must
be connected by a LAN or WAN whose performance is LAN-equivalent.

Mapping agents are an optional component of a CMA context management system.

8.2 Interfaces
The following interfaces are defined for and implemented by mapping agents:

MappingAgent (MA) - used by a context manager to inform a mapping agent that the
clinical context has changes pending and that the mapping agent should perform its
context data mapping responsibilities

Implementationinformation (I1) - used by a context manager to obtain details about
who implemented the mapping agent, when it was installed, etc., for the purpose of
creating detailed error reports

In addition, mapping agents to set/get context data items uses the context manager
ContextData interface.

The mapping agent interfaces are modeled and illustrated in Figure 11: Patient Link
Component Architecture.

78 Copyright 1999, Health Level Seven Version CM-1.0

o oA WN B

o

10

11
12
13
14
15
16

17
18
19
20
21

22
23
24
25
26

27
28
29
30
31

32
33

35
36
37

Context Management Specification, Technology and Subject-Independent Component Architecture

8.3 Theory of Operation

Assume, first, that one or more context participants have aready joined the same common
context and that they are connected to the context manager. Further, assume that the context
manager aready has an interface reference to a mapping agent’s MappingAgent interface.
How these references are obtained is described in Section 8.3.1, Initializing a Context System
When a Mapping Agent is Present.

Given these conditions, a context participant instigates a context change transaction via the
context manager’s ContextManager interface, sets the new context data via context manager’s
ContextData interface, and then indicates it is done setting the data via the context manager’s
ContextM anager interface.

At this point, before the other context participants are surveyed, the manager informs the
mapping agent that the context data has changes pending, via the mapping agent’s
MappingAgent interface (which issimilar to an application’s ContextParticipant interface).
The mapping agent blocks the context manager’ s method return until the mapping agent has
completed its mapping tasks. The proposed context data items that are available to the
mapping agent are exactly as the instigating participant set them.

The mapping agent reads the proposed context data via the context manager’ s ContextData
interface, and may set one or more additional context data identifier or corroborating items via
this same interface. The objectiveisfor the mapping agent to enhance the proposed context by
providing additional identifier or corroborating data in a manner that is transparent to the
application that instigated the transaction.

Applications (including the instigating application) are not allowed to set context item values
after the instigating application has completed its changes. However, the context manager
allows the mapping agents to make changes because it knows it is a mapping agent that is
setting the item values. How the context manager knows that it is a mapping agent will be
described later.

Once the mapping agent has completed its mapping tasks, the context manager surveys the
context participants and processing of the context change transaction is performed as usual.
With this approach, all of the synonymous values for an identifier will be set before the other
applications are informed via a context manager-initiated survey that the context has been
changed.

However, if the instigating application has set multiple values for a context identifier, and the
mapping agent detects an inconsistency among these values, then it informs the context
manager that the context change transaction has been invalidated. This is because the mapping
agent is the authority in a context system when it comes to mappings between identifiers.
Allowing the transaction to proceed could create confusion about the context among the other
context participants.

Version CM-1.0 Copyright 1999, Health Level Seven 79

w N

~N o o1 b~

oo

10
11
12

13
14
15

16
17

18

19
20
21
22

23
24
25
26

27
28
29
30

31
32
33

Context Management Specification, Technology and Subject-Independent Component Architecture

The details about the conditions under which a mapping agent can invalidate a context change
transaction are described in 8.3.5 Conditions for Mapping Agent Invalidation of Context
Changes.

When the mapping agent invalidates a context change transaction, the context manager does
not survey the participating applications. Instead, the context manager informs the instigating
application that the transaction has been invalidated. The instigating application then asks the
user to intervene to decide how to proceed.

The user can decide (viaadialog presented by the application that was used to instigate the
context change) whether to cancel the context change or to break the instigating application
away from the common context system. In either case, the context change transaction is
terminated and the context changes are discarded. Additiona identifiers are not mapped and
the other applications are not surveyed.

This approach gives the user the option of applying the context changes to just the application
used to instigate the context change while also preventing the other applications from becoming
confused about the context.

The details of this situation are described in 8.3.6 Treatment of Mapping Agent Invalidation of
Context Changes.

8.3.1 Initializing a Context System When a Mapping Agent is Present

A mapping agent and the context manager it serves must be connected to each other. There are
two ways in which this can be accomplished. Either the context manager connects to the
mapping agent, or the mapping agent connects to the context manager. The order in which this
connection occurs has significant impact on complexity and computing resource utilization.

The mapping agent could conceivably locate and connect to a context manager the same way a
context participant does. This requires that the connection be made before the first time a
context participant application sets the context. Thisis so that the mapping agent can be
instructed by the context manager to perform its mapping tasks.

A consequence of this approach is that a context manager will execute even if it is not actively
servicing any context participants. Further, the requirement that the connection be made before
the first time a context participant application sets the context introduces initiali zation-
sequencing complexities.

In genera there is no way to know when the first context participant will connect to a context
manager, so the only prudent recourse would be to launch the context manager and the
mapping agent as part of the boot-up process for the desktop they serve. Thiswould
complicate the installation process for context managers and mapping agents.

80 Copyright 1999, Health Level Seven Version CM-1.0

A W N P

© 00 N O O

10
11

12
13
14
15
16
17

18
19

20

21
22
23
24
25

26
27
28
29
30
31

32

Context Management Specification, Technology and Subject-Independent Component Architecture

The dternative is for the context manager to connect to the mapping agent. This approach
enables the connection to be deferred until the mapping agent is needed to service a context
participant. However, a means by which context managers can locate the necessary mapping
agent must be established.

Fortunately, the fact that there is only one mapping agent per context subject per clinical
desktop enables the location process to be easily implemented using the desktop’ s technology-
specific desktop interface reference registry. Specifically, areference to a mapping agent’s
principa interface is entered into the desktop’ s interface reference registry. The symbolic name
and/or description of the interface within the registry indicates the context subject that the
mapping agent maps. The context manager obtains this reference and usesit to interrogate the
mapping agent to obtain references to its other interfaces, such as MappingAgent.

An additional benefit of the manager-connects-with-agent approach is that it is not even
necessary for distinct connect/disconnect methods to be defined. Instead, the context manager
simply informs the mapping agent whenever the context manager has changes pending. The
context manager explicitly provides areference to its principa interface to the mapping agent.
The mapping agent then interrogates the context manager viaits principal interface to obtain a
reference to other context manager agent interfaces, such as the interface ContextData.

The sequence of eventsis shown in Interaction Diagram 13: Context Change Transaction with
Mapping Agent.

8.3.2 Terminating a Context System When a Mapping Agent is Present

To enable the orderly termination of the context system, the context manager shall implicitly or
explicitly dispose of any mapping agent interface references that it possesses prior to
terminating. The mapping agent shall dispose of any context manager interface references that
it possesses when it has completed its mapping actions for a context change transaction. The
means by which these disposals are effected is technol ogy-specific.

The consequence of these disposalsisthat at the end of a context change transaction, only
context participant applications will possess context manager interface references. If there are
no participants, then the context manager can properly terminate. (Participants dispose of any
context manager interface references that they possess prior to terminating. See Section 6.1.5,
Interface Reference Management.) This aso means that once the context manager terminates,
the mapping agent can also properly terminate.

Version CM-1.0 Copyright 1999, Health Level Seven 81

N -

~N o 0o~ W

oo

10

Context Management Specification, Technology and Subject-Independent Component Architecture

Context manager Context participant Mapping Agent

_ ContextM anager::Joi nCommonContext()

- ContextM anager:: StartContextChanges()

_ ContextData:: SetltemVa ues()

ContextM anager::EndContextChanges()

MappingAgent:: ContextChangesPending(Principal iface to context nhnager)
P

Mapping agent locates context
manager’ s ContextData interface

ContextData:: GetltemV al L:m()

ContextData:: SetltemV al ueﬁ()

Return from ContextChang%Pendi ng

Surveying the other context participants
occurs here

Return from EndContext»Chang&s()

Interaction Diagram 13: Context Change Transaction with Mapping Agent

8.3.3 Distinguishing Between Mapping Agents and Context Participants

When amapping agent is informed that a context change is pending, the context manager
provides it with two coupons. One coupon denotes the context change transaction; the other
denotes the mapping agent. The mapping agent coupon is not the same as any of the coupons
assigned by the context manager to the context participants.

The mapping agent shall use the coupon that denotes it whenever it sets context data viathe
ContextData interface. The context manager uses this coupon to determine that a mapping
agent, and not a context participant, is setting the context data. Only a mapping agent is

82 Copyright 1999, Health Level Seven Version CM-1.0

N -

N o 0o~ W

oo

10
11

12
13
14
15

16
17
18
19

20
21

22

23
24
25
26
27

28
29
30

31

Context Management Specification, Technology and Subject-Independent Component Architecture

allowed to set context data after the instigator of the context change has indicated that it has
completed the context changes.

8.3.4 Mapping Agent Updates to Context Data

A mapping agent only adds data to the context. A mapping agent can add additional context
identifier items. It can also add additional corroborating data items. These updates are
primarily for the benefit of the context participants other than the application that instigated the
context change.

Thisis because it cannot be assumed that the instigating application will re-read the context
data once it has completed its context changes. In contrast, the other applications do not read
the new context until they are surveyed, which occurs after the mapping agent has added data
to the context.

If amapping agent was alowed to change the values for context items that have been set by
the instigating application, it could be confusing to the user. Thisis because the user might see
differences between the context data as displayed by the instigating application and as
displayed by the other context participant applications.

Given this concern, a mapping agent shall not ater the values of any of the context data items
that have already been set by the instigating participant as part of the proposed context. Any
attempt to alter existing context data items by the mapping agent shall result in the context
Mmanager raising an exception.

A mapping agent shall not delete any of the context dataitems. Any attempt to delete context
data items by the mapping agent shall result in the context manager raising an exception.

8.3.5 Conditions for Mapping Agent Invalidation of Context Changes

A context subject is comprised of multiple identifier and corroborating data items, each of
which is represented as name/value pairs (see Section 5.4, Context Data Representation, and
Section 5.6, Context Data I nterpretation). It is the responsibility of every application that sets
these items to ensure that they are self-consistent. However, there are avariety of potential
item name and/or item value inconsistencies that a mapping agent must be able to detect.

Specificaly, if an application has set multiple values for a context identifier item, and the
mapping agent determines that these values do not al identify the same real-world entity or
concept (e.g., patient), the mapping agent shall invalidate the context change transaction.

Specifically, a mapping agent shall invalidate a context change transaction when:

Version CM-1.0 Copyright 1999, Health Level Seven 83

10

11
12
13

14

15
16
17

Context Management Specification, Technology and Subject-Independent Component Architecture

The instigating application sets more than one value for the same context identifier
item, but the mapping agent determines that at least two of these values identify
different patients.

The instigating application sets more than one value for the same context identifier
item, but the mapping agent knows that at least one of these values conflicts with a
value known to identify the patient.

There are situations in which the mapping agent must not invalidate a context change
transaction even though there are apparent context item inconsistencies. A mapping agent must
not flag what it believes to be inconsi stencies when in fact the suspect items might represent
reasonable application behaviors.

The following scenarios illustrate the desired mapping agent behaviors. Assume that there are
two patients, each with identifiers for two sites, and the mapping agent is able to map the
patient identifiers for both sites:

Patients and Their Site-Specific Identifiers

Institution John Doe Jim Smith
St. Elsewhere Hospital 123-456-789Q36 155-213-424Y 82
St. Elsewhere Clinic 2888-91922-W928 18291-81293-D812

The first two scenarios represent inconsistencies that the mapping agent must respond by
invalidating the context change transaction. The last three scenarios represent inconsistencies
that the mapping agent must ignore:

84 Copyright 1999, Health Level Seven Version CM-1.0

Context Management Specification, Technology and Subject-Independent Component Architecture

What the instigating
application does ...

Example ...

What the mapping agent
does ...

Sets two identifier values,
both with the intent of
dencting John Doe, but the
values erroneously denote
John Doe and Jim Smith.

Item identifies John Doe:

[Patient.ld.MRN.St_Elsewhere Hospital,
123-456-789Q36]

Item erroneously identifies Jim Smith:

[Patient.ld.MRN.St_Elsewhere_Clinic,
18291-81293-D812]

Invalidates the context change
transaction because the first identifier
value denotes John Doe, while the
second denotes Jim Smith.

Mapping is not performed.

Sets more than one identifier
pair, both with the intent of
dencting John Doe. The first
value is John Doe' s hospital
identifier, but the second
value is not John Do€' s clinic
identifier.

Item identifies John Doe:

[Patient.ld.MRN.St_Elsewhere Hospital,
123-456-789Q36]

Item does not identify John Doe:

[Patient.ld.MRN.St_Elsewhere_Clinic,
0000-00000-0000]

Invalidates the context change
transaction because while the first
identifier value is John Doe's hospital
identifier, the second value is known not
to be John Do€' s clinic identifier.

Mapping is not performed.

Sets only one context
identifier item and the name
of theitem is not known to the

mapping agent.

Item name not known to mapping agent:

[Patient.ld.MRN.Genera_Hospital,
6668-3923-987122]

Ignores this situation and does not
inform the context manager about
inconsistencies.

Mapping is not performed.

Sets more than one value for a
context identifier item, and
one or more of the item names
are not known to the mapping

agent.

Item name known to mapping agent:

[Patient.ld.MRN.St_Elsewhere Hospital,
123-456-789Q36]

Item name not known to mapping agent:

[Patient.ld.MRN.General_Hospital,
6668-3923-987122]

Ignores this situation and does not
inform the context manager about
inconsistencies.

Mapping is performed.

Sets the corroborating data to
values that are different (or
incomplete) as compared to
the corroborating data known
to the mapping agent

Application sets corroborating data containing
the identified patient’s name to “Jack Doe”

but mapping agent knows the identified
patient as “John Dog”.

Ignores this situation and does not
inform the context manager about
inconsistencies.

Mapping is performed.

a b~ wDN

© 0o N O

10

11
12

In summary, detectable incons stencies between identifier values are the only reason that a
mapping agent should invalidate a transaction. Transactions must not be invalidated when
unknown identifier names are used by an application or because of corroborating data

inconsistencies.

8.3.6 Treatment of Mapping Agent Invalidation of Context Changes

Applications that instigate context change transactions and then explicitly set more than one
identifier during a context change transaction shall explicitly handle the situation in which a
mapping agent invalidates a context change transaction. (Applications that set only one

identifier do not need to handle this situation.)

An ingtigating application is not provided with a means to distinguish between the invalidation
of a context change transaction and the presence of a busy application. These are clearly

Version CM-1.0

Copyright 1999, Health Level Seven

85

10
11

12
13
14

15
16
17
18
19

20
21
22
23
24

25
26
27

28

29
30
31

32

Context Management Specification, Technology and Subject-Independent Component Architecture

different situations, but are to be handled by an instigating application in the same way. The
application shall present adialog that clearly indicates that a problem has been encountered
while attempting to change the common context.

The dialog shall include a description of the problem that was encountered. The dialog shall
also enable the user to cancel the context change or to break the link between the instigating
applications and the other applications.

When the mapping agent has invalidated a transaction it shall not be possible for the user to
force acommon context change. If the user decides to break the link between the instigating
application and the other applications, instigating application shall only apply the context
changeto itself. This application shall break away from the common context and shall clearly
indicate to the user that it is not participating in the common context.

If the user cancels the context change, then the ingtigating application shall indicate this fact to
the context manager. Both the instigating application and the context manager shall discard the
current transaction. The context manager shall not survey the other applications.

Independent of the reason for which the mapping agent invalidated the transaction, the context
manager shall always provide to the instigating application the same user-friendly description
of the problem that was encountered. Thisisin order to keep things smple for the user, who is
unlikely to be concerned about the details of what went wrong. This description shall be
included in the dialog by the instigating application.

The appearance of the didog and the commands that the user can choose from are specified in
each of the HL7 context management technol ogy-specific user interface specification
documents. The wording for the user-friendly description that isincluded in the dialog is dso
specified in these documents. Thiswill ensure a consistent and familiar set of interactions for
users across CMA-conformant applications.

The sequence of events that occur when a mapping agent invalidates a context change
transaction is shown in Interaction Diagram 14: Mapping Agent Invalidates Context Change
Transaction.

8.3.7 Mapping Null-Valued Identifiers

A mapping agent shall not perform any mapping when the context subject is empty (See
Section 5.6.8, Representing an Empty Context). The net effect is that the context subject
remains empty, and al of the applications see the context as such.

86 Copyright 1999, Health Level Seven Version CM-1.0

A W

© 00 N o O

Context Management Specification, Technology and Subject-Independent Component Architecture

Authorized User Instigating Context Manager Mapping Agent Participating
Application Application

CM::JoinCommonContext(surveyYes)

CM::JoinCommonContext(surveyYes)

| chose "Sam Smith"

CM::StartConte tc—ganges()

CD::SetltemValues()

CM::EndContextGhanges()

MA::ContextChangesPending()

CD::GetltemValues|)

"invalid", "ID conflict|detected"

noContinue=TRUE, "MappingAgent: IDs map to two different patients"

‘Dialog D
presented to

user. User

informed of L cancel or break inJ
invalidation of
context change. CM::PublishChangesDecision("cancel”)

Allowed cancel
or break link.

Discard proposed context

-

Other participants not
informed of cancellation of
context change because
they were not surveyed.

Interaction Diagram 14: Mapping Agent Invalidates Context Change Transaction

8.3.8 Initializing Mapping Agents
Different mapping agent implementations may require different initialization methods. For
example, a mapping agent might need to authenticate the current user in order to enforce
security policies. Other than being automatically launched by a context manager, the additional
steps needed to initialize a mapping agent are implementation issues and are not addressed by

Version CM-1.0 Copyright 1999, Health Level Seven 87

N -

o N O O A W

10
11
12

13
14
15
16
17

18
19
20
21

22
23
24
25
26
27
28

29

30
31
32
33

Context Management Specification, Technology and Subject-Independent Component Architecture

this specification. (Future versions of the CMA specification may provide standardized ways
of initializing mapping agents.)

It can be the case that different mapping agent implementations will require different explicit or
implicit actions on the part of the user to complete their initialization tasks. An example of an
explicit user action is signing on to the mapping agent via a mapping agent-supplied dialog. An
example of an implicit user action is signing on to a context participant application that relays
its authentication of the user to the mapping agent; this obvioudy implies a relationship with
the mapping agent that goes beyond this specification.

8.3.9 Handling Mapping Agent Failures

A context manager must be able to detect and handle the failure of a mapping agent.
Specifically, a context manager shall behave in arobust manner even if its calls to a mapping
agent’ s MappingAgent interface do not return in atimely manner.

The recourse, after atimeout has occurred, is for the context manager to continue with the
normal processing of the context change transaction. If the mapping agent has indeed failed,
then some of the context participants may not be able to interpret the next context. However,
this fail-soft approach still enables the user to perform useful work until the mapping agent
failure is corrected.

Finaly, even if amapping agent has failed, a context manager shall continue to try to access
the mapping agent during subsequent transactions on the prospect that the failure has been
corrected. In doing so, the context manager may need to obtain a new interface reference for
the mapping agent (because the old reference may no longer be valid).

Note that this policy of continually attempting to access a failed mapping agent also applies
even when a context manager isfirst launched. It may be the case that a mapping agent
becomes available after the context manager has begun executing. (See Section 8.3.8,
Initializing Mapping Agents, for one explanation of why this might happen.) A context
manager that does not locate and initiate a mapping agent when it is launched shall
neverthel ess keep trying between and/or during context change transactions. It isan
implementation decision as to how the performance impact of this policy is minimized.

8.4 Mapping Agent Effect on Application Security Policies

Mapping agents may implement their own security policiesin terms of what context data it will
map for a particular user. Mapping agent security policies can differ from the policies of the
participating applications. A mapping agent’s policies might effect what patients a user can, or
cannot, access.

88 Copyright 1999, Health Level Seven Version CM-1.0

a b~ WO DN PP

© 00 N O

10
11
12
13

14

15
16
17
18

19
20
21

22

23
24
25
26
27
28

29
30
31
32
33

35

Context Management Specification, Technology and Subject-Independent Component Architecture

When the mapping agent’ s policy is more restrictive than one or more of the participating
application’s, a mapping agent might elect to not map an identifier because doing so would
violate the security rules known to the mapping agent. When the mapping agent’s policy isless
restrictive than one or more of the participating applications, each application’s own security
policy will be the predominating policy for the current change transaction.

A mapping agent that elects to not map an identifier because of security concerns shall not
indicate this fact to the user. The user will simply observe that access to the selected patient is
not possible through one or more of the participating applications. These applications do not
know that the identifier for the selected patient has not been mapped because of the mapping
agent’s security policy. Instead, it looks to the applications as though a patient has been
selected but the identifier(s) by which the patient is known to the applications has not been
provided. These applications behave as specified for in 6.5.1 Application Behavior When it
Cannot Cancel Context Changes.

8.5 Identifying Mapping Agent Implementations

Context managers use a mapping agent’ s |mplementati onl nformation interface to provide
system administrators with a description of the mapping agent implementation it isusing. This
information can help system administrators diagnose run-time problems that involve mapping
agents.

The Implementationlnformation interface shall be supported by al mapping agent
implementations. A context manager shall not interact with a mapping agent that does not
support thisinterface.

8.6 Performance Costs and Optimizations

When present, a mapping agent will be involved in every context change transaction. This adds
an overhead to the context change transaction in the form of the added communication between
the context manager and the mapping agent, and for the time it takes for the mapping agent to
validate the identifiers and provide any additional mappings for the identifiers. However, these
costs are viewed as being worth the benefits of the semantic integrity that a mapping agent
brings to a context system.

In some cases, a mapping agent will be implemented using an underlying application that
provides its own user interface for patient selection. This type of mapping agent is, in effect,
both a mapping agent and a context participant application. In the case in which this
underlying application is used to instigate a context change, performing identifier validations
and mappings is superfluous. It is possible to optimize the mapping agent implementation so
that it does not perform identifier validations and mappings when it knows that it was
essentidly itself that instigated a context change.

Version CM-1.0 Copyright 1999, Health Level Seven 89

a b~ WO DN PP

)]

10

Context Management Specification, Technology and Subject-Independent Component Architecture

However, the only information that is readily available to the mapping agent that could help it
determine this fact is the context change coupon. This coupon is provided by the context
manager to an application when the application starts a context change transaction. This
coupon is aso provided by the context manager to the mapping agent via its MappingAgent
interface during each context change transaction.

It is an implementation decision asto how the portion of an application that implements a
mapping agent obtains the value of the context coupon from the portion of the application that
instigates a context change transaction.

90 Copyright 1999, Health Level Seven Version CM-1.0

a b~ wDN

10
11
12

13
14
15

16
17
18
19
20

21

22

23

24
25

26
27

28

Context Management Specification, Technology and Subject-Independent Component Architecture

9 User Link Theory of Operation

This chapter describes CMA support for User Link. With User Link, a user can securely sign
on to any User Link-enabled application on a desktop using just one logon name and one
means of authentication (such as a password) in order to securely sign on to all User Link-
enabled applications on the desktop.

User Link extends CMA support for Patient Link in several ways:

It introduces another context subject. Managing multiple subjects requires additional
context management policies beyond those defined for Patient Link.

It introduces the user subject as the second foundational CMA context subject.

It introduces security capabilities that not only enable the creation of secure User Link
context management systems, but that also serve as a foundation for future subjects
that require security.

In order to accomplish this, the Patient Link architectural approach isleveraged (i.e., context
manager, context participants, and mapping agent) to create a single context per desktop. The
context is extended to include the user subject in addition to the patient subject.

The Patient Link interfaces ContextManager, ContextParticipant, MappingAgent, and
Implementationlnformation interfaces are used. Two additional security-related interfaces are
defined: SecureContextData, which is modeled upon the Patient Link ContextData interface,
and SecureBinding, which enables a trusted relationship to be established between User Link-
enabled applications and components.

Additional User Link capabilitiesinclude:
The provider ingtitution decides which applications are to be trusted to authenticate

users.

There can be multiple ways to authenticate users, including passwords, biometrics,
€tc.

In keeping with the CMA philosophy, the User Link approach is conceived for low re-
engineering costs.

The architecture that supports these capabilities is described next.

Version CM-1.0 Copyright 1999, Health Level Seven 91

N

10
11
12
13

14

15
16

17

18
19

20
21
22
23

24
25
26

27

28
29
30

Context Management Specification, Technology and Subject-Independent Component Architecture

9.1 User Link Terms

The following terms are used to describe the User Link theory of operation:

User Link-enabled application - an application that implements the CMA User Link
capability.

Sign on —the act of identifying oneself to an application, prior to initiating a user
session, in amanner that can be authenticated by the application, typically involving a
secret password or a biometric reading (such as a thumb-print scan).

Log-off —the termination of a user’s session with an application.

Empty context — a context is not defined for a particular subject, either because no
context identifier items are present in the context data (as is the case when a context
manager isfirst initialized) or because the values of al of the identifier itemsfor the
subject that are present in the context data are null (asis the case when an application
explicitly indicates that the context is empty).

9.2 Desktop Assumptions

The following assumptions are made about the clinical desktop upon which User Link-enabled
applications are deployed:

Logging-off from an application does not require user authentication.

The desktops upon which User Link-enabled applications are deployed may residein
physically unsecured locations.

While recommended, it may not be the case that appropriate security precautions have
been taken to restrict the types of operating system-level actions, such asinstalling
new programs, that users can perform on desktops that reside in physically unsecured
locations.

In summary, the CMA isintended to be no less secure than the User Linked applications would
be were they not User Linked. In general, User Linked applications will be substantially more

9.3 User Subject

The context subject of User is defined for User Link. The context data identifier item for this
subject isthe user’slogon name. A logon name denotes a user to an application. A user’slogon
name is generally different from their given name.

Copyright 1999, Health Level Seven Version CM-1.0

A W N P

o N o O

10
11

12
13
14
15

16

17

18

19
20
21
22

23
24
25
26
27

Context Management Specification, Technology and Subject-Independent Component Architecture

Thisidentifier is unlikely to be universally unique. However, it is assumed that a population of
users across which each logon name is unique can be established. Each such population is
referred to as an application, asit istypical that within an overall healthcare ingtitution each
population of usersis corresponds to a particular application.

Consequently, asingle user may be identified using multiple user subject identifier items. Each
item is differentiated by a different application-specific suffix. An application shall be
configurable such that it can be instructed on-site as to which suffix (or suffices) it isto use
when it interacts with the context manager to set or get user context data.

The format of a user subject identifier item name includes an application-specific suffix. Use
of this suffix, and the values that may be assigned to this suffix, is at the discretion of each
healthcare institution at which a context management system is deployed.

In addition to identifier items, the user subject also supports corroborating data items. The
actual names, meaning, and data types used to represent the values for both user subject
identifier items and corroborating data items are defined in the document Health Level-Seven
Standard Context Management Specification, Data Definition: User Subject.

An example of auser subject identifier item appears below:

User Subject Identifier

Example Item Name Format: Example Item Name: Example Item Value:

User. | d. Logon. application_name User. | d. Logon.3M Qi ni cal _Wirkstation robs

9.4 User Authentication Data Is Not Part of the User Context

The data used to authenticate a user is not included as part of the user context data. This data
istypically a password, but it can be any data that is used to authenticate a user, such as a
biometric sample. Instead, each application is expected to be able to sign on a user given just
the application-specific logon name for the user.

This approach substantially reduces security risks because the data used by an application to
authenticate the user remains private to the application. If this data were part of the user
context, it would be vulnerable to undesired access. However, in order for applications to tune
to the user context, they must trust that the context data is authentic. The means by which this
is accomplished isreferred to as the “chain of trust” and is described below.

Version CM-1.0 Copyright 1999, Health Level Seven 93

A W N B

o N o O

10
11
12
13

14
15
16
17

18

19

20
21
22
23

24
25
26
27

28

Context Management Specification, Technology and Subject-Independent Component Architecture

9.5 User Link Common Context System Description

Consistent with the CMA, on each desktop there are applications that are user context
participants, and there is a context manager. The applications perform context change
transactions to indicate who the user is.

However, in contrast to the way in which patient context is communicated in a Patient Link
system, the user context is communicated throughout the common context system in a secure
manner. Thisisto prevent people from accidentally or maliciously gaining access to
applications that are User Linked.

The necessary security is achieved by adding capabilities to the CMA that enable the
realization of a*“chain of trust” among the User Link-enabled applications and User Link
components. With the chain of trust, User Link-enabled applications and User Link
components work together to ensure that only authorized users are allowed accessto a
common context system.

The chain of trust not only ssimplifies the overall solution, but resultsin a system that is more
secure than would be the case if authentication data were part of the common context, and
were therefore vulnerable to security attacks directed against the context manager or mapping

agent.

The chain of trust is specified in Chapter 10.

9.5.1 User Mapping Agent

An optiona user mapping agent is also part of the common context system, The user mapping
agent maps the logon names for users. The user mapping agent is similar to, but distinct from,
the patient mapping agent (although a single mapping agent implementation could fulfill both
roles).

Whenever an application sets the user context, the context manager instructs the user mapping
agent (if present) to provide any additional logon namesit knows for the user. The application
suffix for each of the mapped identifier items denotes the application for which the mapped
logon name is valid, for example:

Examples Item Names: Example Item Values:
User. | d. Logon.3M d i ni cal _Wirkstation robs

User. | d. Logon. Medi cal ogi c_Logi ci an rob_seliger

User. | d. Logon. HP_Car eVue r_seliger

94 Copyright 1999, Health Level Seven Version CM-1.0

Context Management Specification, Technology and Subject-Independent Component Architecture

9.5.2 Context Management Interfaces

The context management interfaces defined for User Link are similar to the ones defined for
Patient Link. A context participant still implements ContextPartcipant (CP). The context
manager still implements ContextManager (CM), but it also implements the following new

a b~ W N B

~N O

10

11
12
13
14

15
16
17

18

19
20
21
22
23

24

25
26

27
28
29

30
31
32
33

interfaces:

SecureContextData (SD) - Similar to the ContextData interface defined for Patient
Link, thisinterface is used by applications to securely set/get the values for the items
(logically represented as name-value pairs) that comprise the clinical context.

SecureBinding (SB) - Used by applications to establish a secure communications
binding with the context manager before using the SecureContextData interface.

Implementationlnformation (1) — Originally defined for the patient mapping agent, this
interface is added to the context manager so that applications, other components, and
tools, can obtain details about the context manager implementation, including its
revision, when it was installed, etc.

The interfaces implemented by the user mapping agent are MappingAgent (MA) and

Implementationinformation (11). These are the same interfaces as defined for the patient

mapping agent.

9.5.3 Authentication Repository
In order to make it practical to re-engineer existing applications to support the chain of trust,

the CMA authentication repository component is defined. This repository enables applications

to securely store and retrieve application-specific user authentication data. The repository is
used by applications that do not have a built-in means to easily sign on auser given only a

logon name.

The authentication repository implements the following interfaces:

AuthenticationRepository (AR) - Used by applications to securely interact with the
repository to store and retrieve user authentication data.

SecureBinding (SB) — Used by applications to establish a secure communications
binding with the repository before using the AuthenticationRepository interface. This
is the same interface that the context manager implements.

Implementationinformation (11) — Originally defined for the patient mapping agent,
thisinterface is added to the authentication repository so that applications, other
components, and tools, can obtain detail s about the authentication repository,
including its revision, when it was installed, etc.

Version CM-1.0 Copyright 1999, Health Level Seven 95

A W N P

Context Management Specification, Technology and Subject-Independent Component Architecture

9.5.4 Overall User Link Component Architecture

The overall User Link architecture (including the Patient Link Architecture) isillustrated in
Figure 17: User Link Component Architecture. (A description for how to interpret the notation
used in this diagram appears in the Appendix: Diagramming Conventions.)

Application #1
I mplementation

Application #N

I mplementation

CP

Context Manager —
Context

I mplementation
@4_ Tool, etc.
Data

@{)

 —
Optional Mapping
Agent Implementations 11 Tool, etc.

Common

1
]

|
i

User Patient

Optional External
Authentication
Repository
Implementation

AR = AuthenticationRepository [= Implementationl nformation
CD = ContextData MA = MappingAgent

CM = ContextM anager SB = SecureBinding

CP = ContextParticipant SD = SecureContextData

Component Interfaces

Figure 17: User Link Component Architecture

96

Copyright 1999, Health Level Seven Version CM-1.0

[

w N

10
11

12
13
14
15
16
17

18

19

20
21
22
23

Context Management Specification, Technology and Subject-Independent Component Architecture

9.6 User Link Sign-On Process

The process for performing a context change transaction to set the user context is essentialy
the same as defined for Patient Link for setting the patient context:

An ingtigating application initiates a context change transaction and sets the user
context within the context manager. This context contains just the identity of the user.
It does not include the data used to authenticate the user.

The context manager consults the user mapping agent (if present) and it adds datato
the context manager’ s user context. This data includes additional logon names by
which the user is known.

The context manager surveys the other applications, and if the transaction completes,
they obtain pertinent user context data from the context manager.

The high-level events that transpire when a user signs-on are summarized in Figure 18: User
Link Sign-On Process. This description assumes that a user mapping agent is present. The user
mapping agent is presumed to know the logon names for all users for all applications. (See
Section 9.19, Populating the User Mapping Agent.) The description omits most of the details
pertaining to the surveying of the participant applications by the context manager. This process
isidentical to the process defined for Patient Link. (See Chapter 7.)

(1) User signs- (2) Application authenticates the user and o ,
on)(e.gu en?ers tells context manager the user’s logon (5) Each appl ications gets user's
logon name and name; authentication data is not passed licati application-specific logon name from
password; on to the context manager. Application | the context manager.

Swipes security YY g

card, etc). 1 {6a) An application optionally

consultsinternal authentication

f“ — (4) Context manager tells g, i lication-
ASHTication xtm ata repository to get application:
trﬁgted o other applications that specific authentication data for the

L Context there is anew user new user and automatically signs-
b4 O authenticate Manager context. on the user.
users
N Application

!

(3) Context manager tells mapping agent
context change is occurring; mapping
agent supplies the context manager with
other logon names for the user as known
to each application.

zz (6b) Anapplication
optionally consults external
User authentication data repository

Mapping - logapplication
Agent specific authentication data

. — for the new user and
(Optional) External Authentication automaticaly signs-on the
Repository (Optional)

user.

Chain of Trust >

Figure 18: User Link Sign-On Process

9.7 Designating Applications for User Authentication

Any User Link-enabled application can serve as the means by which a user signs-on to all of
the User Link-enabled applications on a desktop. To serve in this capacity, the User Link-
enabled application shall provide a mechanism for establishing and authenticating the user’s
identity.

Version CM-1.0 Copyright 1999, Health Level Seven 97

A W N P

© 00 N O O

10
11
12

13
14
15
16
17

18
19
20
21
22

23
24

25
26
27
28
29

30
31
32
33

35

Context Management Specification, Technology and Subject-Independent Component Architecture

The CMA does not specify an application’s user authentication mechanism, visual appearance,
or implementation. The authentication mechanisms can vary among applications. Applications
can be created whose sole purpose is to enable user authentication for desktops comprised of
User Linked applications.

However, even though any User Link-enabled application has the potential to be used for
signing on to a desktop of User Linked applications, the provider ingtitution designates the
specific application or applications it trusts for this task. Only the designated applications shall
be alowed by a context manager to complete a context change transaction that involves a
change to the user subject.

The one exception to thisrule is that any application can set the user subject to empty. Thisis
so that any application can be used to log-off from a desktop of User Linked applications. (See
Section 9.14, Logging-Off and Application Termination.)

A context manager implementation-specific configuration process is used for indicating the
designated applications for a particular desktop. One, several, or all of the User Link-enabled
applications on a desktop can be designated for this purpose. The designated applications for a
desktop can differ among desktops. It is recommend that a healthcare institution analyze the
use cases for their clinica applications to determine how to best deploy User Link.

The decision criteriafor a provider ingtitution’s choice of whether to designate an application
for authenticating users is based upon whether they trust the application’s security capabilities
asit pertains to user authentication. For example, it might not be a good choice to designate an
application that maintains user passwords in plain text (which can easily be read by
unauthorized users).

