Preparing for the Collection of External Family History & Genetic Test Result Data

HL7 Ambassador Webinar

Grant M. Wood
Clinical Genomics Workgroup
October 3, 2012
Genetic Testing Becoming Common

The good news from human genome research is that tests to determine people's genetic susceptibility to many common and deadly diseases are already, or soon will be, available.
Are Healthcare Systems Prepared

The bad news is that most health care systems risk being overwhelmed unless they start preparing for the complex and costly demands of genetic screening programs.
A mother is concerned about a family history of breast cancer or cardiovascular disease.

She completes one of the new online programs that collect family health history:

- And takes the paper copy to her doctor
- And makes her husband also take a copy to his doctor

The question is –

Will the family health history data ever be stored and shared electronically with other healthcare providers?

Will the data be available to help their children? Grandchildren?
A Personalized Medicine Story

They have many choices to enter information –

1. In an employer, health plan, or healthcare system Personal Health Record or Patient Portal

2. Or they use a family history tool on one of the new commercial PHRs

3. They do genealogy online. Shouldn’t they also do family health history at the same?

Will this data be recorded in the Electronic Health Record (EHR) of their healthcare provider?
Value of Family History in Clinical Care

Family history remains the best and least expensive genetic ‘test’ currently available for clinical use.

A major effort will entail developing tools to collect this information –

1. In a standardized format,
2. Store it in the patient’s electronic health record,
3. Apply risk assessment, and
4. Develop messages to clinicians that may alter patient care based on the information obtained.
Current Methods of Collecting Data

Text-based data

• “FAMILY HISTORY: positive for diabetes, end-stage renal disease requiring hemodialysis in her father and mother, and multiple siblings have a history of coronary artery disease.”

• “...father died at age 40 of sudden cardiac death from myocardial infarction. Mother died at age 56 with MI. He notes that 15 people have died of coronary artery disease in the last three generations of his family. Diabetes type II in multiple members of the family. Denies cancer, seizures, or hyperlipidemia.”

An electronic form, but still insufficient
HL7 Family History Model (Pedigree)

- The XML-based model can be used for family health history data storage in an EHR.
- It is fundamentally designed for -
  1. The interoperability of family history data between both patient entered systems and clinical information systems,
  2. And provide structured data for risk analysis and clinical decision support.
What’s In the Family History Data Model

1) Record information
2) Person of focus (Proband)
3) Other persons in pedigree
4) Age of person / death date
5) Relationship
6) Disease
7) Age of disease onset / age of disease death
8) Genotypic data
9) Risk analysis
Data That Can Be Transmitted

Full pedigree data from one application and completely re-drawn in another.
Data That Can Be Transmitted

Clinical Data

1. Disease or condition for each relative, using SNOMED or other coding system
2. Age of Onset
3. Age of Death
4. Cause of Death

<table>
<thead>
<tr>
<th>Condition</th>
<th>Age of Onset</th>
<th>Cause of Death</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diabetes</td>
<td>41 yrs</td>
<td>Yes</td>
</tr>
<tr>
<td>High Cholesterol</td>
<td>32 yrs</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Data That Can Be Transmitted

Genetic Test Results in XML

<!-- GENOMIC DATA -->
<subjectOf2>
<geneticLocus moodCode="E VN">
<component1>
<individualAllele moodCode="EVN">
<text>b reast cancer 2, early onset</text>
<value code="U43746" displayName="BRCA2" codeSystemName="HUGO" />
</component1>
</geneticLocus>
</subjectOf2>
<sequenceVariation moodCode="EVN">
<value xsi:type="CE" code="185delAG" />
<interpretationCode code="DELETERIOUS" />

Data That Can Be Transmitted

Risk Analysis

1. Risk scoring calculated by advanced programs can be shared.

2. Disease-specific risk algorithms can be provided by web services.

Screen shot from Hughes riskApps™
My Family Health Portrait
A tool from the Surgeon General

Using My Family Health Portrait you can:

- Enter your family health history.
- Create drawings of your family health history to share with family or health care worker.
- Use the health history of your family to create your own.

