HL7® FHIR®
Implementation Projects
HIMSS 2017
Grahame Grieve
FHIR Product Director
Important US FHIR Projects

- ONC Supported FHIR Implementation Guides
  - US-Core
  - DAF
  - SDC
  - QI-Core
- US Realm Implementation Guide
- Project Argonaut
- HSPC
- Sync For Science (S4S)
US-Core

- Base profiles for using FHIR in USA
- US specific requirements
  - Data Elements: Race, Ethnicity
  - Terminologies: RxNorm, NUCC
  - Identifiers: SSN
  - Legislated functions (Common Clinical Data Set)
- Base agreements that apply to all use of FHIR
Common Clinical Data Set

- Patient Details
- Problems
- Medication allergies
- Laboratory Orders / Reports / Values
- Encounters
- Family Health History
- Immunizations

- Medications:
  - prescriptions
  - dispenses
  - administrations

- Procedures
- Smoking Status
- Vital Signs
- + supporting stuff

*Health Level Seven and HL7 are registered trademarks of Health Level Seven International, registered with the United States Patent and Trademark Office.*
Data Access Framework

- Rules to support queries between systems within and across enterprises
- Rules about:
  - How access is granted (e.g. authentication/authorization)
  - What kind of queries are allowed
  - Expected content of return resources (based on US-Core)
- Support for PMI, PCORI
Structured Data Capture

• Definitions:
  • Define a set of ‘data elements’
  • Define a “Form” – a series of questions to answer
  • Associate questions with data elements

• Processes
  • Present the form in a nice UI
  • Ask someone to answer the questions
  • System may pre-populate with known values
  • Read the data elements out of the answers
Structure Data Capture

• Many uses
  • Ad-hoc collection of data from humans
  • Delegate parts of UI design to end-users
  • Clinical Forms associated with referrals
  • Research / Trial data collection
  • etc

• Advantage of FHIR: integrate with the wider health eco-system
QI-Core

• Sponsored by CMS / ONC
• A uniform way for quality measures to refer to clinical data
  • Base rules data must conform to so quality measures can be checked
  • May also be suitable for decision support
  • Underlying Logical model called “QUICK”
• Aligning with US-Core
“Rapidly develop a first-generation FHIR-based API and Core Data Services specification to enable expanded information sharing for electronic health records and other health information technology based on Internet standards and architectural patterns and styles”
Project Argonaut

- **Scope** = Meaningful Use Common Data Elements + Document Access

- **Participants** = athenahealth, BIDMC, Cerner, Epic, Intermountain, Mayo, MEDITECH, McKesson, Partners, SMART, Advisory Board, Accenture, Surescripts
MU Data Access

- Prototype Implementation of DAF
  - Uses Smart on FHIR (per DAF)
  - Doesn’t impose all DAF security or integrity requirements
  - Only implementing a small fraction of the DAF query capabilities
  - Content model based on DAF, but diverged based on implementer experience
  - Reconciled in updated versions this year
Document Access

• Based on IHE MHD specification
• Uses Smart on FHIR instead of IUA
• Only a narrow subset of MHD scope (read-only, no manifests or folders)
• Based on DSTU2 not DSTU1
• Intended to be consistent with next MHD
Project Argonaut

- Still in progress
  - Provider Directory sharing
  - Appointments, UX Decision Support integration
- Participation welcome
- Check the Project Argonaut presentation
HSPC

• “Healthcare Services Platform Consortium”
• Improve health by creating a vibrant, open ecosystem of interoperable applications, knowledge, content, and services
• Accelerating the creation, sharing and delivery of promising software applications at the point of care.
• True semantic interoperability
Semantic Interoperability

• Project Argonaut:
  • How to hook into EHR applications
  • How to get manage authorization
  • How to find content
  • Basic rules where possible
  • Otherwise, content quite variable e.g. Different coding, units, methods of capturing clinical facts

• Common way to find content. But not common content
Semantic Interoperability

- Argonaut is enough for applications that find and display data
- Argonaut is not enough for applications that process data – no portability
- HSPC aims to fix this by fixing clinical content models
  - Consistent coding, units, clinical patterns
  - Imposes rules on clinical practice / data collection
HSPC Compatibility

• Build on top of US Implementation Guide
  • For US usage
• Be consistent with DAF
• Build on top of Argonaut profiles
• Apply extra rules around consistent data
Sync For Science

• Builds on the Argonaut interface (Patient Portal)
• Adds date based synchronization
• Allows a user to authorise the PMI project to use the patient’s data
Consistency across Projects

- Consistency is a goal
- Membership and editorial process for all projects highly overlapping
- Deviations due to differing requirements and timelines
- Reconciliation is an ongoing task