9.8 Signing on to Applications Not Designated for Authenticating

Users

A User Link-enabled application that has not been designated for authenticating users on a
particular desktop shall not allow the user to sign on to the application or the desktop. The user
must sign on to a designated application in order to sign on to a linked but non-designated
application. The user must break a non-designated application’s link with the common context
in order to sign on to just the application.

If the application has not been designated for authenticating users and it is the first to be
launched on the desktop, the user must either launch an application that has been designated
for authenticating users, or the user must break the link of the non-designated application. The
user can then sign on to just the non-designated application.

The CMA does specify a means by which an application can determine whether it has been
designated for authenticating users. See Section 11.3.7.1, InitiateBinding. This enables an

98 Copyright 1999, Health Level Seven Version CM-1.0

o N O O b~

10
11
12
13

14
15
16
17
18
19

20

21
22
23
24

25

26

27
28

29
30

Context Management Specification, Technology and Subject-Independent Component Architecture

application to determine whether it has been designated before a user attempts to sign on to the
application. An application can use this information to present or hide its user interface user
sign on controls accordingly.

9.9 Application Behavior When Launched

When a User Link-enabled application is launched on a desktop, it should join the common
context system established for the desktop. The application should set its user context to match
the current user context. If the application is Patient Link-enabled, it should also set its patient
context to match the current patient context.

9.10 Multiple Context Subjects

User Link introduces user as an additional common context subject. This creates the need to
define what happens to one context, such as the user context, when another context, such as
patient context, changes. The simplest approach is to assume that there are no dependencies
between subjects.

With this assumption, it should be possible for an application to independently set the context
dataitems for just one subject or for both subjects during the course of a single context change
transaction. For example, at the end of the transaction the application has changed the user
context, the patient context, or both contexts. A context that is not altered by the application
shall remain asit was prior to the transaction. The details of managing multiple context
subjects are described in the following sections.

9.10.1 The Effect of Multiple Subjects on the Meaning of “Link”

Even though there are multiple subjects in a common context system (e.g., patient and user),
there is only one link that coordinates the CMA-compliant applications on a desktop. This
means that when an application islinked, it must “tune” to all of the subjectsit is capable of
dealing with. For example:

An application that is only Patient Link-enabled tunes to just the patient context.
An application that is only User Link-enabled tunes to just the user context.

An application that is both Patient Link-enabled and User Link-enabled tunes to both
the patient context and the user context.

Conversaly, when the user breaks an application’ s link, then the application shall no longer be
tuned to any context subject.

Version CM-1.0 Copyright 1999, Health Level Seven 99

A W N P

© 00 N o O

10

11

12

13
14
15
16

17
18
19
20
21
22

23
24
25

26
27

28
29
30
31
32
33

Context Management Specification, Technology and Subject-Independent Component Architecture

Independent of the number of context subjects it supports, asingle visual cueis provided by an
application to indicate whether or not it is linked. The appearance of this cue is defined in the
each of the HL7 context management technol ogy-specific user interface specification
documents.

9.10.2 Context Manager Support for Multiple Context Subjects

Even though context subjects such are logically independent, there are nevertheless
relationships between subjects. These relationships require that context manager
implementations have an understanding of multiple subjects and potentially the inter-
relationships between the subjects. Further, some applications may need to be aware that they
are dealing with multiple context subjects. There are two basic ways to address these issues:

Maintain a context manager per subject.
Support multiple context subjects within a single context manager.

The first approach has the advantage that context manager implementations can be specialized
to support a single subject. For example, this would enable a Patient Link context manager
from one vendor to be used with a User Link context manager from another vendor. The
disadvantages are that applications would need to deal with two context managers.

Further, the context managers would need some way to cooperate in order to coordinate
transactions that affect multiple subjects (such as a user context change). This coordination
would probably require the definition of additional context manager interfaces. This
coordination would also increase the complexity of the failure scenarios because of the
increased opportunity for partial failures (e.g., one context manager fails while the other
context manager continues to function).

The second approach has the advantage that it enables the complexities of dealing with
multiple subjects to be hidden within the implementation of the context manager. Additiona
context manager interfaces are not required, and partial failure scenarios are avoided.

This approach a so has the advantage that applications only need to deal with a single context
manager.

The second approach has the disadvantage that context manager vendors would need to
support al subjects within their context managers. However, it the CMA philosophy to push
complexity into the context manager whenever it simplifies the creation of new applications
and the reengineering of existing applications. The second approach is the one that shall be
pursued in this document because, from the perspective of an application, it is simpler than the
first approach.

100 Copyright 1999, Health Level Seven Version CM-1.0

N

10

11
12

13
14
15
16

17
18
19
20

21
22
23
24

25
26
27
28
29

30
31
32

Context Management Specification, Technology and Subject-Independent Component Architecture

9.10.3 Effect of Multiple Subjects on Context Change Transaction

For application flexibility and backwards compatibility, it is highly desirable that:

An application does not have to know about both the user and patient subjects in order
to set the context pertaining to just one subject.

Either or both the user and patient subjects can be updated within a single context
change transaction.

However, these desires raise the question of how to treat context data for a subject that is not
“touched” during atransaction by the instigating application? There are two approaches:

1. At the completion of the transaction, the untouched subject is empty, meaning that it
does not contain any context items.

2. At the completion of the transaction, the untouched subject is unaffected, meaning that
it contains the same items and item values as it did before the transaction.

The first approach is essentially consistent with the existing behavior defined for Patient Link.
Specifically, the context manager ensures that each context change transaction begins with an
empty context (i.e., no context items). With two subjects, only the subject that is touched
during a transaction will contain items at the completion of the transaction.

However, a problem arises with this approach. An application that is only Patient Link-enabled
might be co-resident with applications that are Patient Link and User Link-enabled. If the
application that is only Patient Link-enabled changes the patient context, the user context
shared by the other applications will be logt (i.e., it will be empty).

Applications could be required to know about both subjects and to explicitly copy the subject
that is not to be changed from the current context to the new context. However, this creates a
burden on the application developers. It is also a substantial impediment to backward
compatibility.

The second approach avoids this problem, but requires changes to the behavior of applications
or to the behavior of the context manager. To ensure backward compatibility, changing the
behavior of applications is ruled out. This eliminates the option of requiring applications to
indicate which context subject or subjectsit intends to set. (Further this would require changes
to the context manager’ s interfaces.)

A simpler solution involves a change to the context manager’ s behavior that is nevertheless
backwards compatible with applications that are only Patient Link-enabled. This solutionis
described in Section 9.10.4, Context Manager Treatment of Multi-Subject Context Data.

Version CM-1.0 Copyright 1999, Health Level Seven 101

a b~ W N B

© 00 N O

10
11

12
13
14
15

16
17
18
19

20
21
22
23
24
25

26

27
28

29
30
31
32

33

35

Context Management Specification, Technology and Subject-Independent Component Architecture

9.10.4 Context Manager Treatment of Multi-Subject Context Data

Asis currently the case with Patient Link, when a context change transaction is started, the
context manager creates a transaction-specific version of the context data. This version of the
context datais initially empty and does not contain any user subject or patient subject context
items.

The application that instigated the transaction then establishes the new context by setting
context data item values for the user and/or the patient subjects. The application then informs
the context manager that it has completed its context changes. The context manager shall then
copy the items from the previous context to the new context for any subject that the instigating
application did not touch. This shall occur before the context manager surveys the context
participants.

The net effect is that the instigating application sets context items for whichever subject(s) it
knows about. If a subject was “untouched” by the application, then the items for the subject
are automatically post-filled by the context manager to reflect the values as they were before
the context change transaction.

For applications that are only Patient Link-enabled, this post-filling behavior emulates the
existing behavior defined for Patient Link. For applications that are User Link aswell as
Patient Link-enabled, this behavior enables the user and patient subjects to be managed

independently.

With these new rules, an application can just set subjects based upon the user’s explicit
gestures, such as selecting a patient, signing on, or both. Aswith Patient Link, an application
only needsto set the user (or patient) subject context items that it is capable of setting. For
example, an application may not be able to set al of the corroborating data for a subject.
Similarly, a participant application does not have to deal with all subjects, or show all of the
context data items defined for a subject.

9.10.5 Effect of Multiple Subjects on Mapping Agents

For simplicity, each context subject (e.g., patient, user) shall have at most one corresponding
mapping agent.

When a context change transaction reaches the phase during which the context manager
instructs mapping agents to map the context data (i.e., context changes are pending), the
context manager shall do so in a sequential manner. Each mapping agent shall be informed
only once per transaction that context changes are pending.

The order in which a mapping agent is informed that context changes are pending is not
specified. A mapping agent shall not assume the existence of other mapping agents and shall
not assume that any subject other than the one it is responsible for mapping has been mapped.

102 Copyright 1999, Health Level Seven Version CM-1.0

N o 0ok WON

oo

10
11
12
13

14

15
16

17
18

19

20
21
22
23

24
25
26
27

28

29
30
31

Context Management Specification, Technology and Subject-Independent Component Architecture

9.10.6 Application Treatment of Multiple Subjects

An application can change either or both the patient and user subjects in a single context
change transaction. However, unless the user expects multiple subjects to change as a result of
agesture, it is recommended that an application generally change only one subject at atime.
This enables the user to relate changes in the common context to gestures that they have
explicitly performed. Cause-and-effect between a user’ s gesture and a change in application
dtate is an important element in creating systems that are easy for people to use.

9.11 Access Control Lists

Access contral lists (ACL), which determine the privileges and capabilities a particular user
has, are presumed to be maintained by each application. While it is desirable that there be only
one centrally administered ACL, achieving thisis beyond the scope of the CMA. However,
before central or distributed ACL’s can be properly used it is essential that the user be
authenticated. Thisis precisely the capability that User Link supports.

9.12 Empty Contexts

With multiple independent subjects, applications need away to explicitly indicate that the user
context, patient context, or both are empty. The reasons include:

Enabling applications to change the user context without necessarily carrying over the
existing patient context.

Enabling applications to log-off users by indicating that there is no user context.

The capability to explicitly indicate that a context is empty is already defined in Section 5.6.8,
Representing an Empty Context Subject. The stated rules are extended to apply to User Link.
This means that the context can identify both a user and a patient, just a user, just a patient, or
neither.

When one or both context subjects are empty, all of the applicationsin the context system shall
clearly indicate to the user that thisis the case. The appearance of thisindication is specified in
each of the HL7 context management technol ogy-specific user interface specification
documents.

9.13Changing Users

With User Link, it is advantageous for applications to support a change-user capability. This
capability enables a new user to sign on without explicitly requiring that the current user first
log off. There are two ways in which this can be implemented by an application:

Version CM-1.0 Copyright 1999, Health Level Seven 103

o U~ W N -

o

10
11

12
13

14

15

16

17
18
19
20

21
22
23

24

Context Management Specification, Technology and Subject-Independent Component Architecture

The application performs asingle user context change transaction to establish the new
user as the current user.

The application performs a two-step process. In the first step, the current user is
logged off and the user context is set to empty (to indicate that there is no user). In the
second step, the new user is signed on, and the user context is set to indicate who the
New User is.

Thefirst approach is recommended because it isthe smplest and the most efficient from the
perspective of the context system (e.g., only one context change transaction per user change).
The second approach is acceptable, however the two step process should be invisible to users.

The gestures needed to change the user, and the appearance of the application asit pertainsto
this capability, are not specified by the CMA.

9.14 Logging-Off and Application Termination

User Link provides applications with an easy way to enable usersto:
Terminate a specific User Linked application on the clinical deSktOpG.
Log off from a specific User Linked application on the clinical desktop.
Log off from all of the User Linked applications on the clinical desktop.

There are many possible ways in which these capabilities can be realized in a common context
system. The approach described in Table 1: User Link-Enabled Application Behavior for
Termination and Log-Off is defined because it is smple for users to understand, yet enables
design flexibility for application developers.

The basic ideais that each User Link-enabled application optionally supports gestures that
enable the user to terminate the application, log off from just the application, or log off from
all of the User Linked applications that are resident on the same desktop.

® Terminati ng all of the applications on a desktop is not supported because there is no way to indicate
this event via a change to the user context subject.

104 Copyright 1999, Health Level Seven Version CM-1.0

o b

© 00 N O

10

11
12

13

14
15
16

Context Management Specification, Technology and Subject-Independent Component Architecture

User Action

Effect on Application
That User’s Action Is
Directed At

Effect on the Common
Context

Effect on Other User
Linked Applications on
the Desktop

Terminate a specific User | Application leaves the None. None.
Linked application. common context, ceases

execution, and exits
Log-off from a specific None. None.

User Linked application.

See Interaction Diagram

Application:

. continues to run,
logs the user off,
visually indicates that

15: User Logs Off From it has no user,
One Application. leaves common
context (i.e., breaks
link)
Log-off from al of the User subject changed to When the context change

User Linked applications
that are resident on the
same desktop.

See Interaction Diagram
16: User Logs-Off From
Desktop.

Application:

.+ continues to run,
instigates a context
change transaction to
set the user context to
empty,
visually indicates that
it has no user,
continuesto bea
context participant.

empty.

is completed, each

application:

. continuesto run,
logs the user off,
visually indicates that
it has no user,
continuesto bea
context participant.

Table 1: User Link-Enabled Application Behavior for Termination and Log-Off

All User Link-enabled applications must behave properly as participants in a context change
transaction, as described in Table 1. All User Link-enabled applications must be able to
properly deal with the context when the user context is empty.

However, the CMA does not specify the user gestures that are needed to initiate the actions
described in Table 1. The gestures may be different among applications. Further, an
application may chose which action gestures, if any, it will support. For example, a particular
application might not enable the user to terminate it, log off from it, or log off from the User

Linked desktop.

An application that enables the user to log off shall clearly indicate that in doing so, the user
will cause the application to break its link with the common context system.

There are severa subtleties involved with the behaviors described in Table 1:

Any application can set the user context to empty, including applications that have not
been designated for authenticating users. This enables any application to be used for
logging off from all of the User Linked applications on a desktop.

Version CM-1.0

Copyright 1999, Health Level Seven

105

Context Management Specification, Technology and Subject-Independent Component Architecture

1 - A user might terminate the application(s) designated for authenticating users. The next
user will need to relaunch one of the designated applications before being able to sign

N

3 on to the User Linked desktop.

4 It is concelvable that the collective capabilities of a particular set of User Link-enabled

5 applications on a desktop result in a system that does not provide any way for the user

6 to log off from the desktop. A site must be mindful in its choice of applicationsin

7 order to prevent this from happening.

8 One issue with desktop log off is the treatment of “busy” applications. Busy applications affect

9 single sign on as well as desktop log-off, and is dealt with in Section 9.17, Busy Applications.
10

User Participating Context Participating Participating
Application AA Manager Application YY Application ZZ
User chooses log-off
Leave common context
User logged off
application AA
ONLY
11
12 Interaction Diagram 15: User Logs Off From One Application
13
User Participating Context Participating Participating
Application AA Manager Application YY Application ZZ
iUser chooses desktop
log-off
Set user context to empty
User context has change
User context has change
Get user context
empty
ser logged off from . Get user context
:Jesktlopgg dott P empty

14 T L \
15 Interaction Diagram 16: User Logs-Off From Desktop

106 Copyright 1999, Health Level Seven Version CM-1.0

~N o o1 b~ w

oo

10

11
12
13
14

15
16
17
18
19
20

21
22
23

24
25
26
27
28
29

30

31
32
33

35

Context Management Specification, Technology and Subject-Independent Component Architecture

9.15 Automatic Log-Off

An automatic log-off logs the current user off of the User Linked applications on a desktop
when the user has not interacted with the applications for an appreciable period of time.

Any application can initiate an automatic log-off by performing a context change transaction
that sets the user context to empty. Thiswill have the effect of causing al of the other User
Linked applications on the desktop to also log the user off. Once an automatic log-off has
completed, the next user signs-on via one of the designated applications.

In contrast to a user-initiated log-off, an automatic log-off isinitiated automatically by an
application. The CMA does not specify an automatic log-off policy or implementation. It isan
application decision as to how and when to initiate an automatic |og-off.

For example, an application might monitor user interactions with the mouse and keyboard to
determine whether or not the user is actually engaged in using any of the applications on the
desktop. The capability to do this depends upon the application’s implementation and the
underlying desktop technology.

An application that initiates a context change transaction to affect an automatic log-off must
be prepared to handle the condition in which surveyed applications are busy, or have responded
with a conditional accept of the transaction. In this case the instigating application shall cancel
the context change transaction. It shall not present a dialog to the user, as this could be
disruptive or confusing to the user. The application may elect to initiate an automatic |og-off
again in the future.

It is necessary that the administrator is able to configure the behavior of automatic log-off as it
pertains to a clinical desktop. Otherwise, the administrator has no control over an application
whose policy for initiating an automatic log-off interferes with the users’ work.

Therefore, any application that initiates an automatic log-off shall provide a means for
controlling this capability. Specifically, it shall be possible to configure that application in
terms of whether the log-off it initiates is desktop-wide (and therefore affects all of the context
participants), or is limited to just the application. If the automatic log-off is limited to just the
application, then the application shall not perform a context change transaction when the
automatic log-off interval transpires. Instead, it shall just log the user off from itself.

9.16 Reauthentication Time-out

A reauthentication time-out requires the currently signed-on user to reauthenticate herself
before being alowed to continue using the applications on aclinical desktop. The time-out
occurs when the user has not interacted with the desktop for an appreciable period of time.
Applications maintain their internal state as the user left it prior to the time-out, but interaction
with the applications cannot resume until the user has been reauthenticated.

Version CM-1.0 Copyright 1999, Health Level Seven 107

10
11
12

13
14
15

16
17
18

19

20
21
22

23
24
25
26

27
28

29
30
31
32

Context Management Specification, Technology and Subject-Independent Component Architecture

The time-out often manifests as a screen that overlays the entire display and that provides a
mechanism with which the user can reauthenticate herself. However, the CMA does not specify
a reauthentication time-out policy, visual appearance, or implementation.

Any application can initiate a reauthentication time-out. However, a User Link-enabled
application that does so shall be:

responsible for enabling the user to re-authenticate herself

configurable such that a systems administrator can enable or disable the time-out
capability.

These requirements enable sites to practice the following CMA recommendation: only a User
Link-enabled application that has been designated for authenticating users should be alowed to
initiate a reauthentication time-out. This enables the user to reauthenticate herself using an
application that is also normally used for signing on to the clinical desktop.

This recommendation avoids the problem of forcing the user to be reauthenticated by an
application not normally used for signing on, and therefore having to remember their logon
name and password for the application.

Once the current user is reauthenticated, then the User Link-enabled applications resume as
they were. If adifferent user signs on, then the User Link-enabled applications handle this as
they do whenever there is a change of user.

9.17 Busy Applications

When a context change transaction is conducted, it is possible that an application is unable to
participate because it is busy. For example, a single-threaded application that has a modal
dialog open will not be able to respond until the dialog is closed.

User Link deals with busy applications the same way as for Patient Link. Specifically, a busy
application effectively prevents a context change transaction from occurring. The only option
for the application that instigated the transaction is to ask the user if they want to break the
link.

Breaking the link has the potential to compromise user security. With a broken link, multiple
users would effectively be logged on to different applications on the same desktop.

However, this situation is not substantially different from breaking the Patient Link, which
results in different applications on the same desktop being tuned to different patients. Further,
without the option to break the link, CMA support for some important use cases, such as
“stat” admissions (see Section 7.12, Stat Admissions), would be lost.

108 Copyright 1999, Health Level Seven Version CM-1.0

A W N B

© 00 N O O

10

11
12
13
14
15
16

17

18
19

Context Management Specification, Technology and Subject-Independent Component Architecture

9.18 Co-Existence with Applications Not User Link-Enabled

User Link-enabled applications will co-exist with applications that are not User Link-enabled.
Userswill still need to manually sign on to and log-off from each of the applications that are
not User Link-enabled.

Co-existence can create confusion among users, as they might assume that all of the
applications on a desktop are User Link-enabled. Training, plus visua cues documented in the
HL 7 context management technol ogy-specific user interface specification documents are
partial solutions. Ultimately, users will come to learn which applications are User Link-
enabled, and which are not, and will adjust their use of these applications accordingly.

9.19 Populating the User Mapping Agent

The user mapping agent is conceptually similar to the patient mapping agent defined for a
Patient Link common context system. For example, both types of mapping agents implement
the same interface specification, MappingAgent. However, the behavior and management of
the user mapping agent is substantially influenced by security considerations. Severa of these
considerations are described in this section. The role of the user mapping agent isillustrated in
Figure 19: User Subject Context Data Mapped for Different Applications.

Application Application Application
uAAAn “BBB" “CCC"
\ | /
GetltemValues(..., GetltemValues(..., GetltemValues(...,
“User.ld.Logon.AAA", ...) “User.ld.Logon.BBB”, ...) “User.d.Logon.CCC", ...)

Mapped User Context Data Within Context
Manager:

User. | d. Logon. AAA robs
User. 1 d. Logon. BBBrobert_sel i ger
User. |1 d. Logon. CCCrsel i ger

Three applications, each of which knows the signed-
on user by adifferent logon name.

Figure 19: User Subject Context Data Mapped for Different Applications

Version CM-1.0 Copyright 1999, Health Level Seven 109

o OB~ WDN B

~

10
11
12
13

14
15
16
17
18

19
20
21
22
23
24

25
26
27
28

29
30
31
32
33

35

Context Management Specification, Technology and Subject-Independent Component Architecture

In order for the user mapping agent to be able to provide additional logon names for users, it
must be populated with the necessary logon names. However, unlike the patient mapping
agent, for which there exists healthcare standards that can be used to obtain the necessary
patient data (e.g., HL7's Admission/Discharge/Transfer messages), an equivalent means does
not exist for user data. In the absence of applicable standards, the means by which a user
mapping agent is populated depends upon the user mapping agent implementation.

9.20 Authentication Repository

The chain of trust has the potential to maximize the overall security of a common context
system because the data used to authenticate a user is never passed between applications and
therefore cannot be easily intercepted or spoofed. However, not passing around this data
creates a problem when there are applications that require user authentication data to perform
auser sign on. For example, many existing healthcare applications require the user’ s password
to establish sessions with their underlying databases.

The common context system therefore includes a user authentication data repository as an
additional context management component. This repository enables applications to securely
maintain application-specific user authentication data. The repository is used by applications
that do not have a built-in means to easily sign on a user given only alogon name. The
repository may be implemented as a distributed or centralized service.

For example, some applications obtain the user’ s password from the user and then hand it off
to an underlying database. The database does the actual authentication. The security
capabilities of the database prevent these applications from retrieving user passwords.
Therefore, it is not possible for these applications to sign on a user knowing only the user’s
logon name. For these applications, an externa means of maintaining user logon names and
associated authentication data is required.

The authentication repository provides away of doing this that is minimally invasive to the
application. The repository is not used for authenticating users. Rather, it enables existing
applications that need user authentication data to sign on the user to have a means for
obtaining this data when participating in a User Link common context system.

The User Link user authentication data repository provides the capability to securely store the
data that an application uses to authenticate its users. The application can use a user’s logon
name to retrieve the user’ s authentication data from the repository. The application can then
use the authentication data to establish a user session with a database or other underlying
application services.

In keeping with the spirit of the CMA, the interfaces to the authentication repository, but not
itsimplementation, are defined. These interfaces enable an application to securely retrieve a

110 Copyright 1999, Health Level Seven Version CM-1.0

Context Management Specification, Technology and Subject-Independent Component Architecture

[

user’s authentication data and to update this data when necessary (for example, if the
application periodically requires that users change their passwords).

N

9.20.1 Repository Implementation Considerations

3

4 The repository can be implemented as a central or distributed service that services multiple
5 applications. However, the repository shall always appear as a private service to each

6 application. This means that an application should never be aware that there are other

7 applications using the repository.

8 The user authentication data stored in the repository on behalf of an application shall be

9 encrypted by the application prior to being communicated to the repository. The encryption
10 technique that is used is determined by the application. The authentication data shall remain
11 encrypted within the repository, as the repository never has the need to interpret or use this
12 data.
13 The interface AuthenticationRepository enables an application to put tuples comprised of a
14 logon name and a corresponding bit stream (representing the user’ s authentication data) into
15 the repository. This interface also enables an application to retrieve a user’ s authentication
16 data using the user’ s logon name.
17 The means by which the repository maintains its data must be secure and shall guard against
18 security attacks. However, the security mechanisms that are employed to achieve these
19 objectives are an authentication repository implementation decision.

20 9.20.2 Populating the Repository

21 The authentication repository needs to be popul ated with the authentication data for each user
22 for each application that it services. One way to do thisisto create a batch process that loads
23 the necessary data. However, in many cases the necessary datais inaccessible. For example,
24 most database management systems do not provide a means for accessing the user passwords
25 that they store.

26 A simpler alternative isto incrementally populate the repository. This can be accomplished by
27 involving each of the applications that use the repository in the process of populating the

28 repository, as follows:

29 - When the context manager informs the application that the user context has changed,
30 the application obtains the logon name for the new user from the context manager.

31 - The application then accesses the repository to securely retrieve the user’s

32 authentication data. The user’s logon name is supplied as the search parameter.

Version CM-1.0 Copyright 1999, Health Level Seven 111

10
11

12
13

Context Management Specification, Technology and Subject-Independent Component Architecture

If the repository cannot find the user logon name, which will be the case if the
repository has not yet been populated with data for the user, then it informs the
application that the logon is not known.

The application then prompts the user to enter his’her authentication data by whatever
means the application normally uses (e.g., a password dialog box).

The application attempts to sign-on the user using whatever underlying mechanism
(e.g., database) it normally uses to do this.

If the user is successfully signed on, then the application updates the authentication
repository with the user’s authentication data, using the user’s logon as the update key.
The application shall encrypt the user’ s authentication data prior to putting the datain
the repository.

This schemeisrelatively easy to implement for amost any application. It is essential, though,
that the repository and its interfaces are secure, as detailed in Chapter 11.

112

Copyright 1999, Health Level Seven Version CM-1.0

w N

o N O O b~

10
11
12
13
14

15
16
17
18
19
20

21
22

23
24

25
26

27
28
29

Context Management Specification, Technology and Subject-Independent Component Architecture

10 Chain of Trust

This chapter defines the behaviors, algorithms, policies, and protocols that User Link-enabled
applications and components must adhere to in order to properly realize the chain of trust.

10.1User Context Change Transactions and the Chain of Trust

The mgjor difference between a context change transaction that involves the user subject and a
transaction that involves only the patient subject is support in the former for the chain of trust.
Additional application and component behaviors are defined to prevent the chain of trust from
being violated.

Two types of defenses are required:

The applications and components that participate in the chain of trust must be able to
authenticate each other’ s identity. The objective is to prevent rogue applications or
components from impersonating a real application or component as a means to
manipulate the user context. Such manipulations could result in an unauthorized user
gaining access to the User Link-enabled applications.

The applications and components that participate in the chain of trust must be able to
validate the integrity of user context data that they communicate to each other. The
objective is to prevent arogue program from modifying the data as it is passed
between applications and components as a means to manipul ate the user context. Such
manipulation could result in an unauthorized user gaining access to the User Link-
enabled applications.

Techniques for creating the chain of trust using passcodes, message authentication codes, and
digital signatures are described next.

10.2 Creating the Chain of Trust

There are three general sources of mechanisms for creating the chain of trust:

Mechanisms incorporated into existing commercially available object infrastructures,
such as those based upon CORBA or COM.

M echanisms based upon existing commercially available secure communications
infrastructures, such as the Secure Socket Layer service (SSL) or the Secure Hyper-
Text Transfer Protocol (S HTTP).

Version CM-1.0 Copyright 1999, Health Level Seven 113

w

o N O O b~

10

11

12
13

14
15
16
17
18
19

20
21
22
23
24

25

26
27
28
29

30
31
32
33

Context Management Specification, Technology and Subject-Independent Component Architecture

M echanisms based upon existing widely available security building blocks, such as
public key / private key encryption.

These alternatives are discussed next.

10.2.1 Object Infrastructures

It is conceivable that the chain of trust could be realized using the security mechanisms built
into commercially available object infrastructures such as those based upon CORBA or COM.
Unfortunately, these infrastructures currently employ security models that are fundamentally
different from what is needed for User Link:

Security for these infrastructures is based upon keeping track of who the user is and
their respective access privileges.

To do this requires that the user has signed on to the underlying operating system.

However, signing on at the operating system level takes too much time. Thisisthe
very praoblem that User Link istrying to solve.

For example, security in Microsoft’s COM-based infrastructure is based upon tracking who
the user is and what their permissions are. This means that when security is enabled for a
COM interface, a COM server accepts or rejects a COM client’ s access attempts based upon
the privileges of the user on whose behalf the COM client is working. This does not work for
User Link because a COM server (specificaly, the context manager) needs to accept or reject
accesses based upon which application is the COM client. The user is not relevant in this case.

It may be possible to establish a stylized approach for adapting object infrastructure security
mechanisms to realize the chain of trust. However, this could make it particularly difficult to
define a technology-neutral specification for the chain of trust. This could result in different
User Link architectures for different technologies. This is counter to the overall CMA objective
of technology-neutrality.

10.2.2 Secure Communications Protocols

User Link-enabled applications and the various CMA components could communicate using a
secure communications protocol, such as the Secure Sockets Layer (SSL) service. SSL enables
secure (i.e., encrypted) transmission of data between a client and a server. It also enablesa
client to authenticate a server (and a server to authenticate a client).

SSL uses the RSA public key encryption system for authentication and for data integrity and
confidentiality. Of interest for the chain of trust isthe SSL capability for clients and serversto
authenticate each other. An SSL server usesits private key to create a digital signature. Public
keys are issued to prospective clients. The public key is used by the client to authenticate the

114 Copyright 1999, Health Level Seven Version CM-1.0

10
11
12
13

14
15
16
17

18

19
20

21

22

23
24
25
26

27
28
29
30
31
32

Context Management Specification, Technology and Subject-Independent Component Architecture

server by decoding the server’ s signature. Only a signature that has been encoded using the
server’ s private key can be (easily) decoded viathe server’s public key.

For example, in the chain of trust, an SSL connection would be established between an
application that has been designated for authenticating users and the context manager. In this
scenario, the application isan SSL server, while the context manager isan SSL client.

SSL and its secure communications counterparts, such as SSHTTP, provide off-the-shelf
mechanisms for implementing the chain of trust. However, this technology has not been
integrated with popular object infrastructures, such as those based upon COM or CORBA.

While secure communication services could provide a means for implementing the chain of
trust, the practical implications of using multiple communications technologies within the User
Link architecture are a cause for concern. For example, it could become overly complicated to
have some communiceations be via COM or CORBA interfaces, while other communications
use SSL or SHTTP.

Further, the chain of trust generally does not require confidentiality. For example, the User
Link architecture does not require that sensitive data, such as a user’s password, be
communicated between applications. Secure communication channels are overkill and are not a
good fit for User Link.

10.2.3 Security Building Blocks

The security building blocks that are available on most popular operating systems can form the
basis for realizing the chain of trust. The two building blocks of particular interest are:

Digital signatures.
Secure (or one-way) hashing.

Digital signatures, which cannot be easily forged, are typically used by people as a means to
authenticate each other’ s identity whenever they communicate electronically. However, a
digital signature also enables an application or component to identify itself in away that can be
authenticated whenever it communicates with another application or component.

Digita signatures are formed using public key / private key encryption techniques. While these
techniques enable encryption, they aso enable the formulation of digital signatures. An
application or component formulates its digital signature using its private key and sends the
signature along with the data that it wants to share. The recipient of a signed message applies
the sender’ s public key to the signature to authenticate the sender and to verify the integrity of
the data that was sent.

Version CM-1.0 Copyright 1999, Health Level Seven 115

w N

~N o o1 b~

oo

10
11
12
13

14
15
16

17
18
19
20

21
22
23
24

25
26
27
28
29
30
31

32
33

35

Context Management Specification, Technology and Subject-Independent Component Architecture

There are severa public key / private key algorithms and related standards. Commercial
implementations of many of these agorithms are available in avariety of technologies. RSA is
an example of an algorithm that has been widely implemented.

A secure hash function is used for producing a unique numeric surrogate from an arbitrary
data stream. It is improbable that two different data streams will yield the same hash value. A
secure hash function is an essentia part of the infrastructure needed to support the use of
digital signatures.

Specifically, a secure hash function enables the efficient computation of a digital signature. A
secure hash function also plays arole in enabling public keys to be reliably distributed. It is
essentia that the holder of a public key is able to determine who (or what) the key belongs to.
Otherwise an impostor could present its own public key while claiming to be someone or
something that it is not. The holder of the public key would mistake subsequent
communications as coming from avalid source when in fact it came from an impostor.

There are several secure hashing algorithms and related standards. Commercial
implementations of many of these algorithms are available in a variety of technologies. MD5 is
an example of an algorithm that has been widely implemented.

Taken together, digital signatures and secure hashing could be used in the chain of trust asthe
means for User Link-enabled applications and User Link components to authenticate each
others' identity each time they communicate. This capability is fundamental to the
establishment and maintenance of the chain of trust.

To accomplish this, adigital signature would be explicitly included as a method parameter for
each CMA-specified interface that requires this level of security. The use of digital signatures
enables the specification of a system that has the desired User Link semantics and that can be
readily implemented using existing security standards and technology.

Creating a system that employs digital signatures for applications and componentsis simpler
than creating a signature-based system for users. Thisis because the population of applications
and User Link components that requires signatures is small compared to the number of users of
the system. Further, the population of applications and User Link components does not change
nearly as often as the user population. The result is that the work required to create and
maintain the chain of trust is substantially less than would be the case if user signatures were
required.

Another advantage of digital signaturesis that they can be used to ensure the integrity of any
data communicated during interactions among and between User Link components and User
Link-enabled applications. The recipient of the data can use the signature to determine if the
data has been tampered with between the time it was sent and the time it was received.

116 Copyright 1999, Health Level Seven Version CM-1.0

o OB~ WDN B

o

10

11

12
13
14
15
16

17
18
19
20

Context Management Specification, Technology and Subject-Independent Component Architecture

Method-based digital signatures fit well with the component-based Context Management
Architecture. For example, realizing the chain of trust in this manner enables a technol ogy-
neutral specification for the chain of trust. Thisis because the approach can exploit

capabilities common to public key / private key implementations that are commercially
available in multiple technologies. Further, the waysin which digital signatures are used can be
arranged to achieve the desired security behaviors needed for User Link.

The trade-off is that more effort is required to architect the chain of trust than would be the
case if a standard “ off-the-shelf” component-based solution was available. This trade-off is
viewed as acceptable. Therefore the approach pursued in the CMA is to use method-based
digital signatures as the basis for the chain of trust.

10.2.4 Security Attacks On the Chain Of Trust

The primary challenge for realizing the chain of trust is minimizing the likelihood that an
intruder is able to violate the chain of trust to obtain access to a User Link-enabled application.
This violation could occur if arogue program was able to set the user context to represent a
user who either has not been authenticated, or who is different from the user who has been
authenti cated.

The chain of trust based upon the security building blocks described in Section 10.2.3,
Security Building Blocks, defends against the security attacks described in the table below, all
of which are directed at manipulating the user context. Refer to Figure 18: User Link Sign-On
Process for the specific trust relationships:

Version CM-1.0 Copyright 1999, Health Level Seven 117

~N o o1 b~

Context Management Specification, Technology and Subject-Independent Component Architecture

Attack

Defense

Attempt to impersonate an application in order to set
the user context (Step #2).

An application presents its signature to the context
manager in order to set the user context. The context
manager uses the signature to authenticate the
application to ensure that has been designated for
authenticating users.

Attempt to impersonate the context manager so that
the user context that the user mapping agents sees,
and therefore maps, is bogus (Step #3).

The context manager presents its signature to the
mapping agent when the mapping agent gets the user
context data from the context manager. The mapping
agent uses the signature to authenticate the context
manager.

Attempt to impersonate the user mapping agent as a
means to set bogus user logon names within the user
context (Step #3).

The mapping agent presents its signature to the
context manager when it sets user context data. The
context manager uses the signature to authenticate the

mapping agent.