Talking with your health care worker about your family health history can help you stay healthy!

Learn more about My Family Health Portrait

Create a Family History
Open a Saved History File
# Meaningful Use Stage 2 Requirement For Family History

| M4 | Patient Family Health History | Record patient family health history as structured data | More than 20% of all unique patients admitted to the eligible hospital or CAH's inpatient or emergency department during the EHR reporting period have a structured data entry for one or more first-degree relatives or an indication that family health history has been reviewed |
Invitation and Challenge

Since becoming a normative HL7 standard in 2007, the family history model has also been approved as an ANSI standard. HL7 Clinical Genomics is now calling on all commercial vendors and those who have developed “in-house” systems to implement this data model and electronic messaging standard in their clinical products and applications.
Going Beyond Family History
A Personalized Medicine Story

They spend money on the commercially available direct-to-consumer genetic testing

OR

She has a BRCA gene breast cancer test ordered by her doctor
The Genetic Variation model specifies the structure and semantics for the transmission of information created during single or multiple gene testing.

The model is further constrained to genetic variation analyses based upon sequence variation, and derived from a set of scientific laboratory methods, such as:

1. SNP probes,
2. Genotyping,
3. and Gene Sequencing

that focus on genetic changes, usually in the coding region(s) of one or a small number of genes.
HL7 Genetic Variation Data Model

The model facilitates the electronic transmission of genetic testing results and interpretations from –

- Genetic testing laboratories to medical practitioners, electronic health records, personal health records and associated clinical decision support systems able to receive and process such information
- Genetic testing laboratories to drug and medical device companies that have ordered such information as part of a clinical trial
- Drug and medical device companies to regulatory agencies that need to review such information as part of a new drug or device marketing application
HL7 Version 2 Implementation Guide: Clinical Genomics; Fully LOINC-Qualified Genetic Variation Model, Release 2
Submitted for Ballot December, 2011

HL7 Informative Document for Ballot

Sponsored by:
Clinical Genomics WG

Principal Contributors:
Mollie Ullman-Cullere
Grant Wood
Stan Huff
Clement McDonald
Genetic Variation Implementation Guide

Genetic analysis master panel (OBR)

Genetic Analysis Summary Panel (OBR)
(i.e. Case Definition in OBX’s)
including Medication or Disease Assessed,
Genomic Source Class, Analysis Report, and optional
Overall Interpretation

has a
1 to 1

Genetic Analysis Discrete Result Panel (OBR)

has a
0 to 1

has a
0 to many

DNA Analysis Discrete Sequence Variation Panel (OBR)
(i.e. Findings in OBX’s)
including Reference Sequence Identifiers, DNA Sequence Variation, Genomic Source Class, and optional Allele Name and Sequence Variation Interpretation
Genetic Variation Implementation Guide

Nomenclatures, Code Systems and Value Sets

- LOINC
- SNOMED
- RxNORM
- HGNC
- HGVS
- DbSNP
- RefSeq
## Genetic Variation Implementation Guide

<table>
<thead>
<tr>
<th>OBR/OBX</th>
<th>OBX-2 Value Type</th>
<th>Usage</th>
<th>Cardinality</th>
<th>Value Set</th>
<th>LOINC Code</th>
<th>LOINC Element Name</th>
<th>Description/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>OBR</td>
<td></td>
<td>R</td>
<td>1..n</td>
<td></td>
<td>55232-3</td>
<td>Genetic Analysis Summary Panel</td>
<td>The summary panel for a genetic analysis for one or more laboratory tests (e.g. analysis for disease risk, diagnosis or pharmacogenetics) on a single accession.</td>
</tr>
<tr>
<td>OBX</td>
<td>CWE</td>
<td>C1</td>
<td></td>
<td>SNOMED</td>
<td>51967-8</td>
<td>Genetic disease assessed</td>
<td>A coded disease (recommend SNOMED) which is associated with the region of DNA covered by the genetic test.</td>
</tr>
<tr>
<td>OBX</td>
<td>CWE</td>
<td>C1</td>
<td></td>
<td>RxNORM</td>
<td>51963-7</td>
<td>Medication Assessed</td>
<td>A coded medication accessed in a pharmacogenetic test (recommend RxNorm).</td>
</tr>
<tr>
<td>OBX</td>
<td>CWE</td>
<td>R</td>
<td></td>
<td></td>
<td>48002-0</td>
<td>Genomic Source Class</td>
<td>The genomic class of the specimen being analyzed: Germline for inherited genome, somatic for cancer genome (e.g. DNA from tumor cells), and prenatal for fetal genome. LOINC Answer List values can be seen in Table 7.6.</td>
</tr>
</tbody>
</table>