Attempt to impersonate the context manager so that
the user context that a participant application seesis
bogus (Step #5).

The context manager presents its signature to the
participant application when the application gets the
user context data from the context manager. The
application uses the signature to authenticate the
context manager.

Attempts to impersonate the authentication repository
as ameansto obtain user authentication data from an
application (Step #6b).

The application encrypts the user authentication data
using the authentication repository’s public key before
providing the data to the repository. Only the rea
authentication repository can decrypt this data.
Further, the application pre-encrypts the data using an
application-specific encryption scheme. The data
remains encrypted even when stored inside the
repository.

Attempt to impersonate an application as a means to
obtain user authentication data from the
authentication repository (Step #6b).

An application must present its signature to the
authentication repository when it gets user
authentication data from the repository. The
repository uses the signature to authenticate the
application. Further, the application encrypts the
authentication data before storing it in the repository.
Only the application that encrypted the data can
subsequently decrypt it.

Table 2: Chain of Trust Attacks and Defenses

The chain of trust does not necessarily need to defend against every type of attack, including
attacks to gain access to the user’s logon name (i.e., Step #4). A user’slogon nameis easy to
guess or obtain, and in the absence of user authentication data (e.g., a password) alogon name
does not provide a means for gaining access to a system.

118 Copyright 1999, Health Level Seven

Version CM-1.0

w N

~N o o1 b~

oo

10

11
12
13
14
15

16
17

18

19
20
21
22
23

24
25
26
27

28
29
30
31
32

Context Management Specification, Technology and Subject-Independent Component Architecture

The chain of trust aso does not defend against applications that do a poor job of authenticating
users (i.e., Step #1). Provider ingtitutions must ensure that the applications they designate for
authenticating users meet their security needs.

Other types of attacks that are not defended by the chain of trust can result in a denial of
service, which may cause a common context system to function improperly. For example, a
rogue program might continually invoke context manager methods, causing the context
manager’ s performance to degrade while it services these invocations.

These programs do not breach security in terms of enabling unauthorized access to User Link-
enabled applications, but they do result in inconveniences for users of the system. In general it
is extremely hard, and can be quite costly, to defend against denial of service attacks.

The most effective preventatives for denial of service attacks begin with physical security, in
which amalicious user is denied access to any of the computers within a system. Without
access to the system, a malicious user will have a much harder time installing rogue programs.
Physical security is strongly encouraged, but it is beyond the scope of the CMA to specify the
necessary measures.

Additional potential limitations of the chain of trust are described in Section 10.2.5, Chain of
Trust Implementation Limitations.

10.2.5 Chain of Trust Implementation Limitations

A secure implementation of the chain of trust requires that the User Link components (i.e.,
context manager, applications, mapping agent, authentication repository) all have a robust way
of authenticating each other’ sidentity. Providing this capability requires the use of underlying
operating systems primitives, including file access privileges and memory protection
mechanisms.

Not al operating systems implement these security primitives to the same degree of robustness.
The approach for implementing the chain of trust described below is therefore fundamentally
limited by the capabilities (or lack thereof) of the underlying operating system upon which a
User Link system is deployed.

In particular, Windows NT and most Unix-based operating systems provide the necessary
primitives. User Link systems deployed on these operating systems will offer robust security
capabilities. In contrast, Windows 95 and Windows 98 lacks many of the necessary primitives.
User Link systems deployed on this operating system will offer useful capabilities, but the
systems will not be any more secure than native Windows 95/98.

Version CM-1.0 Copyright 1999, Health Level Seven 119

o oA WN B

o

10
11
12

13
14
15
16

17
18
19
20

21
22
23
24

25
26
27
28
29

30

31
32
33

35
36

Context Management Specification, Technology and Subject-Independent Component Architecture

10.3 Digital Signatures and CMA Components

Digital signatures created using a public key / private key encryption system are incorporated
into the component interfaces defined for User Link-enabled applications and components. In
the chain of trust these signatures (and corresponding keys) are not associated with a user, but
rather with an application or component. The signatures and keys for a particular application
are the same independent of who the user is.

Several of the methods defined for the existing context manager interfaces already require that
applications identify themselves (e.g., ContextData:: SetltemVaues). The participant coupon,
which is an integer, is assigned by the context manager to an application when it joins a
common context system (via ContextM anager::JoinCommonContext). This coupon is
subsequently used by the application to identify itself when it calls a context manager method
that requires application identification.

The methods requiring applications to identify themselves do so in enforce the correct behavior
of acommon context system. For example, only the application that instigated a context
change transaction or a mapping agent can set context data. Similarly, only the instigating
application can end the transaction in progress.

However, the use of a participant coupon is not intended to be a security mechanism. For
example, arogues application can impersonate a valid application by obtaining (or even
guessing) the vaue of the valid application’s coupon. Coupons are simply to enable the context
manager to identify the applicationsit is dealing with.

An elaboration of the coupon approach is to use digital signatures as a means for applications
to identify themselves in a manner that can be authenticated. It isrelatively straightforward to
use digital signatures in addition to coupons whenever it is necessary to authenticate an
application or component.

Based on this approach, CMA interfaces are defined that enable the establishment of the
necessary signature-based security relationships among and between applications and context
management components. Additional CMA-defined interfaces subsequently enforce these
security relationships as applications and components interact during the course of a context
change transaction.

10.3.1 Public Key / Private Key Encryption as a Means for Generating Signatures

Providing applications with digital signatures requires that each application or component that
isto betrusted is assigned a public key and private key based upon an algorithm such as RSA.
The private key is used to create adigital signature. The corresponding public key is used to
verify the signature.

For example, an application supplies its participant coupon and its signature to the context
manager whenever it performs a context manager method that requires the context manager to

120 Copyright 1999, Health Level Seven Version CM-1.0

o 01 b~ W N -

o

10

11
12
13
14

15
16
17
18

19
20

21
22
23
24
25

26
27

Context Management Specification, Technology and Subject-Independent Component Architecture

authenticate the identity of the application and validate the integrity of the data sent by the
application.

A digital signature is formed by applying a secure hash function (alternatively known as a one-
way hash function) to the data that is to be transmitted. The resulting hash value is referred to
as the message digest, asit is a numeric surrogate for the plain-text message. It is
computationally improbable that two messages will produce the same hash val ue’.

The message digest is then encrypted by the sender using its private key8. The digest can only
be decrypted using the sender’ s public key. In other words, any party holding the sender’s
public key can authenticate that the message came from the sender and that the data sent was
received in tact’.

The encrypted hash value enables the sender of the data to ensure that the receiver of the data
can authenticate the sender’ sidentity. The receiver uses the same secure hash function as the
sender to perform its own computation of a hash value using the data it received. Note that the
data was not encrypted. Just the hash value computed from the data was encrypted.

The receiver compares the hash value it computed with the value it decrypted. The encrypted
hash value can only be successfully decrypted using the public key that matches the sender’s
private key. If the hash values match, then the data sender’ s identity has been confirmed, and
the integrity of the data has been validated.

If the hash values do not match, then either the data was tampered with between the time it was
sent and was recelved, or the sender is not who it claims to be.

The algorithm for creating the hash value must be compatible with the public key / private key
scheme that is employed. For example, if RSA isthe public key / private key scheme that is
used, then an RSA-supported hashing agorithm (e.g., MD5, SHA-1) must be employed to
create the hash value. When the signature is computed in this manner, authenticity and data
integrity can be verified.

The specific secure hash agorithm and the public key / private key scheme that is employed is
technol ogy-specific. Each of the HL7 Context Management Technology Mapping

” When a secure hash function is used, it is also computationally infeasible to invert the computed
hash value. Specifically, given the secure hash function f and input value x, f(x) isrelatively easy to
compute. However, even knowing f it isinfeasible to compute x given f(x).

8 The signing of a message digest rather than of the plain-text message is a performance expediency.
A digest istypically several bytesin size, whereas the message represented by a digest can be of
arbitrary size. It is generally faster to encrypt the digest rather than the entire message.

® Thisisthe inverse of the process used to send a secret message, in which the sender encrypts data
with the intended recipient’s public key. Only the holder of the private key can decrypt the data.

Version CM-1.0 Copyright 1999, Health Level Seven 121

~

10
11
12

13
14
15
16

17
18
19

20
21

Context Management Specification, Technology and Subject-Independent Component Architecture

Specifications indicates the secure hash algorithm public key / private key scheme that is
needed for a particular technology-specific implementation.

The overall process for signing a message isillustrated Figure 20: Signing A Message.

Sender Receiver
S R &
Secure Hash M
h 4
Encrypt [= —» Decrypt —>
By privatekey gigned message BY public key
Copyright ©Jung Joo-won, 1996, http:// simac .kaist.ac.kr/~jwjung/seminar/ sdl-ca-inst/slides.en

Figure 20: Signing A Message

10.3.2 Incorporation of Signatures into the Context Management Architecture

Digital signatures are incorporated in the Context Management Architecture to enable
authentication between User Link-enabled applications and User Link components. For
example, digital signatures enable the context manager to authenticate the identity of any
application that performs a context manager method. The context manager can also ensure the
integrity of the parameter values that it received from the application.

The context manager accomplishes this by computing a hash value from the input parameters
it receives from the application. To obtain the application-computed hash value from the
signature the context manager must use the same public key / private key scheme as the
application. The context manager must also use the same hash algorithm as the application.

The context manager compares the hash value it computes to the hash value it has obtained by
decrypting the application’s digital signature. If the two hash values match, then the method
invocation is authentic and data integrity is ensured.

Otherwise, there has been a breach of security: either the method was invoked by an impostor
of the application, and/or the parameter values provided by the application were tampered with

122 Copyright 1999, Health Level Seven Version CM-1.0

~N o 0o bW N

oo

10

11
12

13
14

Context Management Specification, Technology and Subject-Independent Component Architecture

after they were sent but before they were received by the context manager. The context

manager rejects the method invocation.

To be more specific, for the context manager method SecureContextData:: SetltemVa ues, the
hash value would be computed using the value of the participant application’s coupon (i.e.,
input parameter participantCoupon), current context change transaction coupon10 (i.e., input
parameter contextCoupon), the names of the items whose values are to be set (i.e., input
parameter itemNames), and the values for these items (i.e., input parameter itemValues).

The use of a hash in forming asignature isillustrated Figure 21: Forming Signature Using

Method Parameters.

XXX's signature is the result of XXX using its private key
to encrypt a hash value computed using the parameter values
it provides in the call to SetltemValues ... all of the

Authenticating
Application XXX

i tenVal ues = [“robs”]
Cont ext Coupon = 9789,
Si gnature = 0110101000100010011..0011

Sa

Context manager uses XX X's public key to decrypt the
hash value encrypted in the signature. The context
manager uses the same algorithm as XXX to compute a
has value from the parameter values provided in the call
to SetltemValues. The context manager compares to two
hash values. If they match, the call is valid.

applications and the context manager use the same public Private key for XXXO
key/private key scheme for generating signatures. They must
also use the same hash algorithm.
“a
Set | t enVal ues(
partici pant Coupon = 172,
itemNames = [“User.id.logon.3M Clinical_Wrkstation”],

©

Context Manager

Public key for XXX °'I'|'I'|

Figure 21: Forming Signature Using Method Parameters

10 This coupon denotes the current context change transaction, not the application. Each context
change coupon is unique over the execution lifetime of a particular context manager.

Version CM-1.0 Copyright 1999, Health Level Seven

123

o OB~ WDN P

o

10

11
12
13

14
15

16
17

18

19
20

21

22
23

24
25

26
27

28
29

30

31

32

Context Management Specification, Technology and Subject-Independent Component Architecture

10.3.3 Computing a Digital Signature

Secure hash algorithms use a character string as the representation of the data value upon
which a hash value isto be computed. Therefore, parameter values that are to be protected
from tampering during a method invocation must be converted to character strings. These
strings must then be concatenated to form a single string. It is the concatenated string that is
used to compute the hash value.

The rules for concatenation are as follows. These rules take into account the fact that the
mapping of CMA interfaces to specific technologies may ater the order in which method
parameters are declared and/or may require additional technology-specific parameters. The
rules ensure that the process for creating signatures is invariant across technologies:

The architectural specification for each method that is to be signed will define which
method parameters must be protected from tampering, and are therefore to be used in
formulating the signature.

The architectural specification for each method that is to be signed will define the
order in which the string representations of the parameters are to be concatenated.

The string representation of an array parameter starts with the first element in the
array and ends with the last element in the array.

A parameter or array element whose value isnull or empty is omitted from the string.

An array that does not contain any elements (i.e,, the array length is zero) is omitted
from the string.

Delimiters are not required because there is no need to parse the string.

For example, the concatenated string that might be produced based upon the example in Figure
21: Forming Signature Using Method Parameters would look like:

172User .id.logon.3M_Clinical_Workstationrobs9789

In another example, where the value of the context item “logon” is null, the concatenated string
would look like:

172User .id.logon.3M_Clinical_Workstation9789

In afina example, where the context items are:
User.id.logon.3M_Clinical_Workstation = “robs’
User.co.GivenName = “Robert Seliger”

124 Copyright 1999, Health Level Seven Version CM-1.0

10
11
12
13
14

15
16
17

18
19
20
21

22
23
24
25

26
27
28
29
30
31

Context Management Specification, Technology and Subject-Independent Component Architecture

The concatenated string would look like:

172User .id.logon.3M_Clinical_WorkstationUser.co.GivenNamerobsRober
t Seliger9789

The rules for representing various data types as character strings are specified in Section
11.2.9, Representing Basic Data Types as Strings.

Finally, once the hash value has been computed, encrypting the hash value with the sender’s
private key generates the digital signature.

10.3.4 Public Key Distribution

Public key distribution is the process by which an entity, such as the context manager, makes
its public key available to the other entities, such as an application, that need to use the key.
This process must ensure that a receiving entity can reliably establish the identity of the entity
that created the key. If thisis not accomplished then it is possible for arogue entity to
impersonate a valid entity by representing the valid entity’s public key as its own.

In contrast, private keys are not distributed, but remain the secret of the owner of the
corresponding public key. A discussion about protecting private keys appears in Section
10.3.4.3, Protecting Private Keys.

There are avariety of ways that keys can be distributed, including via a certificate authority.
However, the approach chosen for the CMA minimizes the amount of infrastructure that is
required to create a User Link solution, yet is upwards compatible with more elaborate
approaches.

Specifically, public keys are exchanged as part of a dynamic process that occurs each time a
User Link-enabled applicaitionll or User Link component is launched. This approach enables a
high-degree of security while minimizing the effort and cost to develop and deploy User Link
solutions.

A two-step binding processis used to dynamically distribute an application’s public key. The
process depends upon the use of secret passcodes that are assigned to user Link-enabled
applications (specifically, applications that are capable of being designated for authenticating
users) and User Link components. An application or component uses its passcode to prove its
identity when it presentsits public key. A passcode is a complex, arbitrary alphanumeric
string.

" Not all applications need a public key. Applications that need public keys are those that are
designated for authenticating users, and those that use the authentication repository.

Version CM-1.0 Copyright 1999, Health Level Seven 125

a b~ WO DN PP

© 00 N O

10

11
12

13

14

15
16
17

18

19
20
21

22
23
24

25
26
27
28

Context Management Specification, Technology and Subject-Independent Component Architecture

A passcode is not actually transmitted when a secure binding is established. Instead, a secure
hash function is used to produce a message authentication code. A message authentication
code is a secure hash value produced from a data stream that consists of data that is openly
communicated between two parties, and “secret” data that they both know but do not openly
communicate. In the CMA, a passcode serves as the shared secret.

The binding process involves a“bindee” and a“binder.” In order to bind, a bindee must have a
passcode. Both the bindee and the binder must have knowledge of the passcode. The means for
providing the bindee and binder with a passcode are not specified in the CMA. However,
requirements and guidelines are described in Section 10.3.4.1, Passcode Generation
Requirements.

The following table describes the relationships between User Link-enabled applications and
User Link componentsin terms of the secure binding process:

Bindee Binder

Context Participant Application Context Manager

Context Participant Application Authentication Repository
Mapping Agent Context Manager

The bindee initiates the binding process with the binder. The bindee assumes it knows the
identity of the binder, but will prove the binder’s identity as part of the binding process.
Similarly, the binder will establish the identity of the bindee as part of the binding process.

The following interactions then occur:

1. The bindee symbolically identifiesitself to the binder. The binder uses thisinformation
to locate the binder’ s copy of the bindee' s passcode. The passcode is not transmitted
by the bindee.

2. Thebinder sends back its public key, and a message authentication code. This codeis
a secure hash value computed from a data stream formulated from the binder’ s public
key and the binder’ s copy of the bindee's passcode.

3. Thebindee uses the public key it has received and its copy of its passcode to formulate
adata stream from which it also computes a secure hash value. (The hash algorithm it
uses must be the same as the one that the binder used.) The bindee compares the
resulting hash value to the message authentication code. If the two match, then the

126 Copyright 1999, Health Level Seven Version CM-1.0

o U~ W N -

o

10
11
12

13
14

15
16
17
18

19

20
21
22
23

24
25
26
27
28

29
30
31

32
33

Context Management Specification, Technology and Subject-Independent Component Architecture

binder iswho it claims to be and the public key received by the bindee indeed belongs
to the binder.

4. The bindee again identifiesitself to the binder and sends its public key, along with a
new message authentication code. This code is a secure hash value computed from a
data stream formulated from the bindee’ s public key and the bindee' s copy of its
passcode.

5. Thebinder uses the public key it has received and its copy of the bindee's passcode to
formulate a data stream from which it also computes a secure hash value. (The hash
algorithm it uses must be the same as the one that the bindee used.) The binder
compares the resulting hash value to the message authentication code. If the two
match, then the bindee iswho it claims to be and the public key received by the binder
indeed belongs to the bindee.

An application requires a passcode for binding with the context manager. This passcodeis a
secret known only to the application and the context manager.

An application aso requires a passcode for binding with the authentication repository. This
passcode is a secret known only to the application and the authentication repository. An
application that binds to both the context manager and the authentication repository shall use
different passcodes for each binding.

10.3.4.1 Passcode Generation Requirements

Passcodes are similar to passwords used by people. However, because passcodes are only used
by computer programs, they can be much longer and complex than passwords typically are.
This makes passcodes extremely hard to guess, even when brute force techniques are
employed.

An application passcode shall be a character string comprised of no less than one hundred
(128) characters and no greater than two-hundred fifty-six (256) characters. A passcode shall
only be comprised of aphanumeric characters, aswell as the underscore () and dash (-)
characters. A passcode shall not contain white space (e.g., tabs, spaces). A passcode shall be
arbitrary but shall not contain any words or phrases.

An application’s passcode may be generated such that the same passcode is used for every
instance of the application everywhere. Thisis the least secure means of generating passcodes,
because a security breach affects every instance of the application.

An application’s passcode may be generated such that the same passcode is used for every
instance of the application at a particular site. Thisis a moderately secure means of generating
passcodes, because a security breach is at least limited to a particular site.

Version CM-1.0 Copyright 1999, Health Level Seven 127

A W N P

o N O O

10
11
12

13
14
15
16
17
18

19
20
21
22

23
24
25

26
27
28
29
30

31
32
33

35

Context Management Specification, Technology and Subject-Independent Component Architecture

An application’ s passcode may be generated such that a unique passcode is used for each
desktop upon which the application is used. Thisis the most secure means of generating
passcodes because a security breach is limited to a single desktop. This is the recommended
approach.

10.3.4.2 Protecting Passcodes

Passcodes must remain secret. There are numerous ways in which this can be achieved. The
specific approach is left as an implementation decision for applications and the various context
management components.

However, the following approach is recommended for applications. The assumption is that any
application that is used to authenticate users probably uses a server to maintain user account
and authorization information. The application might be organized using a client/server
architecture, or aweb server architecture.

The principle challenge is how to create an application such that the portion of the application
that serves as a context participant has a secure meansto store and retrieve its passcode. In the
case of client/server systems, an approach could be to store the passcode on each clinical
desktop upon which the client has been loaded. In web systems, an approach could be to
transmit the passcode from the web server to the desktop. Both of these approaches introduce
substantial security risks that would require great effort to defend againgt.

An aternative is for an application to store its passcode in a server, where it can be more
readily protected (including literally placed under lock and key). This could be the
application’s database server, or it could be a separate server whose specific role isto securely
maintain passcodes.

The server would never actually transmit the passcode. Rather, it would be responsible for
verifying message authentication codes received by the application. It would aso be
responsible for computing the application’ s message authentication code.

In this approach, the server must be able to authenticate the identity of the application. The
server must also be sure that the data it sends and receives from the application is not tampered
with whileit isin transit. Thisimplies that the application must have the means for
establishing atrusted relationship with the server in a manner somewhat akin to the
relationship the application establishes with the context manager or authentication repository.

There are many ways in which the necessary relationship can be implemented. However,
because this relationship does not involve interoperation between applications, and because the
optimal approach depends heavily upon the architecture and design of the application, asingle
approach is not specified. Instead, the approach for the server-based maintenance of an
application’s passcode is |eft as an application design exercise.

128 Copyright 1999, Health Level Seven Version CM-1.0

A W DN PP

© 00 N O O

10
11
12
13
14

15

16
17

18
19
20
21
22

23
24
25
26
27
28

29
30
31
32
33

35
36

Context Management Specification, Technology and Subject-Independent Component Architecture

10.3.4.3 Protecting Private Keys

The key distribution process described in Section 10.3.4, Public Key Distribution, does not
prescribe when keys are created. However, once created, a private key must remain the secret
of itsowner for aslong asit isin use.

It is possible to statically create a public key / private key pair for an application or
component. However, this approach requires the use of a persistent store within which the
public key / private key pair are housed when the application or component is not executing. If
such a store were used, it would need to be defended against security attacks. This can be
accomplished, but at the cost of adding complexity to applications or components.

The recommended alternative approach is for an application or component to dynamically
create its key pair when launched. This enables the keys to be kept in memory, and avoids the
complexity of using a persistent store. While it is conceivable that an in-memory private key
could be accessed by an intruder, most contemporary operating systems enable a process to
prevent other processes from reading its memory.

10.3.5 System Configuration Requirements

The system configuration capabilities necessary in order to deploy a User Link system are
summarized as follows:

The context manager shall provide a means for entering the symbolic names of the
applications that have been designated for authenticating users. It shall be possible to
establish these names on a per-desktop basis for each site. It shall not be possible for
anyone but the site’' s system administrator to modify the names known to a context
manager.

The context manager shall provide a means for entering the symbolic name and
corresponding passcode for each application that has been designated for
authenticating users at a particular site. This process shall be performed such that the
passcode remains a secret known only to the application, the context manager, and
perhaps the system administrator who conveys the information from the application to
the context manager.

The context manager shall provide a means for entering the symbolic name and
corresponding passcode for the user mapping agent used at a particular site. This
process shall be performed such that the passcode remains a secret known only to the
user mapping agent, the context manager, and perhaps the system administrator who
conveys the information from the application to the context manager.

The authentication repository shall provide a means for entering the symbolic name
and corresponding passcode for each application that uses the authentication
repository at a particular site. This process shall be performed such that the passcode

Version CM-1.0 Copyright 1999, Health Level Seven 129

w N

© 00 N O 0o~

10
11
12

13

14
15

16
17
18
19
20

21
22
23
24

25
26
27

28
29
30
31
32
33

Context Management Specification, Technology and Subject-Independent Component Architecture

remains a secret known only to the application, the authentication repository, and
perhaps the system administrator who conveys the information from the application to
the authentication repository.

Applications capable of being designated for authenticating users, and the user
mapping agent, shall provide a means of either obtaining a passcode or for entering a
passcode. This process shall be performed such that the secret passcode remains a
secret known only to the application or user mapping agent, the context manager, and
perhaps the system administrator who conveys the information from the application or
user mapping agent to the context manager.

There are numerous ways in which these capabilities can be implemented. It is beyond the
scope of the CMA to specify these capabilities. The specific approaches are left as an
implementation decision for applications and the various context management components.

10.3.6 Defending Against Replay Attacks

In areplay attack, an intruder captures valid messages that have been previously
communicated and retransmits them at alater time in the hope of violating a system.

For example, an intruder might capture a message that enables a user to log on. Even though
the intruder might not be able to read the message (it might be encrypted), the intruder might
be able to “replay” the message at later time in order to gain access to the system. In this case,
the intruder would be able to log on as the user whose actions resulted in the transmission of
the original message.

The general approach for defending against replay attacksisto include a“nonce” in each
message. The nonce is simply a number that is different each time amessageis sent, and is
used in computing the hash value for a message. The recipient of a message can keep track of
nonces it has seen, and smply reject messages that contain previously seen nonces.

In the CMA, context change coupons in conjunction with the recommend approach of
dynamically-generated public key/private key pairs (see Section 10.3.4.3, Protecting Private
Keys) defend against replay attacks.

A context change coupon serves as a nonce whose uniqueness is ensured while a context
management system is active (i.e., from the time the first participant joins to the time the last
participant leaves). Dynamically-generated keys ensure that signed messages can only be
authenticated while a context management system is active. Signed messages from earlier
activations of the system are meaningless. Together, the use of context change coupons as
nonces and dynamically generated keys provide a strong defense against replay attacks.

130 Copyright 1999, Health Level Seven Version CM-1.0

o o1~ W N

o

10

11

12

13
14
15
16

17
18
19
20

21
22

23

24
25
26

27
28
29

30

31

Context Management Specification, Technology and Subject-Independent Component Architecture

10.4 Trust Relationships

This section specifies application and component behaviors for realizing the chain of trust.

10.4.1 Trust Between Applications and Context Manager

A User Link-enabled application shall obtain a reference to the context manager’s principal
interface from the interface reference registry. The application shall interrogate this interface to
obtain areference to the context manager’ s SecureBinding interface.

A User Link-enabled application shall establish a secure binding with the context manager, per
Section 10.3.4, Public Key Distribution, after it has joined the common context system but
before it instigates any user context change transactions. This ensures that the application:

is communicating with the real context manager,
has obtained the real context manager’s public key,
has provided the context manager with its public key.

A User Link-enabled application shall create adigital signature to sign the context manager
methods it invokesin order to set context data that includes user subject context items. This
enables the context manager to authenticate the application, and to ensure the integrity of the
communicated context data items.

The context manager shall create adigital signature to sign return values it communicates to an
application whenever these values include user subject context items. This enables the
application to authenticate the context manager, and to ensure the integrity of the
communicated context data items.

All other interactions between applications and the context manger do not need to follow these
rules.

10.4.2 Trust Between Context Manager and User Mapping Agent

The user mapping agent shall obtain a reference to the context manager’s principal interface
from the interface reference registry. The user mapping agent shall interrogate this interface to
obtain areference to the context manager’ s SecureBinding interface.

The user mapping agent shall establish a secure binding with the context manager, per Section
10.3.4, Public Key Distribution, before it maps any user context data. This ensures that the
user mapping:

is communicating with the real context manager,

has obtained the real context manager’s public key,

Version CM-1.0 Copyright 1999, Health Level Seven 131

a b~ wDN

© 00 N O

10
11

12

13
14
15

16
17
18
19

20

21

22

23
24
25
26
27
28
29

30
31
32
33

Context Management Specification, Technology and Subject-Independent Component Architecture

has provided the context manager with its public key.

The user mapping agent shall create a digital signature to sign the context manager methods it
invokesin order to set context data that includes user subject context items. This enables the
context manager to authenticate the user mapping agent, and to ensure the integrity of the
communicated context data items.

The context manager shall create adigital signature to sign return values it communicates to
the user mapping agent whenever these values includes user subject context items. This enables
the user mapping agent to authenticate the context manager, and to ensure the integrity of the
communicated context data items.

All other interactions between the context manager and the user mapping agent do not need to
follow these rules.

10.4.3 Trust Between Applications and Authentication Repository

A User Link-enabled application shall obtain a reference to the authentication repository’s
principal interface from the secure registry. The application shall interrogate this interface to
obtain areference to the authentication repository’ s SecureBinding interface.

A User Link-enabled application shall establish a secure binding, with the authentication
repository, per Section 10.3.4, Public Key Distribution, after it has joined the common context
system but before it instigates any user context change transactions. This ensures that the
application:

is communicating with the real authentication repository,
has obtained the real authentication repository’s public key,
has provided the authentication repository with its public key.

A User Link-enabled application shall create adigital signature to sign the authentication
repository methods it invokesin order to set user authentication data. This data shall also be
encrypted by a means chosen by the application, and then encrypted again upon
communication using the authentication repository’s public key. The repository shall decrypt
the data using its private key only when it needs to service a valid application request to
retrieve the data. The repository shall never decrypt the data from its application-specific
encrypted form.

This enables the authentication repository to authenticate the application, to ensure the
integrity of the communicated authentication data, to keep the authentication data confidential
when it is communicated, and to defend against intrusions into the repository to obtain user
authentication data.

132 Copyright 1999, Health Level Seven Version CM-1.0

A W N P

o ol

10

11
12
13

14
15

16
17
18

19
20

21
22

23
24

25
26
27

28

Context Management Specification, Technology and Subject-Independent Component Architecture

The authentication repository shall create adigital signature to sign user authentication data it
communicates to an application. User authentication data that is communicated back to an
application shall remain encrypted as it was when provided by the application. This data shall
be encrypted again upon communication using the application’s public key.

This enables the application to authenticate the authentication repository, to keep the
authentication data confidential when it is communicated, and to ensure the integrity of the
communicated user authentication data.

All other interactions between applications and the authentication repository do not need to
follow these rules.

10.5Chain of Trust Interactions

The detailed interactions for several use cases involving the chain of trust areillustrated below.
A description for how to interpret the notation used in these diagrams appears in Appendix I.
The following additional notation is used:

The character ““|” indicates the concatenation of two strings, for example, “qrs|xyz” to
form “qrsxyz”.

XXSignature(alb|c) indicates the digital signature for XX. The signature is formed by
applying a one-way hash function to the parameter values a, b, and ¢, and then
encrypting the resulting hash value using XX’s private key.

XXPublicKey(abcd) indicates that the data “abcd” is encrypted using the public key
for XX.

XXEncrypt(abcd) indicates that the data “abcd” is encrypted using an encryption
scheme chosen by XX.

Hash(abcd) indicates a value produced by applying a one-way hash function to the
data “abcd” .

The abbreviation ZZ represents application ZZ, CM represents the context manager,
AR represents the authentication repository, and MA represents the user mapping

agent.

Version CM-1.0 Copyright 1999, Health Level Seven 133

Context Management Specification, Technology and Subject-Independent Component Architecture

Participating
Application ZZ

Repository has no B

user data for “robs” so
Application ZZ
queries user for his
authentication data.
Application ZZ then
populates

repository with
encrypted

user authentication
data.

InitiateBinding(ZZConnectionCoupon)

Authentication
Repository

publicKkey= ARPublicKey
mac = Hash(ARPublicKey|ZZPasscode)

FinalizeBinding(ZZConnectionCoupon, ZZPublicKey, HasQ(

|

7ZPublicKey|ZZPasscode))

GetAuthenticationData(ZZConnectionCoupon, "robs", "

7

, Z

]

ZSignature(Hash(ZZConnectionCoupon|robs)))

Logon “robs” not found|

SetAuthenticationData(ZZConnectionCoupon, "robs", "password
ZZSignature((Hash(ZZConnectionCoupon|r0bs|passw0rd|ARE

|

', ARPublicKey(ZZEncrypt(robs_password)),

ublicKey(ZZEncrypt(robs_password))))

Interaction Diagram 17: Populating Authentication Repository with User Authentication Data

134

Copyright 1999, Health Level Seven

Version CM-1.0

Context Management Specification, Technology and Subject-Independent Component Architecture

User Application AA Context User Link Participating Participating
trusted to Manager Mapping Agent tion YY. i 7z
User
enters"robs" and

User authenticated

T StartContextChanges()

contextcoupon=45678

SetltemValues(98765,<"user.id.Jogon.3M_Clinical_Workstation">,|<"robs">, 45678, AASignatyire(Hash(98765|user.id.logon.3M_Clinical_Workstation|robs|45678)))

Is this one of the designate(d
user authenication

applications?

Yes, do the set.

EndContextChanges()

T ContextChangesPending()

GetltemValues("User.*", 456}8)

itemValues = <“robs">,
signature = CMSignature(| h(45678|robs))

SetltemValugs(90092, <"user.id.logon.HP_CareVue">, <"Rob_Seliger">| 45678, MASignature(Hash(90092|user.id.logon|Rob_Seliger|45678)))

Is this the
authentic user
mapping agent?

Yes, do the SetitemValues|.

ContextChangesPending()

ContextChangesPending() L

PublishChangesDecision() T

ContextChangesAccepted()

ContextChangesAccepted() Ny
]
User has .
access to
U T GetltemValues("User.*", 45678)
= itemValues = <"robs"><"Rolj_Seliger">
signature = CMSignature(Hash(robs|Rob_Seliger|45678)|
GetltemValues("User.*") |
itemValues = <"robs"><"Rob| Seliger> J
signature = CMSignature(Hgsh(robs|Rob_Seliger|45678))
Chain of Trust: Participating applications trust user was i by a trusted
User logged-on

Interaction Diagram 18: User Link Context Change Transaction

Version CM-1.0 Copyright 1999, Health Level Seven 135

Context Management Specification, Technology and Subject-Independent Component Architecture

136 Copyright 1999, Health Level Seven Version CM-1.0

o oA WDN =

o

10
11

12
13
14
15
16

17
18
19
20

21

22
23

24

25

26

27

28

29
30

Context Management Specification, Technology and Subject-Independent Component Architecture

11 Interface Definitions

It is assumed that an underlying technology infrastructure that supports distributed objectsis
used to implement a common context system, although a specific technology is not assumed.
However, the capabilities of Microsoft’s COM-based Automation technology are considered as
abasdline. Thisimplies that the architecture must work well within the constraints of

Microsoft Automation, including issues that pertain to performance and supported data types.

An abstract set of CMA component interface definitions is described below. These interfaces
are defined using a precise and concise interface definition language (IDL) created for
specifying the CMA. ThisIDL is not meant to be a comprehensive interface specification
language. Only the capabilities that are required for specifying CMA component interfaces are
included inthe IDL.

A CMA-specific IDL is used because existing interface specification languages have direct or
indirect ties to specific technologies. For example, OMG’s IDL implies that the interfaces are
implemented using CORBA -based technology. Microsoft’s MIDL requires that the interfaces
are implemented using COM/DCOM technology. The use of these specification languages
confuses and possibly compromises the technology-neutrality of the CMA specification.

Experience has shown that the interface constructs represented in IDL defined below can be
easily mapped to interfaces that can be implemented using a specific technology such as
ActiveX, CORBA, Java, or HTTP. The mapping for each specific technology appearsin a
separate Context Management specification document.

11.1 Interface Definition Language

The interface definition language (IDL) used in this document enables specifying the following
facts about a component interface:

- The interface’ s symbolic name.

- The set of component properties and methods that can be accessed viathe interface.
- The name and data type of each property, and optional restrictions (e.g., read-only).
- The names and data types for each method' s input and outputs.

- The names and data content for each method’ s exceptions.

The IDL also defines a set of simple data types and the capability to represent sequences of
these types.

Version CM-1.0 Copyright 1999, Health Level Seven 137

N -

w

o b

© 00 NO

10
11

12
13

14
15

16
17

18
19
20

21

22

23
24

25

26

27
28

29
30
31

32
33

Context Management Specification, Technology and Subject-Independent Component Architecture

In the following sections, IDL reserved words are shown in bold font. Identifiers are shown in
italics. Anidentifier is an alphanumeric string that starts with an a phabetic character.

11.1.1 Interface Definition Body

The body of an interface definition creates alexical scope distinct from al other interface
definitions. The body of an interface is specified as:

interface interfacename { ... }

Interfacename is the symbolic name of the interface. The curly brackets delimit the scope of
the interface’ s body.

The body of an interface begins with the declaration of any exceptions that can be raised by
methods defined for the interface. The details of declaring exceptions are discussed later.

The properties that can be accessed through the interface are listed next. A property is adata
value that can be read or set viathe interface:

datatype propertyname

Datatype isthe data type for the property. Thetypeis one of the simple types defined below,
as denoted by the appropriate IDL reserved word.

Propertyname is the symbolic name of the property. A property’ s name must be distinct as
compared to the names of other properties, methods, and exceptions defined within the same
lexical scope.

Properties can a so be sequences. Sequences are described below.

Properties can be restricted to read-only:

readonly datatype propertyname
The value of aread-only property can be read, but not set, via the interface.

Finaly, the methods are listed:

methodname inputs (...) outputs (....) exceptions (...)

Methodname is the symbolic name of the method. A method’ s name must be distinct as
compared to the names of other properties, methods, and exceptions defined within the same
lexical scope.

The method' s inputs, outputs, and exceptions follow the method’ s name. If a method does not
have any inputs, outputs, or exceptions, then only white space should appear between the
appropriate set of parentheses.

138 Copyright 1999, Health Level Seven Version CM-1.0

[

N O OB WN

oo

10

11

12

13
14

15

16
17

Context Management Specification, Technology and Subject-Independent Component Architecture

Each input and output is defined as:

datatype name

Datatype isthe data type for the input or output. The type is one of the simple types defined
below, as denoted by the appropriate IDL reserved word. In an actua interface definition, the
appropriate IDL reserved word is used to indicate the type. Inputs and outputs can aso be
seguences. Sequences are described below.

Name is the symbolic name of the input or output. The name of inputs for a method must be
distinct for the method. The name of each output for a method must be distinct for the method.

Multiple inputs and outputs are separated by a comma.

Exceptions are listed only by their name. Multiple exceptions are separated by a comma.

11.1.2 Simple Data Types
The following smple data types are supported. The reserved words used to indicate each type

are shown:
byte
short
long
float
double
boolean
string

date

type

variant

Eight uninterpreted bits
16-bit signed integer

32-bit signed integer

32-hit floating point number
64-bit floating point number
Indicates true, or false

A string of characters

A specific year/month/day/time, with a precision of one second, and including
the time zone

An enumeration that denotes each of these data types (except t ype) aswell as
the special types null (valid value not known) and empty (data type not known)

A tagged union of all of these data types (includingt ype and vari ant)

The concrete representations of these data types are not defined. They depend upon the
interface implementation technology.

Version CM-1.0

Copyright 1999, Health Level Seven 139

o OB~ WDN P

oo

10
11
12

13

14
15

16
17
18
19

20
21

22

23
24
25

26

27
28

29
30
31

Context Management Specification, Technology and Subject-Independent Component Architecture

11.1.3 Exception Declaration

An exception declaration introduces an exception that can be raised by one or more of the
methods defined for the interface within whose lexical scope the exception declaration appears.
Each exception declaration indicates the exception name and an optional set of data values.
The name denotes the exception and the data values provide additiona run-time information
about the reason for the exception.

An exception declaration is specified as:

exception name { ... }

Name is the symbolic name of the exception. An exception’s name must be distinct as
compared to the names of other properties, methods, and exceptions defined within the same
lexical scope.

Exception data values are specified as.

datatype name ;

Datatype isthe data type for the exception value. The type is one of the smple types defined
above, as denoted by the appropriate IDL reserved word. In an actua interface definition, the
appropriate IDL reserved word is used to indicate the type. Exception values can also be
seguences. Sequences are described below.

Name is the symbolic name of the exception value. The name of each value for an exception
must be distinct for the exception.

11.1.4 Sequences

A sequenceis asingle-dimensional vector of sequential data values. Each data value is denoted
by an index whose type is long. The values for these indices are sequentia. The value of the
first index is not specified; this value depends upon the interface implementation technology.

A sequence with no restrictions on the quantity of values it can contain is specified as:

datatype[] name

Datatype isthe data type of the valuesin the sequence. The typeisone of the simple types
defined above, as denoted by the appropriate IDL reserved word. Name is the name of the
property, input or output, or exception data value.

140 Copyright 1999, Health Level Seven Version CM-1.0

[

o OB~ WDN

~

© o

10
11

12
13

14
15

16

17
18
19
20

21
22

23

24

25
26
27
28

29
30
31
32

33

35

Context Management Specification, Technology and Subject-Independent Component Architecture

A sequence with restrictions on the quantity of valuesit can contain is specified as.

datatype[quantity] name

Quantity isanumeric value that indicates the maximum quantity of values that the sequence
can contain. A sequence may contain less than this quantity. The means by which the quantity
of values in a sequence is determined depends upon the interface implementation technology.

11.1.5 Interface References

An interface reference enables access to a specific interface to a specific instance of a
component that implements the interface. The interface reference data type represents an
interface reference. The type of a property, method input, method output, and exception data
value can be an interface reference:

interfacename name

Interfacename is the name of the interface that the reference represents. Name is the name of
the property, input or output, or exception data value.

11.1.6 Principal Interface

The reserved word Principal is the interface name for a component’s principal interface. The
role of acomponent’s principal interface is discussed in Section 6.1, Component and
Interface Concepts. The type of a property, method input, method output, and exception data
value can be an interface reference to a principal interface:

Principal name

Name is the name of the property, input or output, or exception data value.

11.1.7 Qualifying Names

Inthe IDL there is never a case in which the names of properties, methods, and exceptions
defined in one lexical scope are referenced in another lexical scope. However, when
documenting the interfaces it can be useful to indicate the scope within which a particular
property, method, or exception name has been defined.

The convention for doing so is to formulate a qualified name comprised of the name of the
interface within whose scope the property, method, or exception of interest was defined,
followed by a pair of colons (::) followed by the name of the property, method, or exception,
for example:

Cont ext Manager : : Joi nConmonCont ext

denotes the method JoinCommonContext as defined for the interface ContextManager.

Version CM-1.0 Copyright 1999, Health Level Seven 141

N

~N o 0o~ W

oo

10
11
12
13
14

15

16
17
18
19
20

21
22
23
24

25
26
27

28
29

30

31
32
33

Context Management Specification, Technology and Subject-Independent Component Architecture

11.2 Interface Implementation Issues

This section describes requirements that all CMA interface implementations must respect.

11.2.1 Notlmplemented Exception

In the event that a method is not implemented, the exception Notlmplemented shall be raised.
This exception can be raised, for example, when a method has been deprecated and is no longer
implemented by a CMA component. This exception can implicitly be raised by any method
defined usng CMA IDL and need not be explicitly declared.

11.2.2 GeneralFailure Exception

In the event that a method cannot be properly performed due to an error or failure condition,
and an explicitly defined exception does not appropriate represent the situation, then the
exception GeneralFailure shall be raised. This exception might be raised, for example, when a
CMA component is unable complete a computation due to an internal error. This exception can
implicitly be raised by any method defined using CMA IDL and need not be explicitly
declared.

11.2.3 Coupon Representation

A participant coupon is a 32-bit integer, represented as the CMA |IDL datatype long, that is
assigned by a common context manager to denote each application that joins a common
context system. An application is assigned a participant coupon when it joins acommon
context system. It subsequently uses the coupon to identify itself when performing methods on
the context manager.

A context coupon is a 32-hit integer that is assigned by a common context manager to denote
each context change transaction. Each time a new transaction is started a new coupon is
assigned by the context manager to denote the transaction. Applications use a context coupon
to denote the transaction of interest.

Participant coupons shall have unique values for the duration of a common context session
(i.e., from the time the first application joins to the time the last application leaves). Context
coupons shall aso have unique values for the duration of a common context system.

The distinguished vaue of 0 shall never be assigned as a participant coupon value or as a
context coupon vaue.

11.2.4 Format for Application Names

Severa interfaces require that an application provide a CMA IDL string that contains a
symbolic name for the application. This string is generally used to distinguish one application
from another.

142 Copyright 1999, Health Level Seven Version CM-1.0

o b

© 00 N O

10

11

12

13
14
15
16

17
18
19

20

21
22
23
24
25
26
27

28
29

30

31
32
33

35

Context Management Specification, Technology and Subject-Independent Component Architecture

This string shall only be comprised of aphanumeric characters, blank spaces (no tabs), and the
underscore () character. The string shall neither begin nor end with a blank space.

Additionally, an application that is capable of allowing multiple instances of itself to execute
on the same desktop shall append to the end of its symbolic hame the number-score character
(#) followed by a string that distinguishes one instance of the application from another.

The composition of the appended string is not specified, as long as no two running instances of
the application running on a particular desktop use the same appended string at the same time.
The appended string shall only be comprised of a phanumeric characters, blank spaces (no
tabs), aswell as the underscore () character. The appended string shall neither begin nor end
with ablank space.

Character case is not considered when comparing application names.

An example of this convention is:

“3M dinical Wrkstati on#0”
“3M dinical Wrkstation#l”
“3M dinical Wrkstati on#2”

Application names formed as such shall be interpreted as representing the same logical
application (e.g., “3M Clinical Workstation”) while also representing distinct running
instances of the application (i.e., three instances of “3M Clinical Workstation”).

11.2.5 Extraneous Context Items

Context participants shall robustly deal with the situation in which context data items that they
do not recognize are nevertheless part of the common context. This might occur, for example,
in a system comprised of context participants that have been implemented using different
versions of the CMA data definition specifications. A participant implemented using an earlier
version of these specifications might not recognize context items defined in subsequent versions
of the specifications. Context participants shall smply ignore context data items whose names
they do not recognize.

Similarly, context managers shall allow any context data item for any CMA-defined subject to
be part of the context, as long as the name for the item is properly formatted.

11.2.6 Forcing the Termination of a Context Change Transaction

The context manager may need to force the termination of a context change transaction when it
appears that the instigator of the transaction has failed before completing the transaction.
Specificaly, it is recommended that any context manager method that can result in the
ContextM anager:: Transactionl nProgress exception being thrown should first explicitly confirm
that the transaction instigator is till alive.

Version CM-1.0 Copyright 1999, Health Level Seven 143

o OB~ WDN B

~

10

11

12

13
14

15
16

17
18

19

20
21

Context Management Specification, Technology and Subject-Independent Component Architecture

Most context manager implementations will employ atimer to monitor the activity of a
transaction instigator. If the instigator does not perform the necessary operations on the context
manager’ s interfaces in atimely manner, it can be inferred that the instigator has failed. The
method ContextParticipant::Ping is defined to enable the context manager to probe a context
participant to determine its liveliness. The context manager may additionally confirm the
liveliness of a context participant using technol ogy-specific mechanisms.

The duration of these timers, and the use of confirmation techniques, are implementation-

dependent.

The context manager shall clean up after the failure of the instigator by performing the

following actions:

1. The coupon assigned by the manager for the transaction is invalidated.

2. Thetransaction-specific version of the context data is discarded.

3. The coupon and context data associated with the most recently committed transaction

are unaffected.

4. The context manager’sinterna stateis set to indicate that thereis no longer a

transaction in progress.

Additional actions depend upon when the context manager determines that the instigator has
failed, as described in Table 3: Handling Transaction Instigator Failure.

Instigator fails ... Leaving systems in the
following state ...

Context manager cleans-up
by ...

before ending the transaction (see | a context change transaction is

performing the actions

ContextM anager::EndContext in progress, although surveying | described above
Changes) has not yet been performed
after ending the transaction but acontext changeisin progress | publishing the fact that the

before publishing its decision to and the surveyed participants
accept or cancel the changes (see | are waiting for the survey
ContextManager::Publish decision

ChangesDecision)

context changes have been
canceled and then performing
the actions described above

Table 3: Handling Transaction Instigator Failure

144 Copyright 1999, Health Level Seven

Version CM-1.0

A W N B

o ol

10
11

12

13

14
15
16

Context Management Specification, Technology and Subject-Independent Component Architecture

11.2.7 Character-Encoded Binary Data

Severa of the CMA component interfaces use CMA IDL string parameters that contain
character-encoded binary data. The following representation of character-encoded binary data
shall be applied for all such parameters'.

Each byte of data shall be represented by two printable characters. The four high bits of the
byte (i.e., the high octet) shall be represented by the left character. The four low bits of the
byte (i.e., the low octet) shall be represented by the right character.

An array of bytes shall be represented by character-encodings such that the left most character-
encoded byte in the string represents the data byte at lowest array index. The encoding follows
sequentially, such that the right most character-encoded byte in the string represents the data
byte at the highest array index.

Each four bits of data (i.e., an octet) is represented by an alphanumeric character as follows:

Data Character
(Octet)

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

or
or
or
or
or
or

TMUOUOT>O©0~NO0OOMWNERO

DO QO T 9

The actud character set that is employed is technology-specific. Each of the HL7 context
management technology mapping specification documents indicates the character set that is
used for a particular technol ogy-specific implementation.

12 Base64 encodi ng was not selected as a character-encoding scheme for binary data, as the added
compression offered by the scheme is of minimal advantage for the CMA, wherein only relatively
small quantities of binary data are transmitted.

Version CM-1.0 Copyright 1999, Health Level Seven 145

17

18
19
20
21

22
23

Context Management Specification, Technology and Subject-Independent Component Architecture

Binary datathat is character-encoded as a string shall not include white space or any other
characters other than the ones shown in the table above. The character-encoded string is not
case senditive. An example of binary data character-encoded per these conventionsiis:

Binary Data: 00000001 11101001 11000111 1000010

Character-Encoded String: 01E9C782

11.2.8 Representing Message Authentication Codes, Signatures and Public Keys

Message authentication codes, digital signatures, public keys are used as input or output
parameters for severa of the methods defined for CMA component interfaces. The CMA IDL
data type for each of these parametersis string. Each string contains character-encoded

binary data, encoded per Section 11.2.7, Character-Encoded Binary Data.

The binary data that is encoded is technol ogy-specific. Each of the HL7 context management
technology mapping specification documents indicates the binary data types needed for a
particular technol ogy-specific implementation. It is necessary that both the sender and receiver
of a message authentication code, digital signature, or public key agree upon the format of the
underlying binary data type, and the algorithms used to create the data. The method
SecureBinding::InitiateBinding, defined in 11.3.7.1, enables this agreement to be established.

11.2.9 Representing Basic Data Types as Strings

Severa of the CMA component interfaces use input or output parameters whose values are
computed from the string representations of data values of various types. For example, digital
signatures are computed from a one-way hash vaue, which is, in turn, computed from a string
formed by concatenating a list of data values, each of which is represented as a string.

The following data types shall be represented as character strings using the formats described
in Table 4: Character Representations for Basic Data Types.

146 Copyright 1999, Health Level Seven Version CM-1.0

~

10

Context Management Specification, Technology and Subject-Independent Component Architecture

Type String Representation Comments

boolean 0, if false
1, if true

short dddd, where d is a numeric character Leading minus sign (-dddd) if
representing adecimal digit and the number is negative. No plus
number of characters depends upon sign if positive.
the value of the number.

long Same asfor short.

date yyyy/mm/dd hh:mm:ss

string Asis. Caseis preserved.

float dddd.dddd, where d is a numeric Leading minus sign
character representing a decimal (-dddd.dddd) if number is
digit. The number of digits before negative. No plus sign if
the decimal point depends on the positive.

magnitude of the number, and the
number of digits after the decimal
point depends on the precision.

double Same as float, except that there can
be more digits.

byte bb, where b is a hexadecimal digit. Lower case for aphabetic
The byte is represented as unsigned. characters that represent hex

digits(i.e, a b, c, d, g f).

Table 4: Character Representations for Basic Data Types

The actua character set that is employed is technology-specific. Each of the HL7 context
management technology mapping specification documents indicates the character set that is
used for a particular technol ogy-specific implementation.

11.2.10 Pre-Defined Mapping Agent Coupons

A participant coupon value is pre-defined for each type of mapping agent. In general, a
negative coupon value denotes a mapping agent, as opposed to a context participant
application. The following values are currently allocated:

Mapping Agent Coupon Value
Patient -1
User -2
Reserved for future -3 through -500

Version CM-1.0 Copyright 1999, Health Level Seven 147

o oA WDN

o

10
11
12
13

Context Management Specification, Technology and Subject-Independent Component Architecture

Pre-defined coupon values are used for mapping agents because they do not explicitly join the
context system. Instead, a mapping agent is implicitly “pulled” into the context system each
time a context change transaction occurs, when the context manager performs the mapping
agent method M appingAgent:: ContextChangesPending. See Section 11.3.6.1,
ContextChangesPending.

However, agents such as the user mapping agent need to know their participant coupon values
prior to the first context change transaction. For example, the user mapping agent needs to
establish a secure binding with the context manager before it can set user context items. In
order to establish this binding, the user mapping agent must present the context manager with
its coupon (see Section 11.3.7.1, InitiateBinding). By having a priori knowledge of its coupon
value, the user mapping agent can establish its secure binding whenever it decides to, up until
the time it actually attempts to set the context.

148 Copyright 1999, Health Level Seven Version CM-1.0

N

Context Management Specification, Technology and Subject-Independent Component Architecture

11.3Interfaces
This section specifies the methods for each of the CMA interfaces.

11.3.1 AuthenticationRepository (AR)

i nterface AuthenticationRepository {

43

44
45
46

excepti on AuthenticationFailed { string reason; }
excepti on UnknownApplication {}

excepti on UnknownConnection {}

excepti on LogonNotFound { string | ogonNane; }
excepti on UnknownDataFormat { string dataFormat; }

Connect
i nputs(string applicationNane)
out put s(1 ong connecti onCoupon)
rai ses()

Disconnect

i nput s(1 ong connecti onCoupon)
out put s()

r ai ses(UnknownConnect i on)

SetAuthenticationData

i nput s(l ong connecti onCoupon, string | ogonNane, string dataFornmat,
string userData, string appSignature)

out put s()

r ai ses(UnknownConnecti on, Authenti cati onFail ed)

DeleteAuthenticationData

i nput s(l ong connecti onCoupon, string | ogonNane, string dataFornmat,
string appSi gnat ure)

out put s()

rai ses(UnknownConnecti on, AuthenticationFail ed, LogonNot Found,
UnknownDat aFor mat)

GetAuthenticationData

i nput s(l ong connecti onCoupon, string | ogonNane, string dataFornmat,
string appSi gnat ure)

out puts(string userData, string repositorySignature)

rai ses(UnknownConnecti on, Authenticati onFail ed, LogonNot Found,
UnknownDat aFor mat)

11.3.1.1 Connect

This method enables an application to establish a connection with the authentication
repository. An application must have a connection before it can set or get user authentication
data.

Version CM-1.0 Copyright 1999, Health Level Seven 149

A W N P

© 00 N O O

10

11
12

13
14

15

16
17
18

19
20

21

22
23
24
25

26
27
28
29
30
31
32

33

Context Management Specification, Technology and Subject-Independent Component Architecture

The value of the input applicationName is a succinct string that contains the application’s
symbolic name. The output connectionCoupon is the value of a connection coupon that the
application can subsequently use to denote itself when performing other authentication
repository methods.

The value of input applicationName is used by the authentication repository to determine the
passcode for an application. The passcode is needed when an application establishes a secure
binding with the authentication repository (see Section 11.3.7 SecureBinding (SB)). Multiple
instances of an application can connect to the authentication repository using the same name.
Each instance of the application will be assigned a unique connection coupon. Each instance of
the application will need to establish a secure binding with the repository.

The value of the input applicationName is also used by the authentication repository to
store/retrieve the user authentication data within the repository.

The exception UnknownApplication is raised if the input applicationName does not represent
an application currently known to the authentication repository.

11.3.1.2 Disconnect

This method enables an application to disconnect from the authentication repository. An
application shall disconnect before it terminates. The value of the input connectionCoupon
denotes the application.

The exception UnknownConnection israised if the input connectionCoupon does not denote an
application currently connected to the authentication repository.

11.3.1.3 SetAuthenticationData

This method enables an application to store authentication data for a particular user’s logon
name within the authentication repository. This method a so enables an application to update
authentication data for a particular user’ s logon name that it has aready stored in the

repository.

The value of the input connectionCoupon denotes the application, the value of the input
logonName is a user’s logon name, the value of the input userData is the application-specific
data used to authenticate the user, and the value of the input appSignature is the application’s
digital signature. This signature enables the authentication repository to authenticate that the
request to set the authentication data came from the application denoted by the value of
connectionCoupon, and that the values of connectionCoupon, logonName, dataFormat, and
userData, were not tampered with between the time they were sent and were received.

Concatenating the string representations of the following inputsin the order listed shall form
the data from which a message digest is computed by the application:

150 Copyright 1999, Health Level Seven Version CM-1.0

10
11
12

13
14
15
16

17
18

19
20
21

22

23
24
25

26
27

28
29
30
31
32

Context Management Specification, Technology and Subject-Independent Component Architecture

connectionCoupon
logonName
dataFormat
userData

An application shall compute its digital signature by encrypting the message digest with its
private key.

The value of the input dataFormat is an application-defined string that is used when an
application needs to maintain multiple forms of authentication datafor a user (e.g., password,
thumbprint image, etc.). If only one form of authentication data is needed, this string can be
empty. Multiple calls of SetAuthenticationData are required to set different forms of
authentication data for a particular user. The value of dataFormat for each call should indicate
the form of authentication data to be stored.

The value of the input userData contains user authentication data that has been encrypted by
the application using an encryption technique chosen by the application. This data is character-
encoded per Section 11.2.7, Character-Encoded Binary Data. The structure of the encoded
binary datais application-dependent and is not specified.

The exception UnknownConnection israised if the input connectionCoupon does not denote an
application that is currently connected to the repository.

The exception AuthenticationFailed is raised if the process of authentication determines that
the signature is not the signature for the application denoted by the input connectionCoupon or
that the input parameter’ s values have been tampered with.

11.3.1.4 DeleteAuthenticationData

This method enables an application to delete from the authentication repository some or al of
the authentication data that it previoudly stored for a particular logon name. Both the logon
name and the associated authentication data are deleted.

The value of the input connectionCoupon denotes the application and the value of the input
logonName is the logon name to be deleted.

The value of the input dataFormat is an application-defined string that is used when an
application maintains multiple forms of authentication data for a user (e.g., password,
thumbprint image, etc.) within the repository. If this string is empty, then al of the forms of
authentication data stored for the user are deleted. If this string is not empty, then just the
denoted form of authentication data is deleted.

Version CM-1.0 Copyright 1999, Health Level Seven 151

10
11
12

13
14

15
16
17

18
19

20
21

22

23
24
25
26

27
28
29
30

Context Management Specification, Technology and Subject-Independent Component Architecture

The value of the input appSignature isthe application’s digital signature.

Concatenating the string representations of the following inputsin the order listed shall form
the data from which a message digest is computed by the application:

connectionCoupon
logonName
dataFormat

An application shall compute its digital signature by encrypting the message digest with its
private key.

This signature enables the authentication repository to authenticate that the request to delete
the authentication data came from the application denoted by the vaue of connectionCoupon,
and that the values of coupon, logonName, and dataFormat were not tampered with between
the time they were sent and were received.

The exception UnknownConnection israised if the input connectionCoupon does not denote an
application that is currently connected to the repository.

The exception AuthenticationFailed is raised if the process of authentication determines that
the signature is not the signature for the application denoted by the input connectionCoupon or
that the input parameter values have been tampered with.

The exception LogonNotFound israised if user authentication data corresponding to the logon
name denoted by the input logonName does not reside in the repository.

The exception UnknownDataFormat is raised if the form of authentication data denoted by the
input dataFormat is not found in the repository.

11.3.1.5 GetAuthenticationData

This method enables an application to retrieve from the authentication repository the
authentication data previoudly stored for a particular user’ s logon name. The value of the input
connectionCoupondenotes the application, the value of the input logonName is a user’s logon
name, and the value of the input appSignature is the application’s digital signature.

This signature enables the authentication repository to authenticate that the request to get the
authentication data came from the application denoted by the value of connectionCoupon, and
that the values of coupon, logonName, and dataFormat were not tampered with between the
time they were sent and were received.

152 Copyright 1999, Health Level Seven Version CM-1.0

10
11
12
13

14
15
16

17
18
19

20
21
22

23
24

25
26
27

28
29

30
31

Context Management Specification, Technology and Subject-Independent Component Architecture

Concatenating the string representations of the following inputsin the order listed shall form
the data from which a message digest is computed by the application:

connectionCoupon
logonName
dataFormat

An application shall compute its digital signature by encrypting the message digest with its
private key.

The value of the input dataFormat is an application-defined string that is used when an
application needs to maintain multiple forms of authentication datafor a user (e.g., password,
thumb-print image, etc.). If only one form of datais used, this string can be empty. Multiple
calls of GetAuthenticationData are required to get different forms of authentication datafor a
particular user. The value of dataFormat for each call should indicate the form of
authentication data to be retrieved.

The value of the output userData is the application-specific data used to authenticate the user.
The output userData remains encrypted, as it was when it was stored by the application using
SetAuthenticationData

The output userData shall be used as the data from which a message digest is computed by the
application. The authentication repository shall compute its digital signature by encrypting the
message digest with its private key.

This signature enables the application to authenticate that the authentication data returned by
this method came from the authentication repository and that the value of userData was not
tampered with between the time it was sent and was received.

The exception UnknownConnection israised if the input connectionCoupon does not denote an
application that is currently connected to the repository.

The exception AuthenticationFailed is raised if the process of authentication determines that
the signature is not the signature for the application denoted by the input connectionCoupon or
that the input parameter values have been tampered with.

The exception LogonNotFound israised if user authentication data corresponding to the logon
name denoted by the input logonName does not reside in the repository.

The exception UnknownDataFormat is raised if the form of authentication data denoted by the
input dataFormat is not found in the repository.

Version CM-1.0 Copyright 1999, Health Level Seven 153

©CoOoO~NOOUITAWN -

-b-bwwwwwﬁwwwwNNNNNNNNNI\J}—‘HHHHHHHHH
OO0 ~NO O WNPFPOOO~NOUIA_ARWNRPFPOOONOOOMAWDNPEO

42
43

45
46
47
48

11.3.

}

11.3.

Context Management Specification, Technology and Subject-Independent Component Architecture

2 ContextData (CD)

nt erf ace ContextData ({
excepti on UnknownParticipant { | ong partici pant Coupon; }
exception UnknownltemName { string itenNane; }
excepti on BadltemNameFormat { string itenNane; string reason }
exception BadltemType { string itenmNane; type actual
type expected; }
excepti on BadltemValue { string itenNane; variant itenVal ue;
string reason; }
excepti on NameValueCountMismatch {l ong nunmNames; |ong nunVal ues }
excepti on ChangesNotPossible {}
excepti on ChangesNotAllowed {}
exception InvalidContextCoupon {}

GetltemNames

i nput s(1 ong cont ext Coupon)
out puts(string[] names)

rai ses(I nval i dCont ext Coupon)

Deleteltems

i nputs(l ong partici pant Coupon, string[] itenmNanes,
| ong cont ext Coupon)

out put s()

rai ses(Not I nTransacti on, UnknownParti ci pant, |nvali dContext Coupon
Badl t emNanmeFor mat, Unknownlt emNanme, ChangesNot Possi bl e,
ChangesNot Al | owed)

SetltemValues

i nputs(l ong partici pant Coupon, string[] itenmNanes,
variant[] itenVal ues, |ong context Coupon)

out put s()

rai ses(Not I nTransacti on, UnknownParti ci pant, |nvali dContext Coupon
NaneVal ueCount M smat ch, Badl t emNaneFor mat, Badlt enType,
Badl t emival ue, ChangesNot Possi bl e, ChangesNot Al | owed)

GetltemValues

i nputs(string[] itemNanes, bool ean onl yChanges, |ong cont ext Coupon)
out puts(variant[] itenVal ues)

rai ses(I nval i dCont ext Coupon, BadltemNaneFormat, UnknownltemnmNane)

2.1 GetltemNames

This method enables a participant in acommon context system to obtain the names of the
common context items.

This method can be performed outside the scope of a context change transaction. In this case,
the vaue of the input contextCoupon must denote the most recently committed transaction.
The output itemNames is a sequence containing the item names that represent the state of the
common context as it was when the most recently committed transaction was compl eted.

154 Copyright 1999, Health Level Seven Version CM-1.0

o OB~ WDN B

~

10
11
12

13
14
15
16
17
18

19
20

21
22

23
24

25
26
27

28
29

30
31
32

Context Management Specification, Technology and Subject-Independent Component Architecture

This method can also be performed within the scope of a context change transaction that is
currently in progress. In this case, the input contextCoupon must dencte the current
transaction. The output itemNames contains the item names that represent the state of the
common context as it has been established so far by the transaction. The output itemNames is
empty (i.e. zero elements) until a participant explicitly setsitem values viathe

ContextData:: SetltemV alues method within the scope of the transaction.

The exception InvalidContextCoupon israised if the input contextCoupon does not denote the
most recently committed transaction or the transaction currently in progress.

11.3.2.2 Deleteltems

Note: This method has been deemed extraneous and is being deprecated. In a future version
of this specification context managers may chose to not implement this method even though it
remains part of the ContextData interface definition.

This method enables an application in a common context system to remove an item from the
set of common context items. The application or mapping agent denotes itself with its
participant coupon as the value of the input participantCoupon. The vaue of the input
contextCoupon must denote the current context change transaction, as obtained by the
instigator of the transaction when it performed the ContextM anager:: StartContextChanges
method.

The exception NotInTransaction is raised if there is no change transaction currently in
progress.

The exception UnknownParticipant is raised if the input participantCoupon does not denote an
application or mapping agent that is currently a participant in the common context system.

The exception InvalidContextCoupon is raised if the context coupon parameter does not denote
the transaction currently in progress.

The exception BadltemNameFormat is raised if the format of an item named for deletion does
not conform to the specification for the item in the relevant HL7 context management data
definition specification document.

The exception UnknownltemName is raised if one or more of the items named for deletion is
not the name of an item in the context as it stands under the current transaction.

The exception ChangesNotPossible israised if the ContextData::Deleteltems method is
invoked after the ContextM anager::EndContextChanges method has aready been invoked for
the transaction currently in progress.

Version CM-1.0 Copyright 1999, Health Level Seven 155

N -

© 0 N O O~ W

10
11
12

13
14

15
16

17
18

19
20

21
22

23
24
25

26
27

28
29
30
31

32
33

Context Management Specification, Technology and Subject-Independent Component Architecture

The exception ChangesNotAllowed is raised by ContextData::Deleteltems if a mapping agent
attempts to delete context items.

11.3.2.3 SetltemValues

This method enables an application or mapping agent in a common context system to set the
value of one or more common context items. The application or mapping agent denotes itself
with its participant coupon as the value of the input participantCoupon. The names of the
context items to be set are contained in the input sequence itemNames. The values for each of
these items are contained in the input sequence itemValues. The i™ element in itemValues is the
value for the item named by the i"" element in itemNames.

If an item named in itemNames is not currently an item in the common context, it will be
added. The data type for a newly added item is the same as the data type of the element in
itemValues that contains the item’s value.

This method can only be performed within the scope of a context change transaction. The
value of the input contextCoupon must denote the current transaction.

The exception NotInTransaction is raised if there is no change transaction currently in
progress.

The exception UnknownParticipant is raised if the input participantCoupon does not denote an
application or mapping agent that is currently a participant in the common context system.

The exception InvalidContextCoupon israised if the input contextCoupon does not denote the
transaction currently in progress.

The exception NameV alueCountMismatch israised if the number of itemsin the input
nitemNames does not match the number of itemsin the input itemValues.

The exception BadltemNameFormat is raised if the format of an item named for deletion does
not conform with the specification for the item in the relevant HL7 Context Management Data
Definition Specification.

The exception BadltemType israised if the data type for one or more of the items whose value

isto be set is not the same as the expected data type.

The exception BaditemValueisraised if the data value for one or more of the items whose
value isto be set is determined to be unacceptable. This exception is used by context manager
implementations that enforce semantic constraints on the common context. Not all context
manager implementations will do this.

The exception ChangesNotPossible israised if the ContextData:: SetltemVa ues method is
invoked by an application after the ContextM anager::EndContextChanges method has already

156 Copyright 1999, Health Level Seven Version CM-1.0

~N O

10
11
12

13
14
15

16
17
18

19
20
21
22

23
24
25
26

27

28

29
30

31
32

Context Management Specification, Technology and Subject-Independent Component Architecture

been invoked for the transaction currently in progress. (This exception isnot raised if a
mapping agent invokes ContextData:: SetltemV a ues after ContextM anager.)

The exception ChangesNotAllowed is raised if a mapping agent attempts to set avaue for a
context item for which a value has aready been set by the application that instigated the
context change transaction.

11.3.2.4 GetltemValues

This method enables a participant in acommon context system to obtain the value of one or
more context items.

When the vaue of the input contextCoupon denotes the most recently committed transaction,
the item values that are returned represent the state of the common context as it existed when
the transaction was completed. Thisistrue even if there is currently a new transaction in
progress.

When the vaue of the input contextCoupon denotes the transaction currently in progress, the
item values that are returned represent the state of the common context as it has been
established so far by the transaction.

Theitems of interest are indicated in the input sequence itemNames. These names can be fully-
qualified item names, which means that the all of the fields for an item’s name are explicitly
specified (e.g., "Patient.|d. MRN.St_Elsewhere_Hospita").

Alternatively, awild card represented by an asterisk (*) can be used in place of a specific
string for any of the item name fields except for the subject field (which islexically the first
field on the left). The wild card enables a participant to obtain one or more items without
having to specify complete item names.

If awild card is used, it must appear in only the last field specified in the item name string
(which islexically the last field on the right). Additional field names and/or wild cards must
not appear after awild card (i.e., lexicaly to the right of the wild card). Examples of properly
formatted items names include:

“Patient.*” matches all of the identifier and corroborating items for the patient subject
“Patient.Id.*” matches al of the patient identifier items

“Patient.ld.MRN.*” matches al of the patient identifiers that are site-specific medical
record numbers

Conversdly, “Peatient.1d.*.*” and “Patient.|d.*.St_Elsawhere_Hospital” are examples of
improperly formatted item names.

Version CM-1.0 Copyright 1999, Health Level Seven 157

A W N P

10
11
12
13
14
15

16
17
18
19
20

21
22

23

24
25

26
27

28
29
30

31
32

Context Management Specification, Technology and Subject-Independent Component Architecture

The sequence output itemValues contains the values of all of the items whose names match the
set of names specified in the input itemNames. A specific item’s value will be included at most
oncein itemValues, even if its name matches more than one of the names specified in
itemNames. For example, even if itemNames includes the names:

“Patient.|d. MRN.St_Elsewhere_Hospital”
and:
“Patient.ld.*”

the value for the item named “ Patient.|d. MRN.St_Elsewhere_Hospital” will be included only
once in itemValues.

The elements in the sequence itemValues alternate between the complete name of an item
(represented as a string) and the corresponding item value (represented by the appropriate data
type). For example, if severa context data items are returned, then the first element in the list
is the name of the first item, the second element in the list is the vaue of the first item, the third
dement in thelist is the name of the second item, the fourth e ement in thelist is the value of
the second item, and so on.

The input onlyChanges enables a participant to instruct the context manager to filter which
items it returns no matter what names were specified. When the value of onlyChanges is true,
then the items that are returned are limited to only the context subjects whose items were set by
the most recently committed context change transaction, or by the transaction in progress, as
indicated by the vaue of contextCoupon.

For example, if onlyChanges is true, contextCoupon denotes the most recently committed
context change transaction, and itemNames includes the name:

“Patient.1d.*”

but items in the patient subject were not set during the transaction, then the output itemValues
will not contain any items pertaining to the patient subject.

The exception InvalidContextCoupon israised if the input contextCoupon does not denote the
most recently committed transaction or the transaction currently in progress.

The exception BadltemNameFormat is raised if the format of an item named for deletion does
not conform with the specification for the item in the relevant HL7 context management data
definition specification.

The exception UnknownltemName is raised if one or more of the items named is not the name
of anitem in the context as it stands under the current transaction.