If the study is intended to assess disease risk or diagnosis based on genetic findings, then the Genetic Disease Analysis Overall Interpretation is used (see below).
# Genetic Variation Implementation Guide

<table>
<thead>
<tr>
<th>LOINC #</th>
<th>Component Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>47998-0</td>
<td>DNA Sequence Variation display name</td>
</tr>
<tr>
<td>47999-8</td>
<td>DNA region name</td>
</tr>
<tr>
<td>48002-0</td>
<td>Genomic source class</td>
</tr>
<tr>
<td>48003-8</td>
<td>DNA Sequence Variation identifier</td>
</tr>
<tr>
<td>48004-6</td>
<td>DNA Sequence Variation</td>
</tr>
<tr>
<td>48005-3</td>
<td>Amino acid change</td>
</tr>
<tr>
<td>48006-1</td>
<td>Amino acid change type</td>
</tr>
<tr>
<td>48008-7</td>
<td>Allele name</td>
</tr>
<tr>
<td>48013-7</td>
<td>Genomic reference sequence identifier</td>
</tr>
<tr>
<td>48018-6</td>
<td>Gene identifier</td>
</tr>
<tr>
<td>48019-4</td>
<td>DNA Sequence Variation type</td>
</tr>
<tr>
<td>51958-7</td>
<td>Transcript reference sequence identifier</td>
</tr>
<tr>
<td>51959-5</td>
<td>DNA region of interest</td>
</tr>
<tr>
<td>51961-1</td>
<td>Drug efficacy sequence variation interpretation</td>
</tr>
<tr>
<td>51963-7</td>
<td>Medication assessed</td>
</tr>
<tr>
<td>51964-5</td>
<td>Drug efficacy analysis overall interpretation</td>
</tr>
<tr>
<td>51967-8</td>
<td>Genetic disease assessed</td>
</tr>
<tr>
<td>51968-6</td>
<td>Genetic Disease Analysis Overall Interpretation</td>
</tr>
<tr>
<td>51969-4</td>
<td>Genetic analysis summary report</td>
</tr>
<tr>
<td>51971-0</td>
<td>Drug metabolism analysis overall interpretation</td>
</tr>
<tr>
<td>53034-5</td>
<td>Allelic state</td>
</tr>
<tr>
<td>53037-8</td>
<td>Genetic disease sequence variation interpretation</td>
</tr>
<tr>
<td>53039-4</td>
<td>Genetic disease analysis overall carrier interpretation</td>
</tr>
<tr>
<td>53040-2</td>
<td>Drug metabolism sequence variation interpretation</td>
</tr>
</tbody>
</table>
# Genetic Variation Implementation Guide