158 Copyright 1999, Health Level Seven Version CM-1.0

Context Management Specification, Technology and Subject-Independent Component Architecture

11.3.3 ContextManager (CM)

i nterface ContextManager {

QOwoo~NOOUThWN -

ﬁhhhhwwwwwﬁwwwwl\)l\)l\)l\)l\)l\)l\)l\)l\)l\)l—‘l—\l—‘l—\l—‘l—\l—\l—\l—‘l—‘
WNPFPOOWNO O WNPFPOOWO~NOUITRARWNRPFPOOONOOULEA WN -

exception AlreadyJoined {}

excepti on UnknownParticipant { | ong partici pant Coupon; }
exception TransactionlnProgress { string instigatorNane; }
excepti on NotInTransaction {}

exception InvalidTransaction { string reason; }

exception TooManyParticipants { | ong howvany; }

excepti on ChangesNotEnded {}

excepti on AcceptNotPossible {}

excepti on UndoNotPossible {}

exception InvalidContextCoupon {}

readonly | ong MostRecentContextCoupon

JoinCommonContext
i nput s(Cont ext Partici pant contextPartici pant,
string applicati onName, bool ean survey, bool ean wait)
out put s(1 ong parti ci pant Coupon)
rai ses(Al readyJoi ned, TooManyPartici pants, Transacti onlnProgress)

LeaveCommonContext

i nput s(l ong partici pant Coupon)
out put s()

rai ses(UnknownParti ci pant)

StartContextChanges

i nput s(l ong partici pant Coupon)

out put s(1 ong cont ext Coupon)

rai ses(UnknownPartici pant, Transactionl nProgress,
I nval i dTransacti on)

EndContextChanges
i nput s(l ong cont ext Coupon)
out put s(bool ean noConti nue, string[] responses)
rai ses(I nval i dCont ext Coupon, Not | nTransacti on
I nval i dTransacti on)

UndoContextChanges

i nput s(1 ong cont ext Coupon)

out put s()

rai ses(I nval i dCont ext Coupon, Not I nTransacti on, UndoNot Possi bl e)

Version CM-1.0 Copyright 1999, Health Level Seven 159

O©CoOO~NOUITD WN P

18

19
20
21
22

23

24
25
26

27
28
29
30

31
32
33

35
36

37
38
39

Context Management Specification, Technology and Subject-Independent Component Architecture

Publ ishChangesDecision

i nput s(l ong cont ext Coupon, string decision)

out put s()

rai ses(Not I nTransacti on, I|nvalidContextCoupon, ChangesNot Ended,
Accept Not Possi bl e)

SuspendParticipation

i nput s(l ong partici pant Coupon)
out put s()

rai ses(UnknownParti ci pant)

ResumeParticipation

i nputs(l ong partici pant Coupon, bool ean wait)

out put s()

rai ses(UnknownPartici pant, Transacti onl nProgress)

11.3.3.1 MostRecentContextCoupon

This read-only property contains the value of the context coupon that represents the most
recently committed changes to the common context data. Even if there is a change transaction
in progress, this property’ s value represents the previously committed transaction. If no
transactions have been committed, the value of this property is 0.

11.3.3.2 JoinCommonContext

This method enables an application to join a common context system. The application must
provide areference to its ContextParticipant interface as the value of the input
contextParticipant.

The value of theinput applicationName is a succinct string that can be used to easily and
clearly identify the application to the user (see Section 11.2.4, Format for Application Names).
This string must be unique relative to the other applications that have already joined the
common context system.

If an application subsequently attempts to establish a secure binding with the context manager
(see Section 11.3.7 SecureBinding (SB)), then this string is used by the context manager to
determine the passcode for an application.

The application can also indicate whether it wants to participate in context change surveys (the
value of the input survey indicates true), or that it just wants to be informed when a context
change has been accepted (the value of the input survey indicates false).

An application can only join acommon context system between context change transactions. If
no transaction is in progress, the application is able to immediately join the context change
system.

160 Copyright 1999, Health Level Seven Version CM-1.0

Context Management Specification, Technology and Subject-Independent Component Architecture

1 If atransaction isin progress and the value of the input wait indicates true, this method will
2 block until the transaction completes. It is recommended that an application that is willing to
3 walit also display a message to the user indicating that it is attempting to join a common
4 context system. If atransaction isin progress and the value of the input wait indicates false,
5 this method immediately raises the exception TransactionlnProgress.
6 The output participantCoupon is the value of the participant coupon that the application can
7 subsequently use to denote itself when performing other ContextManager methods.
8 The exception AlreadyJoined is raised if an application with the same name as the value of
9 applicationName has already joined the context.
10 The exception TooManyParticipants is raised if the context manager is unable to accommodate
11 an additional common context participant.

12 11.3.3.3 LeaveCommonContext

13 This method enables an application that is a participant in acommon context system to leave
14 the system. The application denotes itself using its participant coupon as the value of the input
15 participantCoupon. Once this method returns, the application is free to terminate.

16 In order to avoid a deadlock condition, this method does not block. If this method was alowed
17 to block, it would be possible for an application to block while the context manager was

18 attempting to perform a method on the application’ s ContextParticipant interface. For single-
19 threaded applications, this could cause a deadlock.

20 Consequently, if a context change transaction isin progress when this method is called, the

21 application may till be notified about the context change even though it has left the common
22 context. The application is free to ignore this notification or may not even be capable of

23 responding. The context manager will robustly handle the failure of an application to respond.
24 The exception UnknownParticipant israised if the input participantCoupon does not denote an
25 application that is currently a participant in the common context system.

26 11.3.3.4 StartContextChanges

27 This method enables an application to indicate that it wants to start changing the common
28 context. The application denotes itself with its participant coupon as the value of the input
29 participantCoupon. A context change transaction is initiated. Actual changes to the context
30 data are conducted via the ContextData interface. The output contextCoupon is the value of
31 the context coupon that has been assigned by the context manager to denote the change

32 transaction.

Version CM-1.0 Copyright 1999, Health Level Seven 161

A W N P

o1

10

11
12
13
14
15
16
17
18

19
20

21
22
23
24
25
26
27

28
29
30
31
32

33

35

Context Management Specification, Technology and Subject-Independent Component Architecture

The context manager will automatically terminate context change transaction if it does not
detect activity on its ContextData interface or if the ContextM anager::EndContextChanges
method is not performed in atimely manner. The amount of time that the manager will wait
before terminating the transaction depends upon the manager’ s implementation.

The exception UnknownParticipant is raised if the input participantCoupon does not denote an
application that is currently a participant in the common context system.

The exception TransactionlnProgress is raised if a context change transaction is already in
progress.

The exception InvalidTransaction is raised if a suspended application calls this method.

11.3.3.5 EndContextChanges

This method enables the application that instigated a context change transaction to indicate that
it has completed its changes to the common context. The value of the input contextCoupon
denotes the transaction currently in progress. This method initiates the two-step change
notification process and returns after the first phase of the notification process is conducted by
the context manager. During the first phase, the applications in the common context system are
surveyed to determine their ability or willingness to apply the context changes. The
ContextParti cipant:: ContextChangesPending method is performed on each application in the
survey.

The output responses is a sequence of strings that is used to convey the results of the survey to
the application that instigated a context change transaction.

If all of the applications surveyed indicate that they are willing to accept the context changes,
then the output sequence responses is empty (i.e. zero elements) and the output noContinue is
false. The sequence is empty because there is no useful information to be conveyed about the
applications that have accepted, other than the fact that they all accepted. The method
ContextM anager::PublishChangesDecision with the decision accept shall be subsequently
performed by the instigating application to communicate to the other applications the decision
to accept the context changes and to compl ete the transaction.

If there are surveyed applications that either are unable to provide aresponse to the survey
(e.g., because they are “busy”), or that want to inform the user that work-in-progress might be
lost if the context is changed, then the return value contains a string for each such application.
The application that invoked this method is expected to display the strings to the user and to
obtain guidance about how to proceed.

The output noContinue indicates true if the mapping agent invalidated the transaction, or at
least one of the surveyed applicationsis “busy”. It is not possible for the user to continue to
apply the context change transaction if the value of noContinue istrue. The only option the

162 Copyright 1999, Health Level Seven Version CM-1.0

A W N P

o N o O

10
11

12
13
14
15

16
17

18
19

20
21
22

23

24
25
26

27
28

29
30

31
32
33

Context Management Specification, Technology and Subject-Independent Component Architecture

user hasisto cance the change or to disconnect the instigating application from the common
context system. For either user decision, the method
ContextManager::PublishChangesDecision with the decision cancel shall be performed by the
instigating application.

If the mapping agent has not invalidated the transaction and there are no busy applications
(i.e., noContinue isfalse), but there are applications that have conditionally accepted the
context changes, the user can instruct the instigating application to apply the context changes
anyway, cancel the changes, or to disconnect from the common context system.

The method ContextManager::PublishChangesDecision with the decision accept shall be
subsequently performed by the instigating application to complete the transaction if the user
decides to apply the context changes.

The method ContextManager::PublishChangesDecision with the decision cancel shall be
subsequently performed by the instigating application to complete the transaction if the user
decides to cancel the context changes or to disconnect the instigating application from the
common context system.

The exception InvalidContextCoupon israised if the input contextCoupon does not denote the
transaction currently in progress.

The exception NotInTransaction is raised if there is no change transaction currently in
progress.

The exception InvalidTransaction is raised if, for each subject whose context data items have
been set by the transaction, the context data changes do not include at least one item that is an
identifier (e.g., context data for a subject cannot be comprised of just corroborating data).

11.3.3.6 UndoContextChanges

This method enables an application to discard any context data changes that it has already
made. The context coupon parameter denotes the transaction currently in progress. The
current transaction is brought to a close and the context coupon is no longer valid.

The exception InvalidContextCoupon israised if the input contextCoupon does not denote the
transaction currently in progress.

The exception NotInTransaction is raised if there is no change transaction currently in
progress.

The exception UndoNotPossibleis raised if the method ContextM anager::UndoContext-
Changes s attempted after the ContextM anager::EndContextChanges method has been
performed during the course of the current transaction.

Version CM-1.0 Copyright 1999, Health Level Seven 163

a b~ W N B

© 00 N O

10
11

12
13
14

15

16
17

18
19

20
21

22
23
24
25

26

27
28
29
30
31

32
33

Context Management Specification, Technology and Subject-Independent Component Architecture

11.3.3.7 PublishChangesDecision

This method enables the application that instigated a context change transaction to inform the
other applications in a context system about whether the changes are to be applied or have
been canceled. The value of the input contextCoupon denotes the transaction currently in
progress.

The decision to accept the changes shall be published when the context changes are to be
applied. The only times that context changes cannot be applied are when there were
applications for which it was not possible to obtain a survey response (e.g., these applications
were “busy”) or when a mapping agent invalidates the transaction.

The decision to cancel the changes shall be published when the context changes are to be
discarded.

If the decision isto accept the changes, the value of the value of the output decision parameter
is*“accept”. If the decision isto cancel the changes, the value of the output decision is
“cancel”. The context manager is shall treat these values in a case-insensitive manner.

Once the decision has been published, the change transaction is complete.

The exception InvalidContextCoupon israised if the input contextCoupon does not denote the
transaction currently in progress.

The exception NotInTransaction is raised if there is no change transaction currently in
progress.

The exception ChangesNotEnded israised if the method EndContextChanges has not yet been
performed during the course of the current transaction.

The exception AcceptNotPossible is raised if the decision to be published is accept but there
were applications for which it was not possible to obtain a survey response (e.g., these
applications were blocked). The decision accept in this case is erroneous. This exception
defends against this case should it arise due to an application programming error.

11.3.3.8 SuspendParticipation

This method enables an application to indicate that it wants to suspend its active participation
in a common context system while remaining registered as a participant. The application
denotes itsalf with its participant coupon as the value of the input participantCoupon. It
should be apparent to the user that the application is not displaying context-sensitive data, for
example, the application might be minimized so that no data display can be seen.

Suspending participation is not the same as leaving the common context. Instead, this method
provides an optimization for applications that temporarily do not want to track context

164 Copyright 1999, Health Level Seven Version CM-1.0

N -

o N O O A W

10
11
12

13
14
15
16

17

18

19
20
21
22

23
24
25
26

27
28

29

30
31
32
33

Context Management Specification, Technology and Subject-Independent Component Architecture

changes. This enables an application to perform computational tasks without being interrupted
by context changes.

This method also enables an application to minimize its use of computational resources if it is
in adtate (e.g., minimized) in which responding to context changes provides no benefit to the
user. The application can subsequently resume its participation in the common context viathe
ContextM anager::ResumeParticipation method. The application will not be surveyed, nor will
it be informed of changes to the common context until the application invokes the

ContextM anager::ResumeParti cipation method.

In order to avoid a deadlock condition, this method does not block. If this method was alowed
to block, it would be possible for an application to block while the context manager was
attempting to perform a method on the application’ s ContextParticipant interface. For single-
threaded applications, this could cause a deadlock.

Consequently, if a context change transaction isin progress when this method is called, the
application may still be notified about the context change. The application is free to ignore this
notification or may not even be capable of responding. The context manager will robustly
handle the failure of an application to respond.

This method has no effect if the application has aready suspended its participation.
A suspended application cannot instigate a context change transaction.

Context manager implementations are encouraged to periodically confirm that suspended
context participants are still running. Thisisto avoid the situation in which context manager
continues to alocate internal resources to a suspended participant that subsequently fails
without first informing the context manager that it is leaving the common context system.

This method is an aternative to leaving the common context system. Context managers can be
implemented to support a maximum number of participants. If an application leaves a context
system, it risks not being able to rejoin. In contrast, by suspending its participation, this
possibility is avoided.

The exception UnknownParticipant is raised if the input participantCoupon does not denote an
application that is currently a participant in the common context system.

11.3.3.9 ResumeParticipation

This method enables an application to indicate that it wants to resume active participation in a
common context system. The application denotes itself with its participant coupon as the value
of the input participantCoupon. Upon resuming, an application must automatically ensure that
it has established synchrony with the current context.

Version CM-1.0 Copyright 1999, Health Level Seven 165

o b

© 00 N O

10

11
12

13

Context Management Specification, Technology and Subject-Independent Component Architecture

The application denotes itself with its participant coupon. This method has no effect if the
application did not previously invoke the ContextM anager:: SuspendParti cipation.

An application can only resume its participation a common context system between context
change transactions. If no transaction isin progress, the application is able to immediately
resume participation in the context change system.

If atransaction isin progress and the value of the input wait indicates true, this method will
block until the transaction completes. It is recommended that an application that is willing to
wait also display a message to the user indicating that it is attempting to resume participation
in a common context system. If atransaction isin progress and the value of the input wait
indicates false, this method immediately raises the exception TransactionlnProgress.

The exception UnknownParticipant is raised if the input participantCoupon does not denote an
application that is currently a participant in the common context system.

166 Copyright 1999, Health Level Seven Version CM-1.0

O©CoOoO~NOOUDWN -

29

30
31
32
33

35
36

37
38
39

40
41
42
43

Context Management Specification, Technology and Subject-Independent Component Architecture

11.3.4 ContextParticipant (CP)

i nterface ContextParticipant ({
ContextChangesPending
i nput s(l ong cont ext Coupon)
out put s(string decision, string reason)
rai ses()

ContextChangesAccepted

i nput s(l ong cont ext Coupon)
out put s()

rai ses()

ContextChangesCanceled

i nput s(l ong cont ext Coupon)
out put s()

rai ses()

CommonContextTerminated
i nputs()
out put s()
rai ses()

Ping

i nputs()
out put s()
rai ses()

}

11.3.4.1 ContextChangesPending

This method informs a participant in a common context system that a change to the common
context data is pending. The value of the input contextCoupon denotes the transaction within
which the context changes occurred. The participant shall respond with an indication of how it
wants to deal with the change:

- Accept the change

- Conditionally accept the change (e.g., because it is in the middle of atask that would
cause significant user work to be lost if a context change was allowed)

An application that accepts the changes is willing to apply the new context data if subsequently
instructed to do so (by the ContextParticipant:: ContextChangesA ccepted or
ContextParticipant::ContextChangesCancel ed methods).

An application that conditionally accepts the changesis aso willing to apply the changes, but
only after informing the user that the application might loose work that the user is in the midst
of performing. The output reason shall contain a succinct but informative description of the
work that might be lost. (The description should not identify the application as this information

Version CM-1.0 Copyright 1999, Health Level Seven 167

10

11
12
13
14
15

16

17
18
19
20
21
22

23
24
25
26

27

28
29
30

31
32
33

Context Management Specification, Technology and Subject-Independent Component Architecture

is provided by the application when it joins the common context system.) The application
through which the user instigated the context changes is responsible for informing the user of
the situation and obtaining the user’ s decision about how to proceed.

An application that cannot interpret the context data (e.g., does not know who the patient is)
should accept the changes. However, the application should clearly indicate to the user (e.g.,
by displaying a message) that it cannot apply the current context data.

If the response isto accept the changes, the value of the output decision is “accept”. If the
decision isto conditionally accept the changes, the value of the output decision
“accept_conditional”. The context manager is shall treat these values in a case-insensitive
manner.

If a participant does not respond in atimely manner, it will be interpreted by the context
manager as being busy. The amount of time that the manager will wait before determining that
an application is busy depends upon the manager’ s implementation. This method is not
performed upon the application that instigated the context changes. Instead, the application is
blocked by the manager when it performs ContextManager::EndContextChanges.

11.3.4.2 ContextChangesAccepted

This method informs a participant in a common context system that the result of the most
recent context change survey was to accept the changes and that the common context data has
indeed been changed. The participant can access the context data via the context manager’s
ContextData interface to obtain the changes. The value of the input contextCoupon denotes the
transaction within which the context changes occurred. This coupon is needed in order to
access the context data.

If it is not possible to perform this method on an application because it is busy, the context
manager will periodically keep trying until it has successfully performed the method, or until a
new context change transaction isinitiated. The intervals at which the context manager triesto
retry this method is implementation-dependant.

11.3.4.3 ContextChangesCanceled

This method informs a participant in a common context system that a context change
transaction has been canceled. The value of the input contextCoupon denotes the transaction
that has been canceled.

If it is not possible to perform this method on an application because it is busy, the context
manager will periodically keep trying until it has successfully performed the method, or until a
new context change transaction isinitiated. The intervals at which the context manager triesto
retry this method is implementation-dependant.

168 Copyright 1999, Health Level Seven Version CM-1.0

o OB~ WDN P

~

10
11

12
13
14
15
16

Context Management Specification, Technology and Subject-Independent Component Architecture

11.3.4.4 CommonContextTerminated

This method informs a participant in a common context system that the system is being
terminated. The participant will not be subsequently informed about context changes, nor will
it be able to perform common context changes. If the system is re-established, the participant
must explicitly regjoin the system before performing the ContextM anager::JoinCommon-
Context method.

11.3.4.5 Ping

This method provides a means for a context manager to determine whether or not a participant
in acommon context system is still running. This method shall be implemented by all
participants to return immediately. The context manager can then perform this method to probe
a participant when its existence is in question.

In performing this method, the context manager will be able to indirectly exercise the
underlying communications infrastructure. The infrastructure will either indicate that the
method was successfully performed, that the method failed because the participant no longer
exists, or that the method failed but it cannot be determined whether or not the participant
exigts. In this last case, the manager shall assume that the participant still exists.

Version CM-1.0 Copyright 1999, Health Level Seven 169

o
RPOOWONOURAWN K

=
N

13

14
15

16

17
18
19

20

21
22
23

24

25
26

27
28

29

30
31

Context Management Specification, Technology and Subject-Independent Component Architecture

11.3.5 Implementationinformation (1)

i nterface Implementationlnformation {
readonly string ComponentName
readonly string RevMajorNum
readonly string RevMinorNum
readonly string PartNumber
readonly string Manufacturer
readonly string TargetOS
readonly string TargetOSRev
readonly string Whenlnstalled

}

11.3.5.1 ComponentName

This read-only property is the name of the component, specifically, “Patient Link Mapping
Agent”.

11.3.5.2 RevMajorNum

This read-only property is the mgor number for the software revision for the component, as
assigned by its manufacturer. For example, in the full revision number Z.32, *Z’ isthe magjor
number and might indicate a particular functional release of the software.

11.3.5.3 RevMinorNum

This read-only property is the minor number of the software revision for the component, as
assigned by its manufacturer. For example, in the full revision number Z.32, 32" is the minor
number and might indicate a particular build of the software.

11.3.5.4 PartNumber

This read-only property is the part number that the component’ s manufacturer assigned to the
component.

11.3.5.5 Manufacturer
This read-only property is the name of the organization that devel oped the component.

11.3.5.6 TargetOS

This read-only property is the name of the operating system on which the component is able to
execute.

170 Copyright 1999, Health Level Seven Version CM-1.0

Context Management Specification, Technology and Subject-Independent Component Architecture

11.3.5.7 TargetOsRev

This read-only property isthe revision of the operating system named in target operating
system on which the component is able to execute.

11.3.5.8 Whenlnstalled
This read-only property is the date and time at which the component was installed on its host.

Version CM-1.0 Copyright 1999, Health Level Seven 171

O©CoOoO~NOOUDAWN -

15

16
17
18
19
20
21
22

23

24

25

26
27
28
29
30
31

32
33

35
36

Context Management Specification, Technology and Subject-Independent Component Architecture

11.3.6 MappingAgent (MA)

i nterface MappingAgent {
ContextChangesPending
i nput s(1 ong mappi ngAgent Coupon, Princi pal context Myr
| ong cont ext Coupon)
out put s(string decision, string reason)
rai ses()

Ping

i nputs()
out put s()
rai ses()

}

11.3.6.1 ContextChangesPending

This method informs a mapping agent in a common context system that a change to the
common context data is pending. The value of the input contextCoupon denotes the transaction
within which the context changes occurred. The value of the input mappingAgentCoupon isa
predefined coupon that denotes the specific type of mapping agent. (See Section 11.2.10, Pre-
Defined Mapping Agent Coupons). The value of the input contextMgr is an interface reference
to the context manager’s principal interface. Thisis so that the mapping agent can easily
obtain the context manager interface(s) it needs.

The agent shall respond with an indication of how it wants to deal with the context change:
The changes are valid
The changes are invalid

If the changes are valid, then the value of the output decision should be “valid”. If the changes
areinvaid, then the value of the output decision should be “invalid”. The changes should only
be declared invalid if the set of identifiers in the proposed context data do not al represent the
same patient. If the changes are invalid, then the value of the output reason will contain a
succinct but detailed string describing why the changes were invalid. Otherwise the value of
reason isnull.

11.3.6.2 Ping

This method provides a means for a context manager to determine whether or not a mapping
agent in a common context system is still running. This method shall be implemented by all
agentsto return immediately. The context manager can then perform this method to probe a
mapping agent when the agent’ s existence is in doubt.

172 Copyright 1999, Health Level Seven Version CM-1.0

a b~ WO DN PP

Context Management Specification, Technology and Subject-Independent Component Architecture

In performing this method, the context manager will be able to indirectly exercise the
underlying communications infrastructure. The infrastructure will either indicate that the
method was successfully performed, that the method failed because the agent no longer exists,
or that the method failed but it cannot be determined whether or not the agent exists. In this last
case, the manager shall assume that the agent till exists.

Version CM-1.0 Copyright 1999, Health Level Seven 173

coO~NO A WN B

31

32
33

35

36
37
38
39
40
41
42

Context Management Specification, Technology and Subject-Independent Component Architecture

11.3.7 SecureBinding (SB)

i nterface SecureBinding {

excepti on UnknownBindee {}

excepti on UnknownPropertyName { string propertyNane; }

excepti on BadPropertyType { string propertyNanme; type actual
type expected; }

excepti on BadPropertyValue { string propertyNane;
variant itenVal ue; string reason; }

excepti on NameValueCountMismatch {l ong nunmNames; |ong nunVal ues }

exception ImproperKeyFormat { string reason; }

exception ImproperMACFormat { string reason; }

exception BindingRejected { string reason; }

excepti on AuthenticationFailed { string reason; }

InitiateBinding

i nput s(1 ong bi ndeeCoupon, string[] propertyNamnes,
variant[] propertyVal ues)

out put s(string binderPublicKey, string mac)

r ai ses(UnknownBi ndee, NameVal ueCount M snmat ch
UnknownPr opert yName, BadPropertyType, BadPropertyVal ue,
Bi ndi ngRej ect ed)

FinalizeBinding

i nput s(1 ong bi ndeeCoupon, string bi ndeePubl i cKey,
string mac)

out put s()

r ai ses(UnknownBi ndee, | nproper KeyFor mat, | nproper MACFor mat ,
Aut hent i cati onFai | ed)

}

11.3.7.1 InitiateBinding

This method enables a context management component (“bindee”) to initiate the process of
establishing a secure binding with another context management component (“binder”). The
bindee shall complete the process of establishing a secure binding with the binder by
performing the method SecureBinding::FinalizeBinding upon the binder.

A secure binding shall be established by the bindee before it attempts to interact with the
binder via methods that entail the use of either the bindee' s or the binder’ s digital signature.
For example, an application or user mapping agent shall establish a secure binding with the
context manager before it attempts to access the context manager in order to set (or, in the
future, get) context item values that require the bindee' s digital signature. An application shall
establish a secure binding with the authentication repository before attempting to set or get
user authentication data from the authentication repository.

174 Copyright 1999, Health Level Seven Version CM-1.0

© 00 N O

10
11
12
13

14
15
16
17
18
19

20
21
22
23

Context Management Specification, Technology and Subject-Independent Component Architecture

This method shall be performed only after the bindee has been provided by the binder with a
coupon to denote itself. The value of the input bindeeCoupon is this coupon. The value of
bindeeCoupon depends upon the role bindee and binder, as described below:

Bindee Binder Value of bindeeCoupon
Context Context Participant coupon, obtained by the participant
Parti cipant Manager from the context manager via
Application ContextM anager::JoinCommonContext.
Context Authentication Connection coupon, obtained by the participant
Parti cipant Repository from the authentication repository via
Application Authenti cationRepository::Connect.
Mapping Context Mapping agent coupon, obtained from the context
Agent Manager manager when it most recently performed
M appingAgent::ContextChangesPending upon the
mapping agent.

As part of the process of establishing a secure binding, it is necessary for the bindee and the
binder to agree upon the properties of the underlying security agorithms that they will usein
subsequent secure interactions. These properties may include the public key / private key
scheme, the number of bits used to represent a key, and the type of one-way hash agorithm
that isto be used to generate message digests and message authentication codes. The specific
properties that must be agreed upon, and the allowed set of values for these properties, are
defined in the each of the HL7 context management technol ogy-specific component mapping
specification documents.

The value of the input sequence propertyNames contains the names of the secure binding-
related properties for which the bindee wishes to establish agreement. The values for each of
these properties are contained in the input sequence propertyValues. Thei™ element in
propertyValues is the value for the property named by the i element in propertyNames. The
data type for a property is the same as the data type of the element in propertyValues that
contains the property’ s value.

The value of the output binderPublicKey is the binder’s public key, and shall be used by the
bindeein all subsequent secure interactions that involve the binder. The value of
binderPublicKey is character-encoded binary data formed by the binder when it computes its
public key / private key pair.

Version CM-1.0 Copyright 1999, Health Level Seven 175

w N

© 00 N O 0o~

10
11

12
13

14
15

16
17

18
19

20
21

22
23
24
25
26

27

28
29
30
31
32

33

Context Management Specification, Technology and Subject-Independent Component Architecture

The value of the output mac is the message authentication code. This code shall be used by the
bindee to prove the identity of the binder, and to ensure that the value of binderPublicKey has
not been tampered with.

The value of mac is character-encoded binary data formed by the binder’s computation of a
one-way hash value. This hash value is computed using an input string formed by
concatenating the bindee' s passcode to the end of the character-encoded binary string
containing the binder’s public key. This passcode is a secret known only to the bindee and the
binder. Upon receipt of the output mac and binderPublicKey, the bindee independently creates
the same string as the binder and performs the same hash computation. If the resulting hash
value matches the value of mac, then the binder shall be considered authentic and the value of
binderPublicKey shall be considered valid.

The agorithms used to compute mac and binderPublicKey are technol ogy-specific. The format
of these outputs are a so technology specific.

The exception UnknownBindee israised if the input bindeeCoupon does not denote a context
management component currently known to the binder.

The exception NameV alueCountMismatch israised if the number of itemsin the input
propertyNames does not match the number of itemsin the input propertyValues.

The exception BadProperty Type israised if the data type for one or more of the properties
whose value isto be set is not the same as the expected data type.

The exception BadPropertyVaue israised if the data value for one or more of the properties
whose value isto be set is determined to be unacceptable or incompatible.

The exception BindingRejected israised if the bindee is not authorized to establish a binding
with the binder. When this exception is raised by the context manager, it means that the context
participant application has not been designated for authenticating users. When this exception is
raised by the authentication repository, it means that the repository has not been configured to
serve the application.

11.3.7.2 FinalizeBinding

This method enables bindee to finalize the process of establishing a secure binding with a
context management component. This method shall be performed by a bindee only after it has
successfully performed the method InitiateBinding upon a binder. The bindee denotes itself
using the same value for the input bindeeCoupon that it used when it performed the method
InitiateBinding upon the binder.

The input bindeePublicKey is the bindee's public key, and shall be used by the binder in all
subsequent secure interactions that involve the bindee. The vaue of binderPublicKey is

176 Copyright 1999, Health Level Seven Version CM-1.0

o b

© 00 N O

10
11
12
13

14
15

16
17

18

19

20
21

Context Management Specification, Technology and Subject-Independent Component Architecture

character-encoded binary data formed by the bindee when it computesiits public key / private
key pair.

The input mac is the message authentication code. This code shall be used by the binder to
prove the identity of the bindee, and to ensure that the value of bindeePublicKey has not been
tampered with.

The value of mac is character-encoded binary data formed by the bindee’ s computation of a
one-way hash value. This hash value is computed using an input string formed by
concatenating the bindee' s passcode to the end of the character-encoded binary string
containing the bindee' s public key. This passcode is a secret known only to the bindee and the
binder. Upon receipt of the inputs mac and bindeePublicKey, the binder independently creates
the same string as the bindee and performs the same hash computation. If the resulting hash
value matches the value of mac, then the bindee shall be considered authentic and the value of
bindeePublicKey shall be considered valid.

The agorithms used to compute mac and bindeePublicKey are technology-specific. The
format of these inputs are a so technology specific.

The exception UnknownBinding is raised if the input bindingCoupon does not denote an
bindee currently known to the binder.

The exception ImproperKeyFormat israised if the input publicKey is not properly formatted.
The exception ImproperM ACFormat israised if the input mac is not properly formatted.

The exception BindingDenied israised if the input mac does not establish the identity of the
bindee and/or the integrity of the input bindeePublicKey.

Version CM-1.0 Copyright 1999, Health Level Seven 177

coO~NO A WN B

37
38

39

40
41
42
43

45

Context Management Specification, Technology and Subject-Independent Component Architecture

11.3.8 SecureContextData (SD)

i nterface SecureContextData {

exception UnknownltemName { string itenNane; }

excepti on BadltemNameFormat { string itenNane; string reason }

exception BadltemType { string itenmNane; type actual
type expected; }

exception BadltemValue { string itenNane; variant itenVal ue;
string reason; }

excepti on NameValueCountMismatch {l ong nunmNames; |ong nunVal ues }

excepti on ChangesNotPossible {}

excepti on SignatureRequired {}

excepti on AuthenticationFailed { string reason; }

GetltemNames

i nput s(1 ong cont ext Coupon)
out puts(string[] itenNanes)
rai ses(I nval i dCont ext Coupon)

SetltemValues
i nputs(l ong partici pant Coupon, string[] itenmNanes,
variant[] itenVal ues, |ong contextCoupon, string appSi gnature)
out put s()
rai ses(Not I nTransacti on, InvalidContextCoupon, UnknownParti ci pant,
NaneVal ueCount M smat ch, Badl t emNaneFor mat, BadltenType,
Badl t em\val ue, ChangesNot Possi bl e, Si gnat ur eRequi red,
Aut hent i cati onFai | ed)

GetltemValues
i nputs(l ong partici pant Coupon, string[] itenmNanes,
bool ean onl yChanges, |ong cont ext Coupon, string appSi gnature)
out puts(variant[] itenmval ues, string manager Si gnat ure)
rai ses(I nval i dCont ext Coupon, UnknownParti ci pant,
Badl t emNanmeFor mat, Unknownlt emNane, Si gnatureRequi red,
Aut hent i cati onFai | ed)

}

11.3.8.1 GetltemNames
This method isidentical to ContextData:: GetltemNames.

11.3.8.2 SetltemValues

This method is similar to ContextData:: SetltemVaues. The primary differenceis that the
context participant’s digital signature shall be provided as the vaue of the input appSignature
when user subject item vaues are among the items to be set. This signature enables the context
manager to authenticate that they came from a designated application or from the real user
mapping agent, and that the values were not tampered with between the time they were sent
and were received.

178 Copyright 1999, Health Level Seven Version CM-1.0

10
11

12
13

14
15
16
17
18

19

20
21
22
23
24
25

26
27

28

29

30
31

Context Management Specification, Technology and Subject-Independent Component Architecture

A signature is not required when the values for the user subject items are null. This enables
any application to set the user context to empty. When a signature is not provided, the value of
the input appSignature shall be an empty string (*”).

Concatenating the string representations of the following inputsin the order listed shall form
the data from which a message digest is computed by the participant:

participantCoupon

itemNames (i.e., All the elements in the order that they appear in the array.)
itemValues (i.e., All the elements in the order that they appear in the array.)
contextCoupon

A participant shall compute its digital signature by encrypting the message digest with its
private key.

The exception SignatureRequired is raised if the value of appSignature isnot adigital
signature and a signature is required in order to perform this method.

The exception AuthenticationFailed israised if adigital signatureis required and provided, but
the process of authentication determines that: the application that invoked this method did not
previously provideits public key viathe interface SecureBinding; that the input appSignature
has been forged; that the input parameter values have been tampered with; that the participant
has not been designated for performing user context changes.

11.3.8.3 GetltemValues

This method is similar to ContextData::GetltemValues. The primary difference isthat the
context manager’ s digital signature shall be provided as the value of the output
managerSignature when user subject identifier item values are among the items named for
retrieval. This signature enables the recipient of the item values to authenticate that they came
from the real context manager, and that the values were not tampered with between the time
they were sent and were received.

Concatenating the string representations of the following inputsin the order listed shall form
the data from which a message digest is computed by the context manager:

ItemValues (i.e., All the elements in the order that they appear in the array.)
contextCoupon

The context manager shall compute its digital signature by encrypting the message digest with
its private key.

Version CM-1.0 Copyright 1999, Health Level Seven 179

o OB~ WDN B

o

10
11

12
13
14
15
16

17

Context Management Specification, Technology and Subject-Independent Component Architecture

The value of the inputs participantCoupon and appSignature are not currently used and are
defined in anticipation of future uses of this method. In the future, the value of these inputs will
enable the context manager to enforce context data access rights as a function of the context
participant’ s identity and the properties of the requested context items, aslisted in the input
itemNames. The value of participantCoupon will denote the participant. The value of
appSignature will be the digital signature of the participant.

Until stated otherwise in afuture version of this specification, the value of the input
participantCoupon shal be zero (0). The value of the input appSignature input shall be an
empty string (*”).

The exception SignatureRequired is raised if the value of appSignature isnot adigital
signature and a signature is required to perform this method.

The exception AuthenticationFailed israised if adigital signatureis required and provided, but
the process of authentication determines that: the application that invoked this method did not
previously provideits public key viathe interface SecureBinding; that the input appSignature
has been forged; that the input parameter values have been tampered with; that the participant
is not allowed to access the requested context items.

180 Copyright 1999, Health Level Seven Version CM-1.0

Context Management Specification, Technology and Subject-Independent Component Architecture

12 Backwards Compatibility

The HL7 Context Management Architecture specified in this document is fully compatible
with the Clinical Context Object Workgroup Patient Link 1.1 Architecture Specification. The
CMA is, however, a superset of the CCOW Architecture.

Version CM-1.0 Copyright 1999, Health Level Seven 181

Context Management Specification, Technology and Subject-Independent Component Architecture

182 Copyright 1999, Health Level Seven Version CM-1.0

[

w N

10

11
12

13
14
15
16

17

18

19

20
21

22

Context Management Specification, Technology and Subject-Independent Component Architecture

Appendix: Diagramming Conventions

There are four types of formal diagrams that are used throughout this document to describe the
CMA architecture:

A use case diagram depicts the actors (human and/or computer-based) and the roles
that they play when participating in an interesting scenario.

A use case interaction diagram illustrates the high-level interactions between the actors
that participate in the use case.

A component architecture diagram depicts components and their interfaces, and
indicates the interfaces each component uses for communicating with other
components.

A component interaction diagram illustrates the series of method invocations that
components perform on each other in order to implement a particular use case.

The conventions for each of these diagrams are explained below. Many of the conventions
were leveraged from Ivar Jacobson’s text Object-Oriented Software Engineering. In the
future, these conventions will be evolved to comply with the Unified Modeling Language
specification, which is till being refined™.

Use Case Diagram
The use case diagramming conventions are:

A stick figure represents an actor, even if the actor is a computer-based entity, such as
an application:

Healthcare
Application

' Object-Oriented Software Engineering, Ivar Jacobson, Addison-Wesley, 1994.

* Unified Modeling Language Reference Manual, James Rumbaugh, Grady Booch, Ivar Jacobson,
Addison-Wesley, 1997.

Version CM-1.0 Copyright 1999, Health Level Seven 183

10
11
12
13
14
15
16

17
18
19
20
21
22
23
24
25
26

An oval represents a use case. The name of the use case appears next to the oval:

O

Patient Selection Change

An arrow directed from an actor to the use case indicates that the actor participatesin
the use case. A label near the arrow succinctly describes the actor’ srole in the use

case.
Participates /%

Healthcare
Application

Patient Selection Change

Use Case Interaction Diagrams

The use case interaction diagramming conventions are:

184

The interacting actors are depicted by rectangles labeled with the actor’s name,
arranged in a horizontal row. A vertical dashed bar descends from each of these
rectangles.

User

Aninteraction that isinitiated by an actor is represented as an arrow that emanates
from the actor. The arrow terminates on the actor to which the interaction is directed .
Each arrow islabeled with a short description of the interaction it represents:

User Application XXX

N

I
|
I | choose patient “ Sam Smith”
[

Copyright 1999, Health Level Seven Version CM-1.0

© 00 N O O & W N P

S S S
W N Rk O

14
15
16
17
18
19
20
21
22
23
24
25

26
27

28

Context Management Specification, Technology and Subject-Independent Component Architecture

A vertical bar indicates the start and end of the actions that an actor performsin

response to an interaction. These actions may include additional interactions:

User

Application XXX

| choose patient “ Sam Smith”

An actor can respond to an interaction. A response is shown as an arrow labeled with
an indication of the response:

The entire set of interaction arrows is temporally ordered, from left to right, top to
bottom.

Version CM-1.0

Context Manager

Application XXX

| choose patient “ Sam Smith”

——— e ————T—

Copyright 1999, Health Level Seven

The selected patient is now “ Sam Smith”

185

N

o N O O A W

10
11

12
13

14
15
16
17
18
19
20
21

Component Architecture Diagrams

The component architecture diagramming conventions are:

186

Each component is depicted as a rectangle. The name of the component appears within
the rectangle:

Context
Manager

Each of the interfaces implemented by a component is illustrated as a circle tangent to
the rectangle that depicts the component. Each circle is labeled with the name of the
interface it represents. Two or three |etter abbreviations are typically used:

oM Context
Manager

A directed arrow connects components that communicate with each other. Arrows
emanate from a client component and point to the server components that it uses. Each
arrow terminates on the circle representing the specific server component interface that
isused. A distinct arrow is used for each interface for each server component that a
client component uses:

@ Context
@

Application

Copyright 1999, Health Level Seven Version CM-1.0

N

© 00 N O 0o AW

10
11
12
13
14
15
16
17
18
19
20

21
22
23
24
25
26
27
28
29
30
31
32
33

Context Management Specification, Technology and Subject-Independent Component Architecture

Component Interaction Diagrams

The component interaction diagramming conventions are:

The interacting components are depicted by rectangles |abeled with the component’s
name, arranged in a horizontal row. A vertical dashed bar descends from each of these

rectangles:

Context Manager

A method that isinvoked by a component is represented as an arrow that emanates

from the bar and that terminates on the bar for the component that services the method.
Each arrow is labeled with the name of the method it represents. Examples of actual

parameter values may be included for clarity:

Application XXX

Context Manager

I
|
I PublishChangesDecision(*
[

[

|

~J

/]
accept”) I

A vertical bar indicates the start and end of the processing that a component performs
in response to a method invocation. This processing may itself include method

invocations:

Application XXX

Context Manager

PublishChangesDecision(* accept”)

Version CM-1.0 Copyright 1999, Health Level Seven

187

© 00 N O O & W N P

e
N B O

13
14

15

16

17

18

188

Method return values are indicated when this aids in understanding the use case. A
return value is shown as an arrow labeled with an indication of the return value;

Application XXX

Context Manager

ContextChangesPending()

“ aCCGpt”

oy Nt

The entire set of method invocation arrows is temporally ordered, from left to right,
top to bottom.

Copyright 1999, Health Level Seven Version CM-1.0

Context Management Specification, Technology and Subject-Independent Component Architecture

Glossary

Accept

Accept-Conditional

ACL

Apply

Authentication repository

AuthenticationRepository (AR)

Automatic Log-off

Version CM-1.0

An application’ s response when it is willing to accept
the context data changes and to change its internal
state accordingly if the changes are published.

An application’ s response when it isin the midst of a
task that might cause work to be lost if the user does
not complete the task; if the changes are published it
iswilling to terminate the task, accept the context
data changes and change its internal state
accordingly.

Access control lists, which determine the privileges
and capabilities a particular user has, are presumed
to be maintained by each application.

A user choice; the context data changes are applied to
all of the applications, including those that indicated
that they might loose work performed by the user;
this choice is allowed only when there are no busy
applications.

Enables applications to securely maintain
application-specific user authentication data. The
repository is used by applications that do not have a
built-in means to easily sign-on a user given only a
logon name.

Interface used by applications to securely interact
with the repository to store and retrieve user
authentication data.

Logs the current user off of the User Linked
applications on a desktop when the user has not
interacted with the applications for an appreciable
period of time.

Copyright 1999, Health Level Seven 189

Break Link

Busy

Cancel

CCow

Centrdized modd

Chain of trust

Clinica context

Common context system

Component architecture diagram

A user choice; the context changes are applied just to
the application with which the user initiated the
context changes.

When an application is unable to apply the context
change because it is blocked (e.g., itisasingle
threaded application that has amodal dialog open);
these applications are referred to as busy.

A user choice; when the context change is canceled;
the context changes are not published.

Clinical Context Object Workgroup.

In the centralized model of context management, the
responsibility for managing the common context is
centralized in a common facility that is responsible
for coordinating the sharing of the context among the
applications.

With the chain of trust, User Link-enabled
applications and User Link components work
together to ensure that only authorized users are
allowed access to a common context system.

State information that users establish and modify as
they interact with healthcare applications. The
context is common because it establishes parameters
that should uniformly affect the behavior or operation
of multiple healthcare applications.

Applications that share the same common context,
and have established and maintain a common context
link.

Depicts components and their interfaces, and
indicates which interfaces each component use for
communicating with other components.

190 Copyright 1999, Health Level Seven Version CM-1.0

Context Management Specification, Technology and Subject-Independent Component Architecture

Component interaction diagram

Conditionally accept

CMA

COM

Component model

Context change coupon

Context changes pending

Context change survey

Context change transaction

Version CM-1.0

[llustrates the series of method invocations that
components perform on each other in order to
implement a particular use case.

When an application might lose work performed by
the user if it applies the context changes (e.g., the
user was in the process of entering data that would
not be applicable in the new context); these
applications are referred to as having conditionally
accepted the context changes.

Context Management Architecture.

Microsoft’s Component Object Model.

The architecture of a system as described in terms of
components and the interfaces they must implement
in order to be participants in the system.

Unique identifier that is assigned by the context
manager to denote each context change transaction.

During the context change survey, the context
manager informs each of the applicationsin the
common context system (except for the application
that instigated the changes) that there are pending
context data changes. Each application decides
whether or not it wants to accept the changes. All
applications must accept in order for the context to
change.

In the first step of completing a context change
transaction the context manager surveys the
applications. Each application isinformed that there
are a candidate set of context data changesand is
asked to indicate whether it can accept these changes.

A multi-step process in that coordinates changes to
the common context data. First, an application begins
atransaction. The application sets a transaction-
specific version of the common context data. Second,

Copyright 1999, Health Level Seven 191

Context manager

Context participants

Context subject

ContextData (CD)

ContextManager (CM)

ContextParticipant (CP)

CORBA

192

the context manager conducts a context change
survey. Third, the context manager reports the survey
results to the application that began the transaction.
Finally, the application indicates whether the changes
areto be applied or cancelled. The decision asto how
to proceed may involve the user. If changes are
applied, then the transaction-specific version of the
context data becomes the new context. Otherwise the
transaction-specific context data is discarded.

Coordinates applications each time there is a context
change transaction. It is also the “owner” of the
authentic context data for the system.

Applications that set and/or get context data from the
context manager. They must follow the policies
established later in this document in order to behave
as proper context management “citizens.”

A subject represents a real-world entity or concept
that isidentified as part of the overall common
clinical context.

Interface implemented by the context manager; used
by applications to set/get the data items that comprise
the common context.

Interface implemented by the context manager; used
by applications to join/leave a common context
system and to indicate the start/end of a set of
changes to the common context data.

Interface implemented by an application that wants to
participate in acommon context system; used by the
context manager to inform an application that the
context has changed.

Common Object Request Broker Architecture.

Copyright 1999, Health Level Seven Version CM-1.0

Context Management Specification, Technology and Subject-Independent Component Architecture

Corraborating data

DCOM

Digital signature

Dispose

Distributed model

Empty context

Empty context subject

Identifier data

Version CM-1.0

Corroborating data can be used by applications
and/or users as a basis for checking further that the
identified context subject is what was expected.

Distributed version of Microsoft’s Component Object
Model.

Formed using public key / private key encryption
techniques, a digital signatures enables

A component performs an implicit or explicit action,
which is technol ogy-specific, when it no longer
intends to use a particular reference. The latter action
isreferred to as disposing an interface reference.

In the distributed model of context management, the
responsibility for managing the common context is
uniformly distributed among the applications. There
isno central point of common context management.

A context is not defined for any subject, either
because no context identifier items are present in the
context data (as is the case when a context manager
isfirst initialized) or because the values of al of the
identifier items for the subject that are present in the
context data are null (asis the case when an
application explicitly indicates that the context is

empty).

A context subject is empty when areal-world entity
or concept is not currently identified. For example,
for the patient subject, this means that a patient is not
currently identified.

Data that identifies a real-world entity or concept
(such as a specific patient or a specific encounter).
Identity information is required in order to establish a
common context between applications that involves a
real-world entity or concept. The string “id” indicates
identifier data.

Copyright 1999, Health Level Seven 193

IDL

Instigator

Implementationl nformation (11)

Interface interrogation

Interface reference registry

L og-off

Mapping agent

MappingAgent (MA)

194

Interface Definition Language. IDL can specify: an
interface’ s symbolic name, the set of component
properties and methods that can be accessed viathe
interface, the name and data type of each property,
the names and data types for each method’ s input and
outputs, and the names and data content for each
method’ s exceptions.

The application that began the current context change
transaction.

Interface implemented by the context manager and
mapping agent; used by applications, context
management components, and tools, to obtain details
about a component’ s implementation, including its
revision, when it was installed, etc.

The interfaces that a component implements can be
determined by other components at run-time through
direct interrogation.

A sarvice that contains references to component
interfaces. Components can use the registry to obtain
interface references to each other.

The termination of a user’s session with an
application; it assumed that logging-off does not
require user authentication.

A service component that from the perspective of an
application is a transparent participant in a context
change. A mapping agent’s primary roleisto add
additional subject-specific context identifier itemsto
the context data.

Interface implemented by a mapping agent and used
by a context manager to inform the mapping agent
that the clinical context has changes pending and that
the mapping agent should perform its context data

mapping responsibilities.

Copyright 1999, Health Level Seven Version CM-1.0

Context Management Specification, Technology and Subject-Independent Component Architecture

Message authentication code

Message digest

Null item value

OMA

Participant coupon

Passcode

Patient Link

Patient subject

Version CM-1.0

A secure hash value produced from a data stream
that consists of data that is openly communicated
between two parties, and “secret” data that they both
know but do not openly communicate.

A digital signature isformed by applying a secure
hash function (alternatively known as a one-way hash
function) to the data that is to be transmitted. The
resulting hash value is referred to as the message
digest, asit isanumeric surrogate for the plain-text

message.

The value of acontext identifier item or
corroborating data item can be set to the
distinguished value of null to indicate that the item
does not have avalid value.

Object Management Group's Object Management
Architecture.

Unique identifier that is assigned by the context
manager to denote each context participant within a
system, including applications and mapping agents.

Similar to passwords used by people. However,
because passcodes are only used by computer
programs, they can be much longer and complex than
passwords typically are. This makes passcodes
extremely hard to guess, even when brute force
techniques are employed.

Enables the user to select the patient of interest once
from any application as the means to automatically
“tune” al of the applications to the selected patient.

The context subject of Patient is defined for Patient
Link. The context data identifier item for this subject
isthe patient’s medical record number. The patient’s
given nameis not used as an identifier.

Copyright 1999, Health Level Seven 195

Principal interface

Private key / Public key

Pull-modéel

Push-model

Reauthentication time-out

Repository

RMI

RSA

196

Every component implements at |east one well-known
interface, referred to as the component’ s principal
interface. The principa interface enables components
to perform initia interface interrogations because the
name of the principal interface is known a priori, and
because al components implement it.

An approach for encrypting data, and for creating
digital signatures, wherein a matched set of security
keysisused. The private key remains the secret of its
owner. The matching public key can be disseminated.
X can send amessage that only Y can read by
encrypting the message using Y’ s public key. Y
decrypts the message using its private key.
Alternatively, Y can digitaly sign its messages using
its private key. X can validate Y’ s signature using
Y’s public key.

A shared component is used to maintain the shared
context data. Applications update this resource to
change the data. Other applications periodically poll
the component to determine if the data has changed.

A shared component is used to maintain the shared
context data. This component notifies applications
whenever the data is changed. In order to receive a
notification, an application must have first explicitly
indicated itsinterest in being notified.

Requires the currently signed-on user to
reauthenticate herself before being alowed to
continue using the applications on a clinical desktop.
The time-out occurs when the user has not interacted
with the desktop for an appreciable period of time.

See authentication repository.

Java Remote Method |nvocation mechanism.

A popular public key / private key agorithm.

Copyright 1999, Health Level Seven Version CM-1.0

Context Management Specification, Technology and Subject-Independent Component Architecture

Secure (or one-way) hash function

SecureBinding (SB)

SecureContextData (SD)

SHTTP

Signon

SSL

Stat admission

Technology neutral

A function used for producing a unique numeric
surrogate from an arbitrary data stream. It is
improbable that two different data streams will yield
the same hash value. A secure hash function isan
essential part of the infrastructure needed to support
the use of digital signatures.

Interface used by applications to establish a secure
communications binding with the context manager
before using the SecureContextData interface. Also
used by applications to establish a secure
communications binding with the authentication
repository before using the AuthenticationRepository
interface.

Interface similar to the ContextData interface defined
for Patient Link; thisinterfaceis used by applications
to securely set/get the values for the items (logically
represented as name-value pairs) that comprise the
clinical context.

Secure Hyper-Text Transfer Protocol.

The act of identifying oneself to an application, prior
to initiating a user session, in a manner that can be
authenticated by the application, typicaly involving a
secret password or a biometric reading (such asa
thumb-print scan).

Secure Socket Layer. SSL enables secure (i.e.,
encrypted) transmission of data between a client and
aserver. It also enables a client to authenticate a
server (and a server to authenticate a client).

Occurs when an application needs to enable the user
to record information about a patient even if an
identifier for the patient is not known.

Means that the common clinical context approach
should work equally well with any one of a candidate
set of relevant technologies.

Version CM-1.0 Copyright 1999, Health Level Seven 197

Use case diagram

Use case interaction diagram

User Link

User subject

User Link-enabled application

198

Depicts the actors (human and/or computer-based)
and the roles that the play when participating in an
interesting scenario.

Ilustrates the high-level interactions between the
actorsthat participate in the use case.

Enables the user to securely logon once to any
application as the means to automatically “tune” al
of the applications to the user.

The context subject of User is defined for User Link.
The context data identifier item for this subject isthe
user’s logon name. The user’s given name is not used
as an identifier.

An application that implements the CMA User Link
capability.

Copyright 1999, Health Level Seven Version CM-1.0

10

11

12

13

14

15

16

17

18

19

20

Context Management Specification, Component Technology Mapping: ActiveX

Health Level Seven Standard

Context Management Specification
Component technology Mapping: ActiveX
Version CM-1.0

DOCUMENT ID: HL7SIGVI_3 2 99
REVISION ID: March 17, 1999
FILE NAME: hl7_sigvi_activex_cm_1 0 .doc
SUPERCEDES: n/a

Copyright 1999 Health Level Seven

Version CM-1.0 Copyright 1999, Health Level Seven 1

Context Management Specification, Component Technology Mapping: ActiveX

Copyright 1999, Health Level Seven Version CM-1.0

o g~ w N

10

11

12
13
14
15
16
17
18
19
20
21
22

23

24

25

26
27
28
29
30
31
32
33

35

Context Management Specification, Component Technology Mapping: ActiveX

Contents
1 INTRODUCTION .. 7
11 PN S Y =4 [0 N TN 7
1.2 (000 V] =7 7Y =11 1 2T 7
1.3 TECHNOLOGY IMAPPING .. .ciiiiettttee e ettt e e e s st et b s s e e s s e et bt e e s e s e ea bbb e e e s s s es bbb s eessseesbbaansaeaaaes 8
2 COMPONENT MODEL MAPPING ... 11
3 INTERFACE REFERENCE MANAGEMENT ... 15
4 DUAL INTERFAGQCES.o ttetittittttittttttttttasssesssasesseseeseeeseearee.—.......——........reer.re.........————————————————————. 17
5 WINDOWS REGISTRY SETTINGS ... 19
6 ACTIVEX JAVAWRAPPERS ... 23
7 MICROSOFT'S CRYPTOSB2 APl 25
7.1 SECURE BINDING PROPERTIES....cctttuiiiiiiiietiiiiiiiesssestsiinssesssssssssssssssssssssassessssssssssseesssessssnnnns 25
7.2 CRYPTOGRAPHIC SERVICE PROVIDER......ccttttiiiiiiiiiieiiie e e s s eettbis s s e s s s e atb s e e s s s eaab s e e s s seaabaanaans 26
7.3 CREATING DIGITAL SIGNATURES ...uuutiiiiiiiettiii it e s s s eesb s s e s s s s essba s s e s s sesbbb s e e st e easbbseesseessbbaansns 26
7.4 SIGN A TURE FORM AT ettt e e e et e e e e e e s e e e b b e e e e s e e s bbb s e e e s eeab b s eesseesabbaansss 26
7.5 = I T N =Y 1Ny TN 26
7.6 HASH V A LUE FORM AT ettt ettt e e e et et s e e e e e e e e bbb s e ee s e e e bbb s eeassea s bbb eeasseesbbaaaseesseensses 27
7.7 ICEY CONTAINERS ... ittt iietttit i e ee st eeatts s s e esseeab b seessee st b b sesesee s bbb eeassea s bbb seassessbbaansseesseessses 27
7.7.1 REQUITEA CONTATNEESeiitiieiiei ettt ettt e et e et e e sbb e e sabeeanbeeabeaan 27
7.7.2 Key Container Naming CONVENTIONcoiuiiiiiaiiie ittt e e 28
7.7.3 Key Container Man@gEMENTiiuiiiiiie ettt et eesbe e snbe e be e naeaans 28
7.74 KEY CONLAINET SECUFTTY ...ttt ettt et snbe e nbe e eeaan 28
8 ERROR HANDLING ... 31
9 CHARACTER SET ..o 35
10 Y L T I I LS 1 1N (TR 37
10.1 TYPE LIBRARIES......cttttiiiiiiiiittiie it e eeseestbe s s e e e s s ess b s e e s st e et b b s eeassea bbb s eeesses s bbb seesseesbbaaneeaanes 38
10.2 IAUTHENTICATIONREPOSITORY ...uiiiiiititiiiieeeieesttiisseessseesbsaassessseestbaaassessssssssansseesssessssnnseessses 39
10.3 L ON T EX T D AT A ettt e e e e et et e e e e s st e bbbt e e e e s ee s bbb e ees s e e s e bba s eeesseebbbaneeaaaes 40
10.4 [CONTEXTIMANAGERiiiiiettiii e e e e ettt e e e s e e et bt e e e s s s e e bbb s e e es s e e s bbb e eesse s s bbb s eesseeebbbaaaeeaanes 41
10.5 L ON T EX TP A RTICIPANT L.ttt e et e e ettt e e e e e e et b e e e s s s ee bbb s e e easee s bbb e eessee s bbb s eessseebbbaansaeeases 42
10.6 IIMPLEMENTATIONINFORMATION L..iiitttttiiiieeeiieettstsseessseessssssssesssesssssssseessssssssssseesssessssnnseeesnes 43
10.7 T = = TN €T A= N TR 44
10.8 | SECUREBINDINGuttuuiiiiiiiitttiiiieeeeeeeetb s s e e s s eesa b s e esssee s b b s s esssee s bbb e eesseesa bbb seessseesbbaansaeaases 45
10.9 | SECURE C ONTEX T AT A ittt e e e et e bbb e e e e s s e e s bbb s e e essees bbb s eeesseebbbaaeeaaaes 46

Version CM-1.0 Copyright 1999, Health Level Seven 3

10

11

Context Management Specification, Component Technology Mapping: ActiveX

Figures

Figure 1: Organization of HL7 Context Management Specification DOCUMENLS...........cccoereeeiieeiiieniiienennn 9
Figure 2: Automation Interfaces in @ Common CONtEXt SYSEEM.........ceiiiiiiiiieriee et 12
Tables

Table 1: How Interface References Are OBLaINE...........ooeiieiiieiiiiie s 13
Table 2: Secure Binding PrOPEITIEScouviiiiiieiieiee ettt 25
Table 3: Key Container Naming SChEME.c.uii ittt sbe e saee et be e e 29
Table 4: EXCEPLION COUEBS.eieiuieeiiie ittt ettt ettt ettt ettt e sbe e e rbee e sabe e sabe e sabe e e abee e saeeesnbeesnbeeenees 33

4 Copyright 1999, Health Level Seven Version CM-1.0

[

o oA WDN

Context Management Specification, Component Technology Mapping: ActiveX

Preface

This document was prepared by Robert Seliger, Sentillion, Inc., on behalf of Health Level
Seven's Specia Interest Group for Visua Integration (formerly the Clinical Context Object
Workgroup --- CCOW). Comments about the organization or wording of the document should
be directed to the author (robs@sentillion.com). Comments about technica content should be
directed to ccow@list.mc.duke.edu.

Version CM-1.0 Copyright 1999, Health Level Seven 5

Context Management Specification, Component Technology Mapping: ActiveX

Copyright 1999, Health Level Seven Version CM-1.0

a b~ wDN

© 00 N O

10
11
12
13
14
15
16

17
18
19

20

21
22

23
24

25

26

27
28

29

1

Context Management Specification, Component Technology Mapping: ActiveX

Introduction

This document specifies the details needed to develop Microsoft ActiveX implementations of
applications and components that conform to the HL7 Context Management Architecture
(CMA). Using this specification, the resulting applications and service components will be able
to communicate with each other per the CMA even if they were independently developed.

The scope of this document is limited to the details pertaining to implementing the CMA-
specified application and component interfaces using ActiveX Automation (formerly known as
OLE Automation). This sub-technology within the ActiveX portfolio of technologiesis
supported by awide range of Microsoft and non-Microsoft devel opment tools.

Visua BasicO 4.0 is used as the “lowest common denominator” baseline programming
language for developing context participant applications. The collective capabilities of Visua
BasicO 5.0 (as opposed to 4.0) , Visua C++0 5.0, and Visua J++0O 1.1 (Microsoft’s
implementation of Java) are used as the baseline basdline programming language
implementations for developing CMA components, including the context manager, patient and
user mapping agents, and authentication repository. This specification is also forwards-
compatible with more recent versions of these tools.

However, any development tool that supports the creation of Automation clients and servers,
and in particular supports the |Querylnterface idiom, should enable the development of
applications and components that conform to this specification.

1.1 Assumptions

It is assumed that the reader is familiar with Microsoft’s ActiveX technology and with the
Microsoft’s underlying Component Object Model (COM).

1.2 Compatability

This specification is compatible with the following host operating systems:
Windows NT Workstation 4.0 service pack 3, or later
Windows 95 or later

This specification is compatible with at least the following programming language
implementations:

Visual C++ 5.0 or later

Version CM-1.0 Copyright 1999, Health Level Seven 7

© 00 N O

10
11

12

13

14

15

16

17

18

19
20
21
22
23

24
25
26

27

28

29

Context Management Specification, Component Technology Mapping: ActiveX

Visual Basic 4.0 or later

Visual H+ 1.1 or later with Microsoft’ s Java SDK 3.1 or later and Microsoft’ s Java
Virtual Machine 5.00.3161 or later

The specification is likely to be compatible with other implementations of these languages, as
well as with other programming languages.

1.3 Technology Mapping

The HL7 Context Management Architecture specification is technology-neutral. This means
that while an underlying component system is assumed, a specific system is not identified
within the architecture. It is the purpose of this document, and its companions for other
component technologies, to map the CMA to a specific target technology. For Automation, the
technol ogy-specific details specified in this document include (but are not limited to):

multiple interfaces

interface reference management

dua interface requirements

registry settings

ActiveX Javawrappers for ActiveX components
error handling

implementable interface definitions

It is beyond the scope of this document to provide al of the details that are needed in order to
fully implement conformant CMA applications and components. The necessary additional
details are covered in a series of companion specification documents, starting most notably
with the Health Level Seven Context Management Specification, Technology- And Subject-
Independent Component Architecture, CM-1.0.

Asillustrated in Figure 1, these documents are organized to facilitate the process of defining
additional link subjects and to accelerate the process of realizing the CMA using any one of a
variety of technologies.

8 Copyright 1999, Health Level Seven Version CM-1.0

N

o b

Context Management Specification, Component Technology Mapping: ActiveX

Technology Neutral Context
Management Architecture
Specification

Technology Specific

' Component Mapping
Specification
Technology-Neutral
Subject Data Definition ACtl VeX

Specifications

Technlogy 2

Subject A Q @«

Subject B Technology 3

Subject C

Technlogy X

Interface Specifications

@

Technology Specific User Technology Y %

Technlogy Z

Figure 1: Organization of HL7 Context Management Specification Documents

The context management subjects and technologies that are of interest are determined by the

HL7 constituency:

Thereis an HL7 context management data definition specification document for each
of the standard link subjects. Each document defines the data elements that comprise a
link subject. Concurrent with the publication of this document, the following

© 00 N O

10
11

12
13

14
15
16
17
18

19
20

documents have been devel oped:

Version CM-1.0

Health Level-Seven Standard Context Management Specification,
Data Definition: Patient Subject, Version CM-1.0

Health Level-Seven Standard Context Management Specification,
Data Definition: User Subject, Version CM-1.0

There isan HL7 context management user interface specification document for each of
the user interface technologies with which CMA-enabled applications can be
implemented. Each document reflects the user interface requirements established in
this document in terms of a technology-specific look-and-feel. Concurrent with the
publication of this document, the following document has been devel oped:

Health Level-Seven Standard Context Management Specification,
User Interface: Microsoft Windows OS, Version CM-1.0

Copyright 1999, Health Level Seven

a b~ WO DN PP

Context Management Specification, Component Technology Mapping: ActiveX

Finaly, thereis an HL7 context management component technology mapping specification
document for each of the component technologies. Each document provides the technol ogy-
specific details needed to implement CMA-compliant applications and the associated CMA
components, as specified in this document. This document serves the role of specifying the
details for a CMA implementation using Microsoft’s ActiveX technology.

10 Copyright 1999, Health Level Seven Version CM-1.0

[

a b~ wDN

~N O

10
11
12
13
14
15

16
17
18
19
20

21
22
23

24

Context Management Specification, Component Technology Mapping: ActiveX

2 Component Model Mapping

Each interface defined in the CMA specification is implemented as an ActiveX automation
interface. All of the components defined in the CMA specification, including context
participant applications, are clients as well as servers. In the parlance of ActiveX, they are all
Automation clients and servers because they implement and use Automation interfaces.

Context participant applications are only currently required to implement a single Automation
interface. However, context managers and mapping agents are required to implement multiple
distinct Automation interfaces.

The COM IUnknown::Querylnterface idiom is used to enable context components to acquire
each others' interface references through interface interrogation. (Note that Visual Basic
implements IUnknown::Querylnterface “under the covers’ viathe Visual Basic assignment
operator.) The COM interface lUnknown serves as a context component’s principa interface.
See the chapter Component Model in the document HL7 Context Management Specification,
Technology- And Subject- Independent Component Architecture, CM-1.0 for a discussion
about interface interrogation and principa interfaces.

In some cases a component obtains a reference to 1Querylnterface for another component from
the Windows registry. This registry serves as the interface reference registry described in the
chapter Component Model in the document HL 7 Context Management Specification,
Technology- And Subject- Independent Component Architecture, CM-1.0. In other cases,
components pass interface references to each other as method parameters.

The various Automation interfaces employed in a common context system are shown in Figure
1. The means by which the various CMA compliant applications and components obtain
interface references to each other are described in Table 1.

Version CM-1.0 Copyright 1999, Health Level Seven 11

Context Management Specification, Component Technology Mapping: ActiveX

Application #1
I mplementation

Application #N

|] Implementation
1

¢ ”

Context Manager —

I mplementation
@4— Tool, etc.

Common
Context
Data

MA
l_

Optional Mapping
Agent Implementations 11 Tool, etc.

1

]
|

User Patient

Optional External
Authentication
Repository
Implementation

AR = |AuthenticationRepository I = IImplementationl nformation

CD = IContextData
CM = |ContextManager
CP = IContextParticipant

Automation Interfaces

MA = IMappingAgent
SB = ISecureBinding
SD = |SecureContextData

Figure 2:

12

Automation Interfaces in a Common Context System

Copyright 1999, Health Level Seven Version CM-1.0

Context Management Specification, Component Technology Mapping: ActiveX

Automation Server

Client’s means for obtaining server’s interface reference(s) ...

Automation Means for obtaining reference
Client
Context Manager’s Context A context participant obtains a reference to
| ContextManager and Participant the context manager’ s lUnknown interface
| ContextData interfaces. from the Windows registry. The context
participant then performs
IUnknown::Querylnterface on the context
manager to get the desired interface
references.
Context Manager’s Mapping The context manager provides areference to
| ContextData interface. Agent its IlUnknown interface to the mapping agent
when the context manager calls
M appingA gent::ContextChangesPending.
The mapping agent then performs
IUnknown::Querylnterface on the context
manager to get the desired interface
reference.
Mapping Agent’s Context The context manager obtains a reference to
IMappingAgent and Manager the mapping agent’ s IlUnknown interface
[mplementationl nformation from the Windows registry. The context
interfaces. manager then performs
IUnknown::Querylnterface on the mapping
agent to get the desired interface references.
Context Participant’s Context A context participant provides a reference to
| ContextParticipant Manager its IContextParticipant interface to the
interface. context manager when the context
participant calls
| ContextM anager::JoinCommonContext.
Authentication Repository’s Context A context participant obtains a reference to
| AuthenticationRepository Participant the authentication repository’ s lUnknown

interface from the Windows registry. The
context participant then performs
IUnknown::Querylnterface on the
authentication repository to get the desired
interface references.

Table 1: How Interface References Are Obtained

Version CM-1.0

Copyright 1999, Health Level Seven 13

14

Context Management Specification, Component Technology Mapping: ActiveX

Copyright 1999, Health Level Seven Version CM-1.0

N o 0o 0N

Context Management Specification, Component Technology Mapping: ActiveX

3 Interface Reference Management

In order to “possess’ an interface reference, as described in the chapter Component Model in
the HL7 Context Management Specification, Technology- And Subject- Independent
Component Architecture, CM-1.0 document, COM interface reference counts should be
incremented and decremented in accordance with COM conventions. In general, a component
performs lUnknown::AddRef to “possess’ an interface reference. Conversely, a component
performs lUnknown::Release to “dispose” an interface reference.

Version CM-1.0 Copyright 1999, Health Level Seven

15

16

Context Management Specification, Component Technology Mapping: ActiveX

Copyright 1999, Health Level Seven Version CM-1.0

N O 0o 0N

oo

10
11

12
13
14
15

Context Management Specification, Component Technology Mapping: ActiveX

4 Dual Interfaces

Dua Interfaces are a COM optimization that enables an Automation interface to be called
using a run-time dispatching mechanism (i.e., so called dispatch interfaces), or directly viaa
compile-time binding mechanism (i.e., so called v-table interfaces). The latter approach
generaly resultsin better performance. Dual interfaces accommodate the widest possible range
of application development tools, from interpreted |ate binding languages like Smalltalk and
VisuaBasic to compiled early binding languages like C and C++.

Context manager, mapping agent, and authentication repository implementations shall expose
their CMA-defined Automation interfaces as dua interfaces. This may limit the choice of
programming language for these components to just those that support the development of dual
interfaces. However, the advantage is better overall run-time performance.

Context participant applications can choose to implement their CMA-defined

| ContextParticipant interface as a dispatch interface or as adua interface. This enables
application developers to use a wide range of programming languages, as not all languages
support dual interfaces.

Version CM-1.0 Copyright 1999, Health Level Seven 17

18

Context Management Specification, Component Technology Mapping: ActiveX

Copyright 1999, Health Level Seven Version CM-1.0

o U~ WDN

o

10
11
12

13
14
15
16
17
18

19
20
21
22
23
24

25
26
27

28
29
30

Context Management Specification, Component Technology Mapping: ActiveX

5 Windows Registry Settings

ActiveX components can have awide variety of Windows registry entries. It is not unusual for
these entries to become quite complex. An objective of this document is to specify the smplest
registry entries that will enable applications and components that conform to the CMA
specifications to be implemented using any of the common ActiveX-capable programming
languages and still seamlesdy interoperate.

The context manager shall be registered in the Windows registry. This enables context
participant applications to locate and bind to the context manager. If present, a mapping agent
shall also be registered in the Windows registry. This enables the context manager to locate
and bind to the mapping agent. Finally, if present, the authentication repository shall be
registered in the Windows registry. This enables context participant applications to locate and
bind to the authentication repository.

ActiveX component registry entries often include implementation-specific information, such as
the file name and path to the component’ s executable code, and may vary depending upon how
the component has been implemented (e.g., executable vs. dynamic link library). However, the
registry entry for an ActiveX component can use a program identifier (ProglD), whichisa
symbolic name for the type of component, as aregistry key. A registry key is used to locate a
registry entry (known as avalue).

The value associated with a Progl D is the component’s class identifier (CLSID), which
denotes an implementation of the component. By fixing the ProglD, it is possible to write
client’sfor atype of component such that the client does not need to know anything about the
component’ s implementation. Instead, the client uses the Progl D to locate the component’s
CLSID at run-time. The CLSID isthen used to create an instance of the component, or to
connect to an existing instance of a running component.

In summary, ProglD’s are invariant across implementation. Therefore, no matter how they are
implemented, al of the CMA compliant applications and components shall use the Progld’s
defined below™:

The context manager shall be registered using the ProglD sub-key string,
“CCOW.ContextManager”. The CLSID under which a context manager is registered
shal be different for different context manager implementations.

! These ProglD’s are the same as defined by the Clinical Context Object Workgroup, upon whose
origina specification this specification is based.

Version CM-1.0 Copyright 1999, Health Level Seven 19

10

11
12
13

14
15
16

17
18
19
20
21
22

23
24
25
26
27

28
29
30
31
32

33

35
36

Context Management Specification, Component Technology Mapping: ActiveX

The patient mapping agent shall be registered using the ProglD sub-key string,
“CCOW.MappingAgent_Patient”. The CLSID under which the patient mapping agent
isregistered shall be different for different patient mapping agent implementations.