## TABLE 7-6 - LOINC ANSWER LISTS

<table>
<thead>
<tr>
<th>LOINC code</th>
<th>LOINC component</th>
<th>Sequence</th>
<th>Answer text</th>
<th>LOINC answer code</th>
</tr>
</thead>
<tbody>
<tr>
<td>53034-5</td>
<td>Allelic state</td>
<td>1</td>
<td>Heteroplasmic</td>
<td>LA6703-8</td>
</tr>
<tr>
<td>53034-5</td>
<td>Allelic state</td>
<td>2</td>
<td>Homoplasmic</td>
<td>LA6704-6</td>
</tr>
<tr>
<td>53034-5</td>
<td>Allelic state</td>
<td>3</td>
<td>Homozygous</td>
<td>LA6705-3</td>
</tr>
<tr>
<td>53034-5</td>
<td>Allelic state</td>
<td>4</td>
<td>Heterozygous</td>
<td>LA6706-1</td>
</tr>
<tr>
<td>53034-5</td>
<td>Allelic state</td>
<td>5</td>
<td>Hemizygous</td>
<td>LA6707-9</td>
</tr>
<tr>
<td>48006-1</td>
<td>Amino acid change type</td>
<td>1</td>
<td>Wild type</td>
<td>LA9658-1</td>
</tr>
<tr>
<td>48006-1</td>
<td>Amino acid change type</td>
<td>2</td>
<td>Deletion</td>
<td>LA6692-3</td>
</tr>
<tr>
<td>48006-1</td>
<td>Amino acid change type</td>
<td>3</td>
<td>Duplication</td>
<td>LA6686-5</td>
</tr>
<tr>
<td>48006-1</td>
<td>Amino acid change type</td>
<td>4</td>
<td>Frameshift</td>
<td>LA6694-9</td>
</tr>
<tr>
<td>48006-1</td>
<td>Amino acid change type</td>
<td>5</td>
<td>Initiating Methionine</td>
<td>LA6695-6</td>
</tr>
<tr>
<td>48006-1</td>
<td>Amino acid change type</td>
<td>6</td>
<td>Insertion</td>
<td>LA6687-3</td>
</tr>
<tr>
<td>48006-1</td>
<td>Amino acid change type</td>
<td>7</td>
<td>Insertion and Deletion</td>
<td>LA9659-9</td>
</tr>
<tr>
<td>48006-1</td>
<td>Amino acid change type</td>
<td>8</td>
<td>Missense</td>
<td>LA6698-0</td>
</tr>
<tr>
<td>48006-1</td>
<td>Amino acid change type</td>
<td>9</td>
<td>Nonsense</td>
<td>LA6699-8</td>
</tr>
<tr>
<td>48006-1</td>
<td>Amino acid change type</td>
<td>10</td>
<td>Silent</td>
<td>LA6700-4</td>
</tr>
<tr>
<td>48006-1</td>
<td>Amino acid change type</td>
<td>11</td>
<td>Stop Codon Mutation</td>
<td>LA6701-2</td>
</tr>
<tr>
<td>48019-4</td>
<td>DNA sequence variation type</td>
<td>1</td>
<td>Wild type</td>
<td>LA9658-1</td>
</tr>
<tr>
<td>48019-4</td>
<td>DNA sequence variation type</td>
<td>2</td>
<td>Deletion</td>
<td>LA6692-3</td>
</tr>
<tr>
<td>48019-4</td>
<td>DNA sequence variation type</td>
<td>3</td>
<td>Duplication</td>
<td>LA6686-5</td>
</tr>
<tr>
<td>48019-4</td>
<td>DNA sequence variation type</td>
<td>4</td>
<td>Insertion</td>
<td>LA6687-3</td>
</tr>
<tr>
<td>48019-4</td>
<td>DNA sequence variation type</td>
<td>5</td>
<td>Insertion/Deletion</td>
<td>LA6688-1</td>
</tr>
<tr>
<td>48019-4</td>
<td>DNA sequence variation type</td>
<td>6</td>
<td>Inversion</td>
<td>LA6689-9</td>
</tr>
<tr>
<td>48019-4</td>
<td>DNA sequence variation type</td>
<td>7</td>
<td>Substitution</td>
<td>LA6690-7</td>
</tr>
<tr>
<td>51964-5</td>
<td>Drug efficacy analysis overall interpretation</td>
<td>1</td>
<td>Responsive</td>
<td>LA6677-4</td>
</tr>
<tr>
<td>51964-5</td>
<td>Drug efficacy analysis overall interpretation</td>
<td>2</td>
<td>Resistant</td>
<td>LA6676-6</td>
</tr>
<tr>
<td>51964-5</td>
<td>Drug efficacy analysis overall interpretation</td>
<td>3</td>
<td>Negative</td>
<td>LA6577-6</td>
</tr>
<tr>
<td>51964-5</td>
<td>Drug efficacy analysis overall interpretation</td>
<td>4</td>
<td>Inconclusive</td>
<td>LA9663-1</td>
</tr>
<tr>
<td>51964-5</td>
<td>Drug efficacy analysis overall interpretation</td>
<td>5</td>
<td>Failure</td>
<td>LA9664-9</td>
</tr>
<tr>
<td>51961-1</td>
<td>Drug efficacy sequence variation interpretation</td>
<td>1</td>
<td>Resistant</td>
<td>LA6676-6</td>
</tr>
<tr>
<td>51961-1</td>
<td>Drug efficacy sequence variation interpretation</td>
<td>2</td>
<td>Responsive</td>
<td>LA6677-4</td>
</tr>
<tr>
<td>51961-1</td>
<td>Drug efficacy sequence variation interpretation</td>
<td>3</td>
<td>Presumed resistant</td>
<td>LA9660-7</td>
</tr>
</tbody>
</table>
8.2.1 Example: Genetic Disease Analysis (e.g. Dilated Cardiomyopathy)