The user mapping agent shall be registered using the ProgID sub-key string,
“CCOW.MappingAgent_Patient”. The CLSID under which the user mapping agent is
registered shall be different for different user mapping agent implementations.

The authentication repository shall be registered using the ProglD sub-key string,
“CCOW.AuthenticationRepository”. The CLSID under which the authentication
repository is registered shall be different for different authentication repository
implementations.

The ProgID prefix “CCOW” isreserved for use by HL7 for creating future CMA-related
ProglDs. A CMA-compliant application or component shall not use this prefix other than as
specified in this document.

The use of acommon ProgID but implementation-specific CLSID requires additional effort on
the part of context manager and mapping agent developers. It may also require additional
effort on the part of context participant developers:

20

Context manager, mapping agent, and authentication repository implementations shall
provide ActiveX Javawrapper classes for their CMA coclasses and interfaces as part
of their installation package. The details of how these wrapper classes should be
prepared and packaged are described below. These wrapper classes are needed in
order hide the ActiveX implementation details of these components, including their
CLSIDs, from J+ Automation clients for these components.

Context manager, mapping agent, and authentication repository implementations shall
each provide ActiveX-compliant registry entriesin

HKEY_CLASSES ROOT\ | nt er f ace\ for each of their CMA-specified
Automation interfaces. This information is needed so that the Automation clients for
these components can create instances of these interfaces.

Context manager, mapping agent, and authentication repository implementations shall
each provide an ActiveX-compliant registry entry

HKEY_CLASSES_ROOT\ TypeLi b\ for their respective type libraries. This
information is needed so that the Automation clients for these components can create
calls to these interfaces using the dispatch mechanism.

Developers of CMA-compliant context participant applications and components shall
use the Progld, not the CLSID, to bind to any of the CMA-defined components that
are registered in the registry. This enables implementations to be changed without
affecting interoperability.

Copyright 1999, Health Level Seven Version CM-1.0

~N O 0o W NP

©

Context Management Specification, Component Technology Mapping: ActiveX

Developers of J++ CMA-compliant context participant applications and components
shall use the ActiveX Javawrapper classes provided with the CMA-defined
components of which they are clients. Thisis as opposed to client-generated wrappers,
which require that the client have devel opment time (versus run-time) access to the
implementation of the wrapped component’ s type library. Thisis not only impractical,
but introduces the probability that a J++ client would only work with a specific
Automation server implementation.

When these rules are followed, context participant applications and CMA components will
interoperate independently of each other’simplementations.

Version CM-1.0 Copyright 1999, Health Level Seven 21

22

Context Management Specification, Component Technology Mapping: ActiveX

Copyright 1999, Health Level Seven Version CM-1.0

w N

10
11

12
13
14
15

16
17

18
19
20

21
22
23
24

25
26
27

28
29

Context Management Specification, Component Technology Mapping: ActiveX

6 ActiveX Java Wrappers

Context manager and mapping agent implementations must provide ActiveX Java wrapper
classes:

The Java package name " ccow.contextmanager” shall be used for the context manager
package.

The Java package name “ccow.mappingagent_patient” shall be used for the patient
mapping agent package.

The Java package name “ccow.mappingagent_user” shall be used for the user
mapping agent package

The Java package name “ccow.authenticationrepository” shall be used for the
authentication repository package.

The context manager package shall minimally contain the Java wrapper classes
ContextManager.class, 1ContextManager.class, |ContextData.class,

| SecureContextData.class, | SecureBinding.class, |1 mplementationl nformation.class
and | ContextParticipant.class.

Both of the mapping agent packages shall minimally contain the Java wrapper classes
MappingAgent.class, IMappingAgent.class, and |mplementati onl nformation.class.

The authentication repository package shall minimally contain the Java wrapper
classes AuthenticationRepository.class, | AuthenticationRepository.class,
| SecureBinding.class, and Implementationl nformation.class.

The wrapper classes hide component implementation details. One specific detail hidden isthe
CLSID to be used by J++ Automation clients for these objects. In order to hide these details,
the wrapper classes must be created with knowledge of the details that they hide, hence the
need for them to be provided with each component implementation.

From the perspective of a J++ Automation client, the wrapper classes will look and behave the
same across component implementations. The wrapper classes are dynamically loaded by a
J++ client whenever it first accesses the corresponding Automation client.

Theinstallation of a new component will simply cause J++ clients to automatically access a
different version of a seemingly identical component.

Version CM-1.0 Copyright 1999, Health Level Seven 23

N -

o o1 AW

© 00~

10

12
13
14

15
16

17
18

19

Context Management Specification, Component Technology Mapping: ActiveX

The wrapper classes for the context manager should be packaged as "package
ccow.contextmanager” and located in:

%M ndir%javaltrustlib\ccow cont ext manager

The wrapper classes for the patient mapping agent should be packaged as "package
ccow.mappingagent_patient” and located in:

%M ndir% java\trustli b\ ccow mappi ngagent _pati ent

The wrapper classes for the user mapping agent should be packaged as "package
ccow.mappingagent_user" and located in:

%M ndir%javaltrustli b\ ccow mappi ngagent _user

The wrapper classes for authentication repository should be packaged as "package
ccow.authenticationrepository” and located in:

%M ndir% java\trustlib\ccow aut henticationrepository

Note that ccow, cont ext manager , mappi ngagent _pati ent,
mappi ngagent _user,andaut henti cati onr epository areal lower case.

24 Copyright 1999, Health Level Seven Version CM-1.0

o oA WDN =

o

10

11
12
13
14

15
16

17

v

Context Management Specification, Component Technology Mapping: ActiveX

Microsoft’'s CRYPTO32 API

All ActiveX implementations of CMA-compliant applications and components that use the
CMA-defined secure interfaces shall use the RSA public key / private key scheme and shall
use the MD5 one-way hash algorithm. It is recommended that Microsoft’ s Cryptography
Application Programming Interface (CRY PTO32) be used, and that the Microsoft RSA Base
Provider be selected as the cryptographic service provider.

However, adifferent APl and/or cryptographic service provider implementation can be used as
long as it employs agorithms and binary data formats that are functionally identical to those
employed by the Microsoft RSA Base Provider as accessed viathe CRYPTO32 API.

7.1 Secure Binding Properties

The CMA-defined interface | SecureBinding requires that the bindee indicate to the binder
various security properties that depend upon the bindee' s implementation. The properties that
must be indicated, and the allowed value or values for each property, depend upon the
underlying implementation technology.

For an ActiveX implementation, the following secure binding property names and values
defined in Table 2: Secure Binding Properties shall be used.

Property Name Allowed Value Meaning

Technol ogy CRYPT(32 Microsoft CRYPTO32 or
equivalent.

PubKey Schene RSA EXPORTABLE? Exportable version of RSA public
key / private key scheme (employs
40 bit keys).

HashAl go VD5 MD5 secure hash algorithm (creates
128 bit hash).

Table 2: Secure Binding Properties

2 public key / private key schemes are subject to United States export restrictions. Specifically, The
U.S. Government limits the size (in bits) of the security keys that can be used as part of applications
exported by U.S. vendors. The Microsoft Base Service Provider has been approved for export by the
U.S. Government. Applications that use this CSP viathe CRYPTO32 API should not require
additional export approvals.

Version CM-1.0 Copyright 1999, Health Level Seven 25

© 00 N O 0o~ W

10

11
12
13
14
15

16

17
18
19
20
21

22

23
24
25
26
27
28

Context Management Specification, Component Technology Mapping: ActiveX

Property names are not case sensitive. Property values shall be character-encoded per the
convention stated in the CMA specification.

7.2 Cryptographic Service Provider

The CRYPTO32 API enables applications to select from a set of cryptographic service
providers (CSP). Each CSP provides cryptographic services that can be accessed viathe
CRYPTO32 API. For CMA-compliant applications and components that are implemented
using the CRYPTO32 API, the Microsoft RSA Base Provider shall be used as the
cryptographic service provider. The means that the value of the dwProvType to the

CRY PTQO32 function CryptAcquireContext shall be PROV_RSA_FULL.

7.3 Creating Digital Signatures

The CRYPTO32 function CryptSignHash is used to create a digital signature. The function
CryptVerifySignature is used to verify a signature. Both of these functions accept an optional
pointer to a character string for the parameter sDescription. The value of this parameter shall
be NULL for al callsto these functions asit pertains to creating or comparing signatures used
to implement User Link.

7.4 Signature Format

Digitd signatures passed via any of the CMA-defined Automation interfaces shall be
represented as a string. This string contains binary data that has been character-encoded per
the convention defined in CMA specification. The binary data from which a signature string is
created is the byte array produced by CryptSignHash. This string must be converted back to
binary datain order to be used as an input to CryptVerifySignature.

7.5 Public Key Format

Public keys passed via any of the CMA-defined Automation interfaces shall be represented as
astring. This string contains binary data that has been character-encoded per the convention
defined in CMA specification. The binary data from which a public key is created is the byte
array produced by CryptExportKey with the parameter dwBlobType set to
PUBLICKEYBLOB. This string must be converted back to binary datain order to be used as
an input to CryptlmportKey.

26 Copyright 1999, Health Level Seven Version CM-1.0

N o 0ok WON P

oo

10
11
12

13
14

15

16

17

18

19

20

21

22

23

24

25

26

Context Management Specification, Component Technology Mapping: ActiveX

7.6 Hash Value Format

Hash values passed via any of the CMA-defined Automation interfaces shall be represented as
astring. This string contains binary data that has been character-encoded per the convention
defined in CMA specification. The binary data from which a hash value is created is the byte
array produced by CryptGetHashParam. Hash values shall be compared for equality by
comparing their character-encode string representations. Character case shall not be considered
when comparing these strings.

7.7 Key Containers

With CRYPTO32, public keys and public key / private key pairs are maintained in key
containers. These containers can be created and deleted using the CRY PTO32 API function
CryptAcquireContext. Keys can be imported into a container, or keys can be directly generated
within an empty container.

7.7.1 Required Containers

An application shall maintain the following key containers:
A key container for holding its own public key / private key pair.
A key container for holding the context manager’s public key.
Optionally, akey container for holding the authentication repository’s public key.
The context manager shall maintain the following key containers:
A key container for holding its own public key / private key.
A key container for holding each designated application’s public key.
A key container for holding the user mapping agent’ s public key.
The user mapping agent shall maintain the following key containers:
A key container for holding its own public key / private key.
A key container for holding the context manager’s public key.
The authentication repository shall maintain the following key containers:

A key container for holding its own public key / private key.

Version CM-1.0 Copyright 1999, Health Level Seven 27

10

11

12
13

14
15
16
17
18
19

20

21
22
23

24
25
26

27
28
29

30

31

Context Management Specification, Component Technology Mapping: ActiveX

A key container for holding the public keys for each of applications that use the
repository.

The convention for naming these containers and for managing their creation and deletion are
described next.

7.7.2 Key Container Naming Convention

All of the key containers shall have unique names when they are co-resident on the same
Windows host. The naming convention is defined in Table 3: Key Container Naming Scheme.

Note that al of the lettersin a container’ s name shall be capitalized. Also note that the portion
of acontainer name shown as APPLICATION-NAME is the same string that an application
provides to the context manager when it joins the common context system.

7.7.3 Key Container Management

An application, context manager, user mapping agent, and authentication repository shall
delete any containersthat its has created prior to terminating.

However, an application, context manager, user mapping agent, or authentication repository
that terminates prematurely might fail to delete some or all of the containers that it has created.
When the failed component is next launched it will not be able to create a new container if a
previoudly created container with the same name ill exists. This situation shall be handled as
follows: The existing container shall be deleted and a new container created in its stead. The
necessary keys shall be created and/or imported into the new container.

7.7.4 Key Container Security

CMA-compliant applications and components that maintain key containers shall protect their
containers from unauthorized access. This means that only the application or component that
created the container should be able to access the container.

If key containers are not protected then they are vulnerable to unintended uses. For example, a
rogue application might access the keys within a container created by valid CMA-compliant
application as a means to impersonate the application within a context management system.

There are a variety of ways to protect key containers. In order to maximize design flexibility
for CMA-compliant applications and components, a particular approach is not defined in this
specification.

28 Copyright 1999, Health Level Seven Version CM-1.0

Context Management Specification, Component Technology Mapping: ActiveX

Container created by Container purpose ... Container name ...

Application Holding own key pair. CCOW. APPLICATION-NAME.SELF
Holding context manager’s CCOW. APPLICATION-NAME.CM
public key.

Holding authentication CCOW. APPLICATION-NAME.AR
repository’s public key.

Context Manager Holding own pair. CCOW.CM.SELF
Holding an application’s CCOW.CM. APPLICATION-NAME
public key.

Holding user mapping CCOW.CM.MA_USER
agent’s public key.

User Mapping Agent Holding own key pair. CCOW.MA_USER.SELF
Holding context manager’s CCOW.MA_USER.CM
public key.

Authentication Repository Holding own key pair. CCOW.AR.SELF
Holding an application’s CCOW.AR. APPLICATION-NAME
public key.

Table 3: Key Container Naming Scheme

Version CM-1.0 Copyright 1999, Health Level Seven 29

30

Context Management Specification, Component Technology Mapping: ActiveX

Copyright 1999, Health Level Seven Version CM-1.0

w

© 00 N O O b~

10
11
12
13
14
15

16
17
18
19
20

21
22
23

24

Context Management Specification, Component Technology Mapping: ActiveX

8 Error handling

The CMA specifies a set of exceptions that can be raised by CMA components. (Context
participant applications do not currently throw exceptions).

ActiveX Automation exceptions are implemented in atwo-stage process. Firgt, all Automation
and dual interface methods return a 32-bit encoded error value, called an HRESULT, to their
caler. Secondly, ActiveX components that support the Microsoft-defined |Errorinfo and

| SupportErrorinfo interfaces can provide additional error information to clients when
requested. Thisinformation includes a textual description of the error and the guid3 of
interface that threw the error.

Each of the CMA-specified exceptions is identified by a distinguished HRESULT.
Additionally, the context manager, both mapping agents, and the authentication repository
snall support the IErrorinfo and | SupportErrorinfo interfaces. Automation clients for these
objects should check the HRESULT after each method invocation to determine if an exception
has occurred. Clients may then optionally access additiona error information viathe server
component’s | Errorinfo interface.

In the Win32 COM implementation there is at most one error object associated with each
logical thread of execution (i.e. athread can logically span multiple processes on the same or
different hosts), and that the error object may be overwritten by a subsequent error. Clients
should access |Errorinfo immediately after detecting an exception to insure that the error
information they obtain is pertinent.

Visua Basic developers should note that the Visual Basic Err object handles all the |Errorinfo
manipulations automatically. In the event that a Visual Basic client encounters an exception,
the Visual Basic Err object will contain the exception information.

The list of CMA-defined HRESULTS valuesis shown in Table 4: Exception Codes.

iy guid isaglobally unique identifier. Every COM interface definition is denoted by a different guid.

Version CM-1.0 Copyright 1999, Health Level Seven 31

Context Management Specification, Component Technology Mapping: ActiveX

Exception Hexadecimal Explanation

value

Notlmplemented 0x80004001L Method not implemented. Thisis the same
value as defined for the Win32
E_NOT_| MPL HRESULT.

GeneraFailure 0x80004005L An error was detected or afailure occurred.
Thisis the same value as defined for the
Win32 E_FAI L HRESULT.

ChangesNotEnded 0x80000201L Attempt to publish context changes before
ending the context change transaction.

InvalidContextCoupon 0x80000203L A context coupon does not match most
recently committed coupon or current
transaction coupon.

NameV alueCountMismatch 0x80000206L A name array and its corresponding value
array do not have the same number of
elements.

NotlnTransaction 0x80000207L Attempt to perform a context management
transaction method when a transaction is not
in progress.

TransactionlnProgress 0x80000209L Attempt to perform a context management
method when a transaction isin progress.

UnknownltemName 0x8000020AL An item name not known.

UnknownParticipant 0x8000020BL Participant coupon does not denote a known
participant.

TooManyParticipants 0x8000020CL Attempt to join a context that can't
accommodate another participant.

AcceptNotPossible 0x8000020DL Attempt to publish an “accept” decision but
there were participants for which it was not
possible to obtain a survey response (e.g.,
these participants were blocked)

BadltemNameFormat 0x8000020EL An item name does not conform to format
rules.

BaditemType 0x8000020FL An item data type does not conform to data
definition for the item.

BadltemValue 0x80000210L An item value does not conform to the
allowed set of values as defined by the data
definition for the item.

32 Copyright 1999, Health Level Seven Version CM-1.0

Context Management Specification, Component Technology Mapping: ActiveX

InvalidTransaction 0x80000211L A transaction has been invalidated and
aborted because it violates one or more
semantic integrity constraints.

UndoNotPossible 0x80000212L Attempt to undo context changes after the
transaction has ended.

ChangesNotPossible 0x80000213L Attempt to set or delete context data after the
transaction has ended.

ChangesNotAllowed 0x80000214L Mapping agent attempts set or delete a
context data item that has been set by the
participant that instigated the transaction.

AuthenticationFailed 0x80000215L A signature could not be authenticated.

SignatureRequired 0x80000216L A signature is required to perform the
method.

UnknownApplication 0x80000217L An application name is not known.

UnknownConnection 0x80000218L A connection is not known to the
authentication repository.

L ogonNotFound 0x80000219L The desired user logon is not found in the
authentication repository.

UnknownDataFormat 0x8000021AL The format of user authentication data
requested could not be found in the
authentication repository.

UnknownBindee 0x8000021BL A security binding coupon does not denote a
known bindee.

ImproperK eyFormat 0x8000021CL A public key is not properly formatted.

BindingRejected 0x8000021DL The identity of a bindee could not be
verified.

ImproperM ACFormat 0x8000021EL A message authentication code is not
properly formatted.

UnknownPropertyName 0x8000021FL A property name is not known.

BadProperty Type 0x80000220L A property data type does not conform to
specification.

BadPropertyValue 0x80000221L A property data value does not conform to
specification.

AlreadyJoinedContext 0x80000222L The application has aready joined the

context.

Table 4: Exception Codes

Version CM-1.0

Copyright 1999, Health Level Seven 33

Context Management Specification, Component Technology Mapping: ActiveX

Copyright 1999, Health Level Seven Version CM-1.0

A W

© 00 N O O

Context Management Specification, Component Technology Mapping: ActiveX

9 Character Set

The Unicode character set shall be used to represent all character strings that are transmitted
amongst and between CM A-compliant applications and components. The Unicode character
set enables representation of virtually any local character set.

The use of ActiveX Automation, in which character strings are represented by the Automation
datatype BSTR, provides built-in support for Unicode. This means that an ActiveX
implementation of a CMA-compliant applications and components will inherently support
Unicode for the character strings that are communicated via the CMA-defined ActiveX
Automation interfaces.

Version CM-1.0 Copyright 1999, Health Level Seven 35

36

Context Management Specification, Component Technology Mapping: ActiveX

Copyright 1999, Health Level Seven Version CM-1.0

A W DN

10
11
12

13
14
15

16
17
18

19

20

Context Management Specification, Component Technology Mapping: ActiveX

10 MIDL Listing

The interfaces defined below are an implementable trand ation of the abstract interfaces
definitions documented in the CMA specification. The following rules were applied to produce
the trandation:

The prefix “1” is prepended to the names of each interface, per COM conventions.

The closest available data types supported by Automation were employed (see table
below).

Outputs are mapped as return values (retval) and in/out parameters. Plain out
parameters are not used because they are not easily implemented using Visua Basic
5.0. (Note: the use of infout parameters requires special attention to proper memory
management techniques when implementing context managers or context participants
with the C++ programming language.)

Exceptions names are mapped as HRESUL Ts. Support for exception data valuesis
optional. If supported, the data values should be mapped to formatted strings and
made available through the IErrorinfo interface.

An interface reference to a component’s principal interface is mapped as an I[Unknown
pointer. A reference to any other component interface is mapped as an I Dispatch
pointer.

Sequences are mapped as safe arrays.

Abstract data types are mapped to Automation data types as follows:

Version CM-1.0

Abstract Data Type Automation Data Type
byt e unsi gned char
short short
| ong | ong
fl oat fl oat

doubl e doubl e

bool ean VARI ANT_BOCOL

string BSTR
date DATE
type VARTYPE

Copyright 1999, Health Level Seven

37

N

© 0o N O 0o A~

Context Management Specification, Component Technology Mapping: ActiveX

vari ant

VARI ANT

The MIDL below must be used by al ActiveX implementations of context managers and
context participants. Thisincludes interface and class names, and method signatures.

10.1 Type Libraries

All CMA-compliant Automation server component implementations shall provide atype
library that is consistent with the interface definitions specified below. A default interface
should not be specified for any of these components. Clients should not assume that an
Automation server has a default interface. An explicit call to lUnknown::Queryinterfaceis
necessary to abtain areference to a specific interface from an Automation server.

38 Copyright 1999, Health Level Seven

Version CM-1.0

OCO~NOUITRWN -

Context Management Specification, Component Technology Mapping: ActiveX

10.2 1AuthenticationRepository

import "oaidl.idl";
import "ocidl.idl";

L

]
1
£

object,
uuid(12B28736-2895-11d2-BD6E-0060B0573ADC),

dual,

helpstring("'l1AuthenticationRepository Interface'),
pointer_default(unique)

nterface lAuthenticationRepository : IDispatch

[helpstring(“Establish connection with authentication repository”)]
HRESULT Connect([in] BSTR applicationName,
[out, retval] long *bindingCoupon);

[helpstring(“Terminate connection with authentication repository”)]
HRESULT Disconnect([in] long bindingCoupon);

[helpstring(''Set user authentication data for specified logon name')]
HRESULT SetAuthenticationData([in] coupon,
[in] BSTR logonName,
[in] BSTR dataFormat,
[in] BSTR appSignature);

[helpstring(''Delete user authentication data for specified logon name™)]
HRESULT DeleteAuthenticationData([in] coupon,
[in] BSTR logonName,
[in] BSTR dataFormat,
[in] BSTR appSignature);

[helpstring("'Retrieve user authentication data for specified logon name')]
HRESULT GetAuthenticationData([in] coupon,
[in] BSTR logonName,
[in] BSTR dataType,
[in] BSTR appSignature,
[in, out] BSTR *userData,
[out, retval] BSTR *repositorySignature);

Version CM-1.0 Copyright 1999, Health Level Seven

39

OCO~NOUITRWN -

Context Management Specification, Component Technology Mapping: ActiveX

10.3 IContextData

import "oaidl.idl";
import "ocidl.idl";

L
object,
uuid(2AAE4991-A1FC-11D0-808F-00A0240943E4),
dual,
helpstring("'1ContextData Interface"),
pointer_default(unique)

1

interface IContextData : IDispatch

{

[helpstring(‘'get the names of all of the context items')]

HRESULT GetltemNames([in] long contextCoupon, [out, retval] VARIANT *itemNames);

[helpstring(“'delete an item(s) from the set of context items'")]
HRESULT Deleteltems([in] long participantCouppn,
[in] VARIANT names,
[in] long contextCoupon);

[helpstring('set the value of one or more context items™)]
HRESULT SetltemValues([in] long participantCoupon,
[in] VARIANT itemNames,
[in] VARIANT itemValues,
[in] long contextCoupon);

[helpstring(‘'get the value of one or more context items™)]
HRESULT GetltemValues([in] VARIANT names,
[in] VARIANT_BOOL onlyChanges,
[in] long contextCoupon,
[out, retval] VARIANT *itemValues);

40 Copyright 1999, Health Level Seven

Version CM-1.0

OCO~NOUITRWN -

Context Management Specification, Component Technology Mapping: ActiveX

10.4 IContextManager

import "oaidl.idl";
import "ocidl.idl";

L
object,
uuid(41126C5E-A069-11D0-808F-00A0240943E4),
dual,
helpstring(l1ContextManager Interface"),
pointer_default(unique)
1
interface IContextManager : IDispatch
{
[propget, helpstring(‘'property MostRecentContextCoupon')]
HRESULT MostRecentContextCoupon([out, retval] long *pval);
[helpstring(“'enables an application to join a common context system')]
HRESULT JoinCommonContext([in] IDispatch *contextParticipant,
[in] BSTR sApplicationTitle,
[in] VARIANT_BOOL survey,
[in] VARIANT_BOOL wait,
[out, retval] long *participantCoupon);
[helpstring(“enables an application to leave a common context system'™)]
HRESULT LeaveCommonContext([in] long participantCoupon);
[helpstring(“enables an application to start a context change transaction')]
HRESULT StartContextChanges([in] long participantCoupon,
[out, retval] long *pCoupon);
[helpstring(“enables the application that instigated a context change transaction to
indicate that it has completed its changes')]
HRESULT EndContextChanges([in] long contextCoupon,
[in, out] VARIANT_BOOL *someBusy,
[out, retval] VARIANT *vote);
[helpstring(“enables an application to discard any context data changes that it has
already made')]
HRESULT UndoContextChanges([in] long contextCoupon);
[helpstring(“enables the application that instigated a context change transaction to
inform the other applications in a context system about whether the changes are to be
applied or have been canceled™)]
HRESULT PublishChangesDecision([in] long contextCoupon,
[in] BSTR decision);
[helpstring(“enables an application to indicate that it wants to suspend its active
participation in a common context system while remaining registered as a
participant™)]
HRESULT SuspendParticipation([in] long participantCoupon);
[helpstring(“enables an application to indicate that it wants to resume active
participation in a common context system')]
HRESULT ResumeParticipation([in] long participantCoupon,
[in] VARIANT_BOOL wait);
}:

Version CM-1.0 Copyright 1999, Health Level Seven 41

OCO~NOUITRWN -

Context Management Specification, Component Technology Mapping: ActiveX

10.5IContextParticipant

import "oaidl.idl"
import "ocidl.idl";

L
object,
uuid(3E3DD272-998E-11D0-808D-00A0240943E4),
dual,
helpstring(l1ContextParticipant Interface"),
pointer_default(unique)
1
interface IContextParticipant : IDispatch
{
[helpstring("informs a participant that a change to the common context data is
pending')]
HRESULT ContextChangesPending([in] long contextCoupon,
[in, out] BSTR* reason,
[out, retval] BSTR *returnValue);
[helpstring("informs a participant that the common context data has changed™)]
HRESULT ContextChangesAccepted([in] long contextCoupon);
[helpstring("informs a particpant that a context change transaction has been rejected
by one or more of the other participating applications')]
HRESULT ContextChangesCanceled([in] long contextCoupon);
[helpstring("informs a participant that the system is being terminated")]
HRESULT CommonContextTerminated(void);
[helpstring('used to test if the participant is alive')]
HRESULT Ping(void);
}:

42 Copyright 1999, Health Level Seven Version CM-1.0

OCO~NOUITRWN -

Context Management Specification, Component Technology Mapping: ActiveX

10.6 lImplementationinformation

import "oaidl.idl";
import "ocidl.idl";

L

]
1
£

Version CM-1.0

object,
uuid(41123600-6CE1-11d1-AB3F-E892F5000000),
dual,

helpstring("'lImplementationinformation Interface),

pointer_default(unique)

nterface IlmplementationInformation : ldispatch

[propget, helpstring(‘'property ComponentName')]

HRESULT ComponentName([out, retval] BSTR *pVal);

[propget, helpstring(‘'property RevMajorNum™)]
HRESULT RevMajorNum([out, retval] BSTR *pval);

[propget, helpstring(‘'property RevMinorNum'™)]
HRESULT RevMinorNum([out, retval] BSTR *pval);

[propget, helpstring(‘'property PartNumber')]
HRESULT PartNumber([out, retval] BSTR *pval);

[propget, helpstring(‘'property Manufacturer')]
HRESULT Manufacturer([out, retval] BSTR *pVal);

[propget, helpstring(‘'property Target0S')]
HRESULT TargetOS([out, retval] BSTR *pval);

[propget, helpstring(‘'property TargetOSRev'')]
HRESULT TargetOSRev([out, retval] BSTR *pval);

[propget, helpstring(‘'property Whenlnstalled")]

HRESULT Whenlnstalled([out, retval] BSTR *pVal);

Copyright 1999, Health Level Seven

43

OCO~NOUITRWN -

Context Management Specification, Component Technology Mapping: ActiveX

10.7 IMappingAgent

L

]
1
£

mport "oaidl.idl";
mport "ocidl.idl";

object,
uuid(753D98C0-6CE1-11d1-AB3F-E892F5000000),
dual,

helpstring("'IMappingAgent Interface™),
pointer_default(unique)

nterface IMappingAgent : ldispatch

[helpstring("informs a mapping that a change to the common context data ready for
mapping™)]
HRESULT ContextChangesPending([in] long mappingAgentCoupon,
[in] 1Unnknown *contextMgr,
[in] long contextCoupon,
[in, out] BSTR* reason,
[out, retval] BSTR *returnValue);

[helpstring('used to let Context Manager mapping agent is alive')]
HRESULT Ping(void);

44 Copyright 1999, Health Level Seven Version CM-1.0

OCO~NOUITRWN -

Context Management Specification, Component Technology Mapping: ActiveX

10.8ISecureBinding

import "oaidl.idl";
import "ocidl.idl";

L
object,
uuid(F933331D-91C6-11D2-AB9F-4471FBC0O0000),
dual,
helpstring(l1SecureBinding Interface"),
pointer_default(unique)
1
interface ISecureBinding : IDispatch
{
[helpstring("Initiate secure binding™)]
HRESULT InitiatlizeBinding([in] long bindeeCoupon,
[in] VARIANT propertyNames,
[in] VARIANT propertyValues,
[in,out] BSTR *binderPublicKey,
[out, retval] BSTR *mac);
[helpstring("'Finalize secure binding™)]
HRESULT FinalizeBinding([in] long bindeeCoupon,
[in] BSTR bindeePublicKey,
[in] BSTR mac);
}:

Version CM-1.0 Copyright 1999, Health Level Seven

45

OCO~NOUITRWN -

Context Management Specification, Component Technology Mapping: ActiveX

10.91SecureContextData

mport "oaidl.idl";
mport "ocidl.idl";

L
object,
uuid(6F530680-BC14-11D1-90B1-76C60D000000),
dual,
helpstring("l1SecureContextData Interface"),
pointer_default(unique)
1
interface ISecureContextData : IDispatch
{
[helpstring('return collection of the names in the context")]
HRESULT GetltemNames([in] long contextCoupon,
[out, retval] VARIANT *itemNames);
[helpstring('set the value of one or more context items™)]
HRESULT SetltemValues([in] long participantCoupon,
[in] VARIANT itemNames,
[in] VARIANT itemValues,
[in] long contextCoupon,
[in] BSTR appSignature);
[helpstring(“'obtain the value of one or more context items")]
HRESULT GetltemValues([in] long participantCoupon,
[in] VARIANT names,
[in] VARIANT_BOOL onlyChanges,
[in] long contextCoupon,
[in] BSTR appSignature,
[in, out] BSTR *managerSignature,
[out, retval] VARIANT *itemValues);
}:

46 Copyright 1999, Health Level Seven Version CM-1.0

10

11

12

13

14

15

16

17

Context Management Specification Data Definition: Patient Subject

Health Level Seven Standard

Context Management Specification
Data Definition: Patient Subject
Version CM-1.0

Version CM-1.0

DOCUMENT ID: HL7SIGVI_3 4 99
REVISION ID: March 17, 1999
FILE NAME: hl7_sigvi_patient_cm_1 0 .doc
SUPERCEDES: n/a

Copyright 1999 Health Level Seven

Copyright 1999, Health Level Seven

Context Management Specification Data Definition: Patient Subject

Version CM-1.0 Copyright 1999, Health Level Seven

=

Context Management Specification Data Definition: Patient Subject

© O ~NO Ol WwWw N

10
11

12

13
14
15

Contents
1 INTRODUGCTION. ... uutuiiuuiutittuttttttuueesersesaeeaeeeseeeeeea..—.———.—————————————..—.....t.se.sre.r...........———————————————————————— 5
1.1 CONTEXT MANAGEMENT DOCUMENT OVERVIEW ...cutttuiiiiiiiiietiiiiiiieesiesstiinssessssssssssnsessssssssssssseesseessses 5
T1.2 CONTEXT DATA SUBJIECT .uuiiiiiitttiiiiieesietttiasseessseesaba s seessees s bb s seassee s bbb sessseessbbaa s esassesssbaasssesssenssses 7
1.3 CONTEXT DATA ITEM FORMAT oottt ittt sttt s e e e s et et s e e e s s e e s bbb sesssees bbb s eeasssesbbaaseeesseensres 7
I 78S = = N LT AV 1 2T 8
1.5 ITEM VALUESAND DATE TY PES. cituuiiiiiiiiiitiiii i e e e ettt s e e s s e ettt e e e s s e e s bbb ssesssees bbb s eeessess bbb eeesseensses 8
I e o7 N W 4 [TN 8
N = AN I L= N 101 = N O 9
2.1 STANDARD PATIENT CONTEXT DATA ITEMS. ..ottt ettt e s e e e bbb e s s e e e abaa s 9
2.2 EXAMPLES OF PATIENT SUBJIECT ITEMS..uuuiiiiiiiiiiiiii ettt e e s s e ea b s e e s s s e a e s e e s s s e aabbaaa s 10
3 HL7 DATATYPE REFERENCEc oot 13
IS - coded value for user-defined tables (HL7 SPec 2.8.20)......c..oeiuiiiiiiiiiieiiie e 13
ST - String data (HL7 SPEC 2.8.38).....ciiiiiiiieitiie ittt ettt e e e e bee e 13
PN - person Name (HL7 SPEC 2.8.28)uii ittt ettt et 13
DLN - driver’s license nUMBer (HL7 SPEC 2.8.11) ...cicuiiiiiiieiiie ettt 13
DT - date (HL7 SPEC 2.8.13) ... iiiie ittt ettt ettt sttt e st e e bt e e embe et e e e nbe e e aba e e snaeeeneeas 13
TS - time StampP (HL7 SPEC 2.8.42) ... ettt ettt snbe e bee e 14

Version CM-1.0 Copyright 1999, Health Level Seven 3

o ~NO Ol b~ W

Context Management Specification Data Definition: Patient Subject

Preface

This document was prepared by Kyle Marchant, 3M Health Information Systems, on behalf of
Health Level Seven's Special Interest Group on Visual Integration (formerly the Clinical Context
Object Workgroup --- CCOW). Comments about the organization or wording of the document
should be directed to the author (krmarchant@mmm.com). Comments about technical content
should be directed to ccow@list.mc.duke.edu.

Version CM-1.0 Copyright 1999, Health Level Seven 4

=

a b~ wWDN

© 0N O

10
11

12
13

14
15
16
17
18

19
20

21
22
23
24
25

26
27

28
29
30
31
32

33

1

Context Management Specification Data Definition: Patient Subject

Introduction

The god of this document isto provide a specification of the standard context data items that shall
supported for patient subject for the HL7 Context Management Architecture (CMA). For the patient
subject this document specifies the standard context data items that are available for applications to
use in setting and accessing the common clinical context.

1.1 Context Management Document Overview

It is beyond the scope of this document to provide al of the details that are needed in order to fully
implement conformant CMA applications and components. The necessary additional details are
covered in a series of companion specification documents, starting most notably with the Health
Level Seven Context Management Specification, Technology- And Subject- |ndependent
Component Architecture, CM-1.0.

These documents are organized to facilitate the process of defining additional link subjects and to
accelerate the process of redlizing the CMA using any one of avariety of technologies:

Thereisan HL7 context management user interface specification document for each of the
user interface technologies with which CM A-enabled applications can be implemented.

Each document reflects the user interface requirements established in this document in terms
of atechnology-specific look-and-feel. Concurrent with the publication of this document,
the following document has been devel oped:

Health Level-Seven Standard Context Management Specification,
User Interface: Microsoft Windows OS, Verson CM-1.0

Thereis an HL7 context management component technology mapping specification
document for each of the component technologies. Each document provides the technol ogy-
specific details needed to implement CMA-compliant applications and the associated CMA
components, as specified in this document. Concurrent with the publication of this
document, the following document has been developed:

Health Level-Seven Standard Context Management Specification,
Component Technology Mapping: ActiveX, Verson CM-1.0

Finally, the context management subjects and technologies that are of interest are determined by the
HL7 congtituency. Thereis an HL7 context management data definition specification document for
each of the standard link subjects. Each document defines the data elements that comprise alink
subject. Concurrent with the publication of this document for the patient subject, the following
document has been developed:

Health Level-Seven Standard Context Management Specification,
Data Definition: User Subject, Version CM-1.0

Version CM-1.0 Copyright 1999, Health Level Seven 5

Context Management Specification Data Definition: Patient Subject

The organization of this set of documentsisillustrated in Figure 1.