MSH--->As according to HL7 VERSION 2.5.1 IMPLEMENTATION GUIDE: ORDERS AND OBSERVATIONS; INTEROPERABLE LABORATORY RESULT REPORTING TO EHR (US REALM), RELEASE 1, ORU^R01, HL7 Version 2.5.1, November, 2007.

OBR|1||PM-08-J00094^HPCGG-LMM^2.16.840.1.113883.3.167.1^ISO|Im_DCM-pnlB_L^Dilated Cardiomyopathy Panel B (5 genes)^99LMM-ORDER-TEST-ID||20080702000000||20080702100909||20080703000000|Pump|Patrick^^^NPI^L||234567891^Cardiovascular^99HPCGG-GVIE-INDICATION^^^Clinical Diagnosis and Family History of DCM|&Geneticist&Gene&&&NPI^^^HPCGG-LMM&2.16.840.1.113883.3.167.1&ISO||55233-1^Genetic analysis master panel^LN

SPM|1||119273009&Peripheral blood&SNM3&&0707Intl&&Blood, Peripheral|20080702000000

OBR|2||PM-08-J00094-1^HPCGG-LMM^2.16.840.1.113883.3.167.1^ISO|55232-3^Genetic analysis summary panel^LN||20080702000000|20080703000000|F|||PM-08-J00094&HPCGG-LMM&2.16.840.1.113883.3.167.1&ISO

OBX|1|CWE|51967-8^Genetic disease assessed^LN||399020009^DCM-Dilated Cardiomyopathy^SNM3^^^0707Intl||20080702100909|Laboratory for Molecular Medicine^L^22D1005307^^^CLIA&2.16.840.1.113883.4.7&ISO|1000 Laboratory Lane^Ste. 123^Cambridge^MA^99999^USA^B
**Advanced Genetic Testing Workflow**

1. **Clinician identifies at risk patient**
2. **Genetic Test Ordered**
   - Test ordered through GenelInsight℠
   - Sample Submission sent directly to laboratory
   - Structured genetic data captured within EHR
3. **LIMS**
   - Interpretation report transmitted through GenelInsight℠ data exchange hub in structured form
4. **GeneInsight**
   - InterMountain EHR
   - GeneInsight℠ driven infrastructure automatically updates and alerts clinicians on patients affected by new variant knowledge
5. **Known Variants**
6. **New Knowledge Discovered**
   - Variants of Unknown Significance

© 2011 Health Level Seven ® International. All Rights Reserved. HL7 and Health Level Seven are registered trademarks of Health Level Seven International. Reg. U.S. TM Office.
Other Areas of Activity

- CDA template – for CDA-based transfer of genetic test results
- Cytogenetics – for chromosomal-based tests in the clinic
- Gene Expression – for laboratory research and drug discovery
- Whole Genome Sequencing – rapid advancing next generation sequencing technology
CDA is the Basis For …