Technology Neutral Context
Management Architecture
Specification

Technology Specific

' Component Mapping
Specification

Technology-Neutral
Subject Data Definition Technol ogy 1
Specifications

Patient SU!bjM & Technlogy 2 %

Subject B Technology 3

Subject C
Technlogy X %
Technology Specific User Technology Y %

Interface Specifications

Technlogy Z

Figure 1: Organization of HL7 Context Management Specification Documents

Version CM-1.0 Copyright 1999, Hedlth Level Seven

g b~ WN PP

© 00 N o

10
11
12
13

14
15

16
17

18

19
20

21
22
23
24
25

26
27

28
29
30

Context Management Specification Data Definition: Patient Subject

1.2 Context Data Subject

Context data is grouped by subject. Each subject represents a real-world entity or concept. Each
subject is described by a set of context data items. Each context dataitem is structured as a
name/value pair. This document specifies the items for the patient subject. The specific names and
data types for each of the patient subject context data items are specified later in this document.

1.3 Context Data Item Format

The general format of a context data item nameis:

Item_subject_label.roleitem_name prefix.optional_item_name_suffix

Item_subject_label is the name of the subject to which the item belongs.
Role indicates the role of theitem, as follows;
“l1d” = standard identifier data, which is used to identify areal-world entity or concept.

“Co” = standard corroborating data, which is used by applications and/or users to
corroborate the identity of areal-world entity or concept.

“ZZ7" = non-standard organizationally defined data, the meaning of which is specified by the
organization that defined the item.

Item_name_prefix is the name of the item within the context of its subject.

Optional_item_name_suffix is optional for identifier and corroborating data items. It's purposeis to
two-fold:

For identifier items, the suffix enables multiple items to represent the same logical concept.
For example, at a particular site, patients may be identified by multiple medica record
numbers. Each item that represents a patient medical record number would have the same
item subject label, role, and item name prefix. However, each item name would have a
different Site-defined item name suffix.

For non-standard items, the suffix shall aways identify the name of organization that
defined the item.

The HL7 Standard Context Management Specification, Technol ogy-and-Subject-Independent
Component Architecture specification document should be consulted for additiona details on the
definition and structure of context item names.

Version CM-1.0 Copyright 1999, Health Level Seven 7

Context Management Specification Data Definition: Patient Subject

1.4 Case Sensitivity

Item names, and item values whose data type is a character string, shall be treated as “case
insensitive” unless specifically noted otherwise. This means that unless specifically stated in one of
the HL7 subject data definition documents, context participants, context managers, mapping agents
etc. shall not rely on the case of a context item name or value when applying decision or comparison
logic.

OOk wWN P

\]

1.5 Item Values and Date Types

Where applicable, the HL7 Version 2.3 Specification for healthcare messaging data elementsis used
as the basis for context data item names and values.

©

10 1.6 Localization

11 Context data item names shall be in English, regardless of the country and/or location that the

12 context manager and context participants are being used in. This enables those developing both

13 context managers and context participants to code to a known language standard for each context
14 subject area, while till alowing the user interface guidelines to take into account localization issues
15 where appropriate.

16

17

Version CM-1.0 Copyright 1999, Health Level Seven 8

=

coONO Ol kW N

10
11

12

13
14

Context Management Specification Data Definition: Patient Subject

2 Patient Subject

The item subject label for the patient subject is“Patient”.

A single patient may be identified using multiple patient subject identifier (id) items. Each item is
differentiated by a different site-specific suffix. An application shall be configurable such that it can
be instructed on-site as to which suffix (or suffices) it is to use when it interacts with the context
manager to set or get patient context data. Use of this suffix, and the values that may be assigned to
this suffix, is at the discretion of each healthcare institution at which a context management system
is deployed.

2.1 Standard Patient Context Data Items
The standard context data items for the patient subject are described below.

Patient Subject Identifier ltem Name Meaning | HL7 | Semantic Case Sensitive
Data | constraints
Type | on values

Patient.ld. MRN. site_name Patient’'s | ST none No. For example,

medical “01JSB0034” and
where site_name isasite-specified name | recorg “01jsh0034” are
of locale or site, or a set of locales or sites, number. the same medical
for which this particular identifier item is record numbers.
valid.
Patient.1d. National I dNunber Patient’'s | ST none no

national

identifier

number.
Patient.ld. Al ternate. site_name Alternate | ST none no

patient

where site_name isasite-specified name | jgentifier.
of locale or site, or a set of locaes or sites,
for which this particular identifier itemis
valid.

An application shall set avaluefor at least one of items defined above whenever it sets the patient
context.

Version CM-1.0 Copyright 1999, Health Level Seven 9

o O

Context Management Specification Data Definition: Patient Subject

Patient Subject Corroborating Meaning HL7 Semantic Case Sensitive
Item Name Data constraints on
Type | values
Pati ent. Co. Pat i ent Nanme Patient’s PN none no
name.
Pati ent. Co. Pat i ent Nane Patient’s PN none no
name.
Pati ent. Co. Al i asNanme Aliasnamefor | PN none no
the patient.
Pati ent. Co. DateTimeO'Birth | Patient'sDate | TS none no
and time of
birth.
Pati ent . Co. Sex Patient’s IS F for femde no
gender. M for male
O for other
U for unknown
Pati ent. Co. DLN Patient’s DLN none no
driverslicense
number.
Pati ent. Co. SSN Patient’s ST none no
Social security
number

An application may optionally set avalue for items defined above when it sets the patient context.

2.2 Examples of Patient Subject Items

Below are examples of patient subject items:

Example Item Names

Verson CM-1.0

Example Item Values

Copyright 1999, Health Level Seven

10

Context Management Specification Data Definition: Patient Subject

Patient.|d. MPI

001KMD02130- JIXXX- 98

Patient.ld. MRN. St _El sewhere_dinic SEC- KMAR- 00hj d7792

Patient.ld. MRN. St _Somewhere _dinic SSC- KMAR- 00W6B887455

Patient. Co. DateTineOBirth 19580317

Pati ent. Co. Pati ent Nane

Verson CM-1.0

Mar chant MKyl ernnn

Copyright 1999, Health Level Seven

11

Verson CM-1.0

Context Management Specification Data Definition: Patient Subject

Copyright 1999, Health Level Seven

12

w N

~N o

10

11

12
13
14

15

16
17

18
19
20

Context Management Specification Data Definition: Patient Subject

3 HL7 Data Type Reference

The item data types referenced in Section 2, Patient Subject, are the same as those specified in the
HL7 Version 2.3 Specification, Section 2.8, as described below:

DATA TYPE DATA TYPE NAME HL 7 Section Reference
IS Coded Value For User Defined 2.8.20
Table
ST String 2.8.38
PN Person Name 2.8.28
DLN Drivers License Number 2811
DT Date 2.8.13
TS Time Stamp 2.8.42

The formatting information for each of these fieldsis specified below, with its corresponding
description and HL7 specification section identifier. Only the encoding characters and escape
sequences indicated below shall be used:

IS - coded value for user-defined tables (HL7 Spec 2.8.20)

ST - string data (HL7 Spec 2.8.38)

PN - person name (HL7 Spec 2.8.28)

Components: <famly name (ST)> ~ <given nane (ST)> ~ <mi ddle
initial or name (ST)> ~ <suffix (e.g., JRor Ill) (ST)>
<prefix (e.g., DR) (ST)> ~ <degree (e.g., M) (ST)>

DLN - driver’s license number (HL7 Spec 2.8.11)

Components: <license nunmber (ST)> " <issuing state, province,
country (I1S)> " <expiration date (DT)>

DT - date (HL7 Spec 2.8.13)

Format: YYYY[MM DD |

Version CM-1.0 Copyright 1999, Health Level Seven 13

N

Context Management Specification Data Definition: Patient Subject

TS - time stamp (HL7 Spec 2.8.42)

For mat :

YYYY[MVDDHHW SS[. S[S[S[SI11111111 +/ - ZZZZ] ~<degr ee of precision>

Version CM-1.0 Copyright 1999, Health Level Seven 14

10

11

12

13

14

15

16

17

Context Management Specification Data Definition: User Subject

Health Level Seven Standard

Context Management Specification
Data Definition: User Subject
Version CM-1.0

Version CM-1.0

DOCUMENT ID: HL7SIGVI_3 3 99
REVISION ID: March 17, 1999
FILENAME: hlI7_sigvi_user_cm_1_0 .doc

SUPERCEDES: nl/a

Copyright 1999 Health Level Seven

Copyright 1999, Health Level Seven

Context Management Specification Data Definition: User Subject

Version CM-1.0 Copyright 1999, Health Level Seven

© O ~NO Ol wWw N

[
— O

[EnY
N

e S O = S T S Y
0 ~NO AW

Context Management Specification Data Definition: User Subject

Contents

1 INTRODUGCTION. ... uutuiiuuiutittuttttttuueesersesaeeaeeeseeeeeea..—.———.—————————————..—.....t.se.sre.r...........———————————————————————— 5
1.1 CONTEXT MANAGEMENT DOCUMENT OVERVIEW . ..uuuiiiiiieitiiiieeeseeetisiissseesssestssassessssssssssnsssesssssssssnnssessnes 5
T1.2 CONTEXT DATA SUBJIECT ..iittttuiiiiiiiiettttiiieeetttetsasseesstesssaatessteesssaasteasseestsrateesssesssaaseesssesssssnssessnes 7
1.3 CONTEXT DATA ITEM FORMAT .. ittt e e e et e e e e e s s e e bbbt e e e s s e e s bbbt eesss e s bbb s eessseesbbaanseeaanes 7
I 7.4 = = N1 AV 1 2R 8
1.5 ITEM VALUESAND DATE TYPES ... iiiiittiiiii ittt e e e e ee b s e e e s e e bbbt e e e s s e e s bbb s e e e s s se s bbb s eesssessbbbaseaanes 8
T e 107N W 2y [TR 8
A U] o = 1 U1 = |l O I 9
2.1 STANDARD USER CONTEXT DATA ITEMS ...ttt ittt e s e et s e e s s e ea b s s e s s s e e sbba s e esseeaanes 9
2.2 EXAMPLESOF USER SUBJECT I TEMS cuuuuiiiiiiiiiitiiiii e ee e ettt s e e e s e eabb s s e s s s e e abb b s s s e st e sabbaa s eesssessbbaaseeaanes 10
3 HL7 DATATYPE REFERENCEc oot 11
IS - coded value for user-defined tables (HL7 SPEC 2.8.20)coiuiiiiiiiiiieiiie e 11
ST - String data (HL7 SPEC 2.8.38)ueieiiiie ittt ettt ettt et et et e e e sbbe e enbeeanbeeabeaan 11
PN - person Name (HL7 SPEC 2.8.28)uiiiiiieiiieiiie ittt ettt ettt e be e be e tee e e 11
DLN - driver’s license NUMBEr (HL7 SPEC 2.8.11) . .ccuuiiiieieiiiieiiie ittt 11
DT - date (HL7 SPEC 2.8.13) ...ttt ettt ettt ettt ettt ettt bt e b bt e e st e e et e e be e e ebe e e ambe e anbeaanbeeenbeeenees 11
TS - time StampP (HL7 SPEC 2.8.42) ... oottt ettt et ettt e e stb e e snbe e anbeeateaen 12

Version CM-1.0 Copyright 1999, Health Level Seven 3

o ~NO Ol b~ W

Context Management Specification Data Definition: User Subject

Preface

This document was prepared by Kyle Marchant, 3M Health Information Systems, on behalf of
Health Level Seven's Special Interest Group on Visual Integration (formerly the Clinical Context
Object Workgroup --- CCOW). Comments about the organization or wording of the document
should be directed to the author (krmarchant@mmm.com). Comments about technical content
should be directed to ccow@list.mc.duke.edu.

Version CM-1.0 Copyright 1999, Health Level Seven 4

=

a b~ wWDN

© 0N O

10
11

12
13

14
15
16
17
18

19
20

21
22
23
24
25

26
27

28
29
30
31
32

33

1

Context Management Specification Data Definition: User Subject

Introduction

The god of this document isto provide a specification of the standard context data items that shall
supported for user subject for the HL7 Context Management Architecture (CMA). For the user
subject this document specifies the standard context data items that are available for applications to
use in setting and accessing the common clinical context.

1.1 Context Management Document Overview

It is beyond the scope of this document to provide al of the details that are needed in order to fully
implement conformant CMA applications and components. The necessary additional details are
covered in a series of companion specification documents, starting most notably with the Health
Level Seven Context Management Specification, Technology- And Subject- |ndependent
Component Architecture, CM-1.0.

These documents are organized to facilitate the process of defining additional link subjects and to
accelerate the process of redlizing the CMA using any one of avariety of technologies:

Thereisan HL7 context management user interface specification document for each of the
user interface technologies with which CM A-enabled applications can be implemented.

Each document reflects the user interface requirements established in this document in terms
of atechnology-specific look-and-feel. Concurrent with the publication of this document,
the following document has been devel oped:

Health Level-Seven Standard Context Management Specification,
User Interface: Microsoft Windows OS, Verson CM-1.0

Thereis an HL7 context management component technology mapping specification
document for each of the component technologies. Each document provides the technol ogy-
specific details needed to implement CMA-compliant applications and the associated CMA
components, as specified in this document. Concurrent with the publication of this
document, the following document has been developed:

Health Level-Seven Standard Context Management Specification,
Component Technology Mapping: ActiveX, Verson CM-1.0

Finally, the context management subjects and technologies that are of interest are determined by the
HL7 congtituency. Thereis an HL7 context management data definition specification document for
each of the standard link subjects. Each document defines the data elements that comprise alink
subject. Concurrent with the publication of this document for the user subject, the following
document has been developed:

Health Level-Seven Standard Context Management Specification,
Data Definition: Patient Subject, Version CM-1.0

Version CM-1.0 Copyright 1999, Health Level Seven 5

Context Management Specification Data Definition: User Subject

The organization of this set of documentsisillustrated in Figure 1.

Technology Neutral Context
Management Architecture
Specification

Technology Specific

' Component Mapping
Specification

\ Technology-Neutral
Subject Data Definition

Specifications Technol ogy 1

Q Technlogy 2 %
User Subject Q Q

Subject B Technology 3

Subject C
Technlogy X %
Technology Specific User Technology Y %

Interface Specifications

Technlogy Z

Figure 1: Organization of HL7 Context Management Specification Documents

Version CM-1.0 Copyright 1999, Hedlth Level Seven

g b~ WN PP

© 00 N o

10
11
12
13

14
15

16
17

18

19
20

21
22
23
24
25

26
27

28
29
30

Context Management Specification Data Definition: User Subject

1.2 Context Data Subject

Context data is grouped by subject. Each subject represents a real-world entity or concept. Each
subject is described by a set of context data items. Each context dataitem is structured as a
namefvalue pair. This document specifies the items for the user subject. The specific names and
data types for each of the user subject context data items are specified later in this document.

1.3 Context Data Item Format

The general format of a context data item nameis:

Item_subject_label.roleitem_name prefix.optional_item_name_suffix

Item_subject_label is the name of the subject to which the item belongs.
Role indicates the role of theitem, as follows;
“l1d” = standard identifier data, which is used to identify areal-world entity or concept.

“Co” = standard corroborating data, which is used by applications and/or users to
corroborate the identity of areal-world entity or concept.

“ZZ7" = non-standard organizationally defined data, the meaning of which is specified by the
organization that defined the item.

Item_name_prefix is the name of the item within the context of its subject.

Optional_item_name_suffix is optional for identifier and corroborating data items. It's purposeis to
two-fold:

For identifier items, the suffix enables multiple items to represent the same logical concept.
For example, at a particular site, patients may be identified by multiple medica record
numbers. Each item that represents a patient medical record number would have the same
item subject label, role, and item name prefix. However, each item name would have a
different Site-defined item name suffix.

For non-standard items, the suffix shall aways identify the name of organization that
defined the item.

The HL7 Standard Context Management Specification, Technol ogy-and-Subject-Independent
Component Architecture specification document should be consulted for additiona details on the
definition and structure of context item names.

Version CM-1.0 Copyright 1999, Health Level Seven 7

Context Management Specification Data Definition: User Subject

1.4 Case Sensitivity

Item names, and item values whose data type is a character string, shall be treated as “case
insensitive” unless specifically noted otherwise. This means that unless specifically stated in one of
the HL7 subject data definition documents, context participants, context managers, mapping agents
etc. shall not rely on the case of a context item name or value when applying decision or comparison
logic.

OOk wWN P

\]

1.5 Item Values and Date Types

Where applicable, the HL7 Version 2.3 Specification for healthcare messaging data elementsis used
as the basis for context data item names and values.

©

10 1.6 Localization

11 Context data item names shall be in English, regardless of the country and/or location that the

12 context manager and context participants are being used in. This enables those developing both

13 context managers and context participants to code to a known language standard for each context
14 subject area, while till alowing the user interface guidelines to take into account localization issues
15 where appropriate.

16

17

Version CM-1.0 Copyright 1999, Health Level Seven 8

=

coONO Ol kW N

10
11

12

13

14

15

16

Context Management Specification Data Definition: User Subject

2 User Subject

The item subject label for the user subject is“User”.

A single user may be identified using multiple user subject identifier (id) items. Each itemis
differentiated by a different application-specific suffix. An application shall be configurable such
that it can be instructed on-site as to which suffix (or suffices) it isto use when it interacts with the
context manager to set or get user context data. Use of this suffix, and the values that may be
assigned to this suffix, is at the discretion of each healthcare institution at which a context
management system is deployed.

2.1 Standard User Context Data Items
The standard context data items for the user subject are described below.

User Subject Identifier Item Name Meaning HL7 Semantic Case Sensitive
Data constraints
Type on values

User . | d. Logon. application_name User's ST none Valueis case senditive.
logon For example, “ksmith”

where application_name isasite- name. and “Ksmith” are two

specified name of an application, or a set different logon id

of applications, for which this particular values.

identifier item isvalid.

An application shall set avalue for the item defined above whenever it sets the user context.

User Subject Corroborating Item Name | Meaning HL7 Semantic Case Sensitive
Data constraints
Type on values

User . Co. Nane User's PN none no
name

An application may optionally set avalue for items defined above when it sets the user context.

Version CM-1.0 Copyright 1999, Health Level Seven 9

w N

Context Management Specification Data Definition: User Subject

2.2 Examples of User Subject Items
Below are examples of user subject items:

Example Item Names

Example Item Values

User.1d. Logon.3M O inical _Wrkstation k_marchant

User. 1 d. Logon. Logi ci an kyl em

User. | d. Logon. Car evue KMD1230

User . Co. Nane

Verson CM-1.0

Kyl e Mar chant

Copyright 1999, Health Level Seven

10

w N

~N o

10

11

12
13
14

15

16
17

18
19
20

Context Management Specification Data Definition: User Subject

3 HL7 Data Type Reference

The item data types referenced in Section 2, User Subject, are the same as those specified in the

HL7 Version 2.3 Specification, Section 2.8, as described below:

DATA TYPE DATA TYPE NAME HL 7 Section Reference
IS Coded Value For User Defined 2.8.20
Tables
ST String 2.8.38
PN Person Name 2.8.28
DLN Drivers License Number 2811
DT Date 2.8.13
TS Time Stamp 2.8.42

The formatting information for each of these fieldsis specified below, with its corresponding

description and HL7 specification section identifier. Only the encoding characters and escape
sequences indicated below shall be used:

IS - coded value for user-defined tables (HL7 Spec 2.8.20)

ST - string data (HL7 Spec 2.8.38)

PN - person name (HL7 Spec 2.8.28)

Conponent s:

<famly name (ST)> ~ <given nane (ST)> ~ <m ddl e

initial or name (ST)> ™ <suffix

<prefix (e.g.,

DLN - driver’s license number (HL7 Spec 2.8.11)

Conponent s:

<license nunber (ST)> " <issuing state,

(e.g., JRor Ill) (ST)> ~
DR) (ST)> ~ <degree (e.g., MD) (ST)>

country (I1S)> " <expiration date (DT)>

DT - date (HL7 Spec 2.8.13)

Format: YYYY[MM DD |

Verson CM-1.0

Copyright 1999, Health Level Seven

provi nce,

11

N

Context Management Specification Data Definition: User Subject

TS - time stamp (HL7 Spec 2.8.42)

For mat :

YYYY[MVDDHHW SS[. S[S[S[SI11111111 +/ - ZZZZ] ~<degr ee of precision>

Version CM-1.0 Copyright 1999, Health Level Seven 12

© coO~NO O A W DN B

B
= O

12

13
14
15
16
17

18
19
20
21
22
23
24
25
26
27

Context Management Specification, User Interface: Microsoft Windows OS

Health Level Seven Standard

Context Management Specification
User Interface: Microsoft Windows OS
Version CM-1.0

Version CM-1.0

DOCUMENT ID: HL7SIGVI_3 5 99
REVISION ID: March 17, 1999
FILE NAME: hl7_sigvi_windows cm_1 0.doc

SUPERCEDES: nl/a

Copyright 1999 Health Level Seven

Copyright 1999, Health Level Seven

Page 1

co~NO Ol

Context Management Specification, User Interface: Microsoft Windows OS

Contents
L. INTIRODUGCTION. ...etttiiititittitietteettasaesesseesasssens 4
2. TECHNOLOGY NEU T RA LY e s s e s s s s s s e s s s e s s s s s s s s s s asassssssssssaaasaans 5
3. INTERFACE APPROACHES.o e e s e e s e s e e e e s e e e s e s s s s s e s e e e s e ssssssssaaasanas 6
4, ARCHITECTURE ... 7
4.1 JOINING A CONTEX T..ititttuuuiieieiietsssuaseeessesssssssseesstesssssaseesssessssssssseesssssssssssssesssessssssssseesseesssssnteessseesssssnieeesseensnes 8
4.2 CHANGING THE CONTEX T atttuuutiiiiiiettttiiieesitrsssssssesseesssssseesstesssssassessseesssssttesstessssmteesterstseestt 8
4.3 REJOINING THE CONTEX T ..itttttuuuiieeiietssssseeesseessssassessssesssssaesessessssssssseesseesssssssteesssesssssssieeesseessssinnseesteessrnns 10
Version CM-1.0 Copyright 1999, Health Level Seven Page 2

[

o O WN

Context Management Specification, User Interface: Microsoft Windows OS

Preface

This document was prepared by Jeff Amfahr, Component Software International., on behalf of Health Level Seven’s
Special Interest Group on Visual Integration (formerly the Clinical Context Object Workgroup --- CCOW). Comments
about the organization or wording of the document should be directed to the author (amfahr@csi-corporate.com).
Comments about technical content should be directed to the Clinical Context Object Workgroup ccow@list.mc.duke.edu.

Version CM-1.0 Copyright 1999, Health Level Seven Page 3

QOO NOUPR~WN B

el
N

=Y
w

14

15
16

Context Management Specification, User Interface: Microsoft Windows OS

1. Introduction

This document specifies the user interface when using the common clinical context component as specified by the
Clinical Context Object Workgroup (CCOW). It isassumed that the reader is familiar with the architectural
specification for that software. The user interface explained in this document is intended to describe only those user
interface features that are directly concerned with the clinical context component itself. Since agoal of this software
isto be as seamless and natural for the user as possible, only the minimum set of user interface features is specified.
No attempt to standardize the overall look and feel of clinical applications is made.

It isintended that this user interface be applicable to the full breadth of user interfacesin use today. The clinical
context object itself has no specified user interface. All the information specified here isimplemented by the clients
of the clinical context object. Below is atable that indicates which of the following user interface concepts are
required in order to be considered CCOW compliant and which are recommendations that should be used when
possible and appropriate.

Required Recommended
Context status Continuous, consistent, Useicons and text

representation of state of context link

using either text or icons or both.

Status icons If using icon, use standard icons.

Status text If using text, use standard text.

Status location At least one of the context link
indicators should be prominently
displayed.

Individual context status Some visual indicator near the most
related data to context data itself.

Joining context Show text to indicate that the
application is joining the context
manager. If implementing this
recommendation it is a requirement that
you use the specified text.

Changing context The dialog for indicating that there

are conditional, busy or mapping
agent problem responses to the survey
isarequired element.

Rejoining Context There must be a mechanism for On rejoining, the user should be given
rejoining the context if there is any the option of using the application's
way to break the context link from the current context values or the values from
application. the global context.

Modifying link status Clicking on the link indicator instigates

reversing the state of the link.

Table 1 Required and recommended features

Version CM-1.0 Copyright 1999, Health Level Seven Page 4

O©oo~N OO WN P

Context Management Specification, User Interface: Microsoft Windows OS

2. Technology Neutrality

Since user interface tends to be a technology specific detail, this document attempts to address the user interface from
ageneric standpoint. The primary assumption is that the application uses a graphical user interface (as opposed to a
command line) that provides support for overlapping windows. Thiswould include all flavors of WindowsO and
web-based applications, for example. Because there is no desire to specify the overall look and feel of clinical
applications, the guidelines use only standard constructs available in all these systems.

The ability to internationalize this specification has been considered, but thisinitial version contains only English
strings. Some minor modifications may be necessary for other languages, especially multibyte language systems.
For example, maximum string lengths may be increased.

Version CM-1.0 Copyright 1999, Health Level Seven Page 5

Context Management Specification, User Interface: Microsoft Windows OS

3. Interface Approaches

The overall architecture of the clinical context component is described in the Architectural Specification, but several
features described in that document are especially applicable in the user interface scope.

Qowoo~NOoOOT AW N B

=

B R R R R R
ONOUDWNER

19
20
21
22
23
24

25
26
27
28
29

30
31
32
33

35
36
37

An application may choose to defer applying a context change until some time in the future. For example,
an application that retrieves large medical image files (that require substantial processing) might choose to
not retrieve images each time a different patient is selected as part of the clinical context. Instead, the
application might wait for an explicit directive or gesture from the user before actually retrieving the image.
An application that behaves in this manner must be sure that it does not show data for an earlier context.
Blanking-out its data displays or minimizing itself are possible ways that this can be accomplished.

An application for which a change in the context might result in the loss of work performed by the user can
request that the user explicitly decide whether to proceed with the context change anyway, or to cancel the
change. The solicitation of user input is performed by the application that is being used to change the
context. The solicitation includes an identification of the application for which work might be lost and a
description of the work that might be lost. An application that behaves in this manner is expected to be able
to discard its work in progress and apply the context changes if instructed to do so. For example, a

medi cation ordering application might indicate that the inputs for a medication order, which has not yet
been completed by the user, will be lost if the context is changed to a different patient.

When an application is unable to respond to a context change, perhaps because the user left it waiting for
user input, the user is asked to explicitly decide how to proceed. The solicitation of user input is performed
by the application that is being used to change the context. The solicitation includes the identification of the
non-responsive application and indicates that the application cannot respond to a context change. For
patient safety reasons, when there are applications that cannot respond to the changes, context changes will
not be automatically applied to the applications that share a common context.

When it is not desirable or possible for context changes to be automatically applied, either because there are
applications for which work might be lost or there are busy applications that cannot be notified about
context changes, the user can explicitly interact with these applications to correct the situation, and then
apply the context changes. For example, the user might complete or terminate a dialog that was left open in
order to enable an application to apply the context changes.

When it is not desirable or possible for context changes to be automatically applied, the user can also decide
to apply the context change only to the application that is being used to change the context. The decision to
do thisistypically in response to an interruption during which the user needs to momentarily divert his
attention to a different context for a specific application. The application is, in effect, disconnected from the
common context, and must clearly indicate this fact to the user in avisual manner. The application can be
subsequently instructed by the user to reconnect and apply the common context. The common context may
have changed between the time the application was disconnected and the time it is reconnected to the
common context.

Version CM-1.0 Copyright 1999, Health Level Seven Page 6

QOWo~N OO~ wWN B

B
'_\

[S
abdwiN

16
17

18
19
20
21
22
23

24
25
26

27
28
29
30

31
32
33

35
36

37
38

39

40

Context Management Specification, User Interface: Microsoft Windows OS

4. Architecture

Although the desire is for the common context to be seamless, the user does need to be aware when the component is
and is not a part of the context. A common vocabulary for the context is required so users can be familiar with the
meaning of common dialogs. In all text that the user sees, the context is referred to as the “clinical link.” When the
component is currently using the common context, the clinical link is*“on”. When a component leaves the context,
theclinical link is“broken”.

It isvital that the current state of the link be visible and apparent to the user. An application can use two methods to
indicate the status of the link. Thefirst is textual, in which case the text should be “Clinical link on”, “Clinical link
changing”, or “Clinical link broken”. The second method is using icons which are shown below. At least one of
these indicators must be used, although both are recommended. If both indicators are used, they must always show
the same state for the link.

Please note: the picture objects shown below were created from the 40 pixel wide by 21 pixel high bitmaps that are
recommended for CCOW-compliant applications. Programmers can copy them from this document, past them into
Paint Stop Pro, or any other bitmap editor and save them as a bitmap file (BMP) extension. For this reason the

bitmaps are not published separately.

Figure 2 Clinical link on icon

=]

Figure 3 Clinical link broken icon

=2

Figure 4 Clinical link changing icon

If the application provides a user interface, this overall status indicator should be located prominently and
persistently on the screen. It is also recommended that the application indicate the subjects (i.e. areas of clinical
context) to which it islinked. If the application indicates these linked subjects, there are two recommended formats:

The first format is to provide the indicator viaa menu item, preferably in the same menu that allows the
user to re-join the context. This menu should be hierarchical, with the main menu item labeled as
“Supported clinical subjects’ and the submenus having labels for each subject area (for example, “Patient”,
“User”, etc.).

The alternative format (which may be used in conjunction with the first approach) is to provide a visua
indicator near a representative piece of clinical data. For example, an icon near the patient name to indicate
that the patient subject is supported, an icon near the user name to indicate that the user subject is supported,
etc. Thisicon should be similar to the normal clinical link status icons shown above, however they may be
smaller in order to accommodate the actual area of the screen used. These icons should change when the
link is broken to indicate that the subject is no longer linked.

There are three stages to using the common clinical context:

Joining a context
Changing a context

Rejoining the context.

Version CM-1.0 Copyright 1999, Health Level Seven Page 7

QOO ~NOOUITD WN -

=

11

12
13
14
15
16
17

18
19
20
21
22
23
24

25
26
27
28
29
30

31
32
33

35
36
37
38
39

Context Management Specification, User Interface: Microsoft Windows OS

4.1Joining a context

It is assumed that most applications will attempt to join the common context when launching, with no user
intervention. When joining the context, a transaction may be in progress. No components are allowed to join the
context while atransaction isin progress. If the component chooses to block on the call to join the transaction (by
setting the wait parameter to true), then a dialog must be displayed informing the user that the thread is blocked.
This dialog must only be displayed if the transaction takes longer than one second. This dialog should be a standard
system dialog with the text “Establishing clinical link”. Once the context has been joined, this dialog should close
itself with no further user interaction. At this point, the visual indicator for link status should indicate that the link is
on, or if the context cannot be joined for whatever reason (e.g., the TooManyParticipants exception is raised), the
link status should indicate a broken link.

4.2 Changing the Context

Once the context has been joined, the component will normally be in synch with the current context data. When
another application desires to change the context, the context manager informs other applications by calling their
ContextChangesPending method. At this point, the other applications need to change their status to indicate the
patient link is changing. Thistellsthe user that no context data change is presently possible. At some later point,
the context manager will call either the ContextChangesAccepted or ContextChangesCanceled method. The link
status should then change to indicate it is on.

If the current component desires to change the current context itself, it needs to inform the other CCOW clients.
This document does not specify how new context data is selected by the user. Once the data has been entered,
however, the context manager calls a mapping agent (if available) to confirm and add to the data. If the mapping
agent finds no inconsistencies, the context manager surveys the registered applications. If all applications can
change the current context, then the context data is changed as described above. If, however, any of the applications
are unable to change because they are busy or because they require user interaction, or the mapping agent finds an
inconsistency in the identifying information, the user must be queried for the appropriate action.

An application that requires user interaction (i.e., conditionally accepts) sends the context manager a string stating
the reason and the potential consequences if the data change occurs. The format of that string should be declarative
(i.e., state what the consequences will be, rather that query the user for information) and should be less than 64
charactersin length. Some examples are “The open patient record will not be saved”, “ Annotations for record 123
will belost” or “Current information will be saved”. If an application is busy, meaning it is unable to respond to the
survey, the context manager will return the string “This application appears to be busy” for that application.

In either of these cases, the component that requested the context change should then present the user with a dialog
(Figure 5) containing the following text: “ There may be a problem changing the current clinical data. The following
application(s) reported a problem. Would you like to continue with the change?’ followed by alist showing the
application name(s) and reason(s) returned. This dialog contains three action buttons that must be labeled “ OK”,
“Cancel”, and “Break link”. All of these choices dismiss the dialog box. The default choiceis*Cancel”. If at least
one of the responses indicates an application is busy, then the “OK” choice must be disabled. If an application does
not support the choice of “Cancel” (for example, because choosing a patient is a difficult process), then that choice
should be disabled and “Break link” should be the default choice (Figure 6). Even if no other choice is possible other
than “Break link”, the dialog should be presented so that the user is aware they are breaking the patient link.

Version CM-1.0 Copyright 1999, Health Level Seven Page 8

1
1
12
13

POOWoO~NOO O b~

14
15
16
17
18
19
20

Context Management Specification, User Interface: Microsoft Windows OS

Problem Changing Clinical Data |

There may be a problem chanaing the current clinical data. The
! following application(z] reported a problem. Wwould pou like to
continue with the change?

Diabetez Tracking Application: Current information will be zaved
Drug Inkeraction Application: Prezcription will not be zent

EWR Application: Open patient record will not be zaved
Medizal Imaging Application: Changed data will be logt

k. I Break, link, I

Figure 5 Context Dialog When No Applications Are Busy

Problem Changing Clinical Data |

There may be a problem chanaing the current clinical data. The
! following application(z] reported a problem. Wwould pou like to
continue with the change?

Diabetez Tracking Application: Current information will be zaved
Drug Inkeraction Application: Prezcription will not be zent

EWR Application: Open patient record will not be zaved
Medizal Imaging Application: Thiz application appears to be busy

Break, link, I

Figure 6 Context Dialog When At Least One Application is Busy

If the mapping agent finds an inconsistency in the identifying data set by the instigating application, it should send
the context manager a string stating the reason for the inconsistency. The format of that string should be declarative
and should be less than 64 characters in length. Some examples are “The IDs map to two different patients’, or
“Patient identifiers are not consistent with data recorded”. The context manager should log these for future reporting
as appropriate. The reguesting application will receive a programmatic response identical to that received in the case
of abusy application. The application name returned will be “Data mapping System” and the string returned by the
context manager will be “ Some of the IDs used were conflicting”. This result should be reported as described above
for a busy application.

An application may be unable to interpret some or all of the context data that is established when another application

changes the common context. For example, the selected patient might not be a patient known to al of the

applications. In this case, the application should clearly indicate that it is unable to apply the context data. 1t should
either minimize itself or blank-out its data displays. It is also acceptable for an application to do thisif it is not the
current application and accessing its data is a lengthy process. It would begin this process when it became the front
most application. Notein either case that the application is still part of the common context and its status should

indicate this.

Version CM-1.0

Copyright 1999, Health Level Seven

Page 9

O, wWN B

Context Management Specification, User Interface: Microsoft Windows OS

4.3Rejoining the context

When an application is currently not a part of the common context (because the user has explicitly broken the link),
there must be a mechanism for the user to rejoin the context (e.g. amenu item). If amenu item or equivalent is used
it must be labeled “Rejoin Clinical Link”. This menu will include a sub-menu with two choices: “Use this
applications' data’ and “Use global data’. When an application is part of the context this menu item or equivalent
should be disabled.

Version CM-1.0 Copyright 1999, Health Level Seven Page 10