- Continuity of Care Document
- Consult Note
- Diagnostic Imaging Report
- Discharge Summary
- Healthcare-associated Infections, Public Health Case Reports
- History and Physical
- Operative Note
- Personal Health Monitoring
- Plan-2-Plan Personal Health Record
- Quality Reporting Document
- Unstructured Documents
- Emergency Care Summary
- Summary Documents Using HL7 CCD
- Patient Level Quality Data Document Using IHE Medical Summary (XDS-MS)
- Encounter Document constructs
- Consult and History & Physical Note Document
- Immunization Document
- Scanned document
- … and many more …
CCD Optional Sections

- Advanced Directives
- Functional Status
- Procedures
- Encounters
- Family History
- Social History
- Immunizations
- Vital Signs
- Fetal Vital Signs
- Lab Results
- Plan of Care
### Hemochromatosis Sample Report

**Procedure**  |  **Result** |  **Units** |  **Ref Interval** |  **Assayed** |  **Collected/Verified**  
---|---|---|---|---|---
HFE PCR Specimen | Whole Blood | Negative |  |  |  
C282Y Hemochromatosis Mutation |  | Negative |  |  |  
H63D Hemochromatosis Mutation |  | Negative |  |  |  
S65C Hemochromatosis Mutation |  | Negative |  |  |  
Hemochromatosis Mutation Interpretation | See Note |  |  |  |  

---

**Example Report**

**DOB/Sex:**  - 58 Female  
**Printed:** 07-Oct-10 09:35:48

---

#### Hemochromatosis Mutation Interpretation

25-Sep-10 10:15:00  Hemochromatosis Mutation Interpretation

Hemochromatosis Interpretive Results:

- **C282Y:** Negative -- The patient is negative for the HFE C282Y mutation.
- **H63D:** Negative -- The patient is negative for the HFE H63D mutation.
- **S65C:** Negative -- The patient is negative for the HFE S65C mutation.

Mutations in unidentified genes or other mutations in the HFE gene are not ruled out.

---

**25-Sep-10 10:15:00 HFE PCR:**  
**Client Accession Number:**  
**Is the Patient Fasting?** Yes

---

**25-Sep-10 10:15:00 Hemochromatosis Mutation Interpretation:**

This result has been reviewed and approved by Hunter Best, Ph.D.

---

**25-Sep-10 10:15:00 Hemochromatosis Mutation Interpretation:**

**BACKGROUND INFORMATION:** Hemochromatosis (HFE) 3 Mutations

**CHARACTERISTICS:** Disorder of iron metabolism resulting in excessive iron storage leading to increased skin pigmentation, arthritis, hypogonadism, diabetes mellitus, heart arrhythmias/failure, cirrhosis and liver carcinoma.

**INCIDENCE:** One in 300 individuals of Northern European descent; unknown in other ethnicities.

**INHERITANCE:** Autosomal recessive.

**PENETRANCE:** 5 percent of C282Y homozygotes, 1 percent of C282Y/H63D compound heterozygotes and rare H63D homozygotes develop clinical symptoms.

**CAUSE:** Two pathogenic HFE gene mutations on opposite chromosomes.


**CLINICAL SENSITIVITY:** 85 percent of hereditary hemochromatosis in Northern Europeans is caused by C282Y homozygosity and 5 percent by C282Y/H63D compound heterozygosity.

**METHODOLOGY:** PCR and fluorescence monitoring.

**ANALYTICAL SENSITIVITY AND SPECIFICITY:** 99 percent.

**LIMITATIONS:** HFE mutations, other than those targeted, will not be detected. Rare diagnostic errors may occur due to primer site mutations.

This test is performed pursuant to an agreement with BioRad Laboratories, Inc.

The performance characteristics of this test were validated by ARUP Laboratories. The U.S. Food and Drug Administration (FDA) has not approved or cleared this test. However, FDA approval or clearance is currently not required for clinical use of this test. The results are not intended to be used as the sole means for clinical diagnosis or patient care.
Genetic Testing Report

[ClinicalDocument: templateId 2.16.840.1.113883.10.20.20]

The GeneticTestingReport is a document template and thus serves as the root template for the GTR Implementation Guide. Its organization is described in the Approach section of this document. The sub-sections residing here constitute the backbone of the GTR. A specific genetic test is described in the TestDetailsSection which serves as a blueprint specialized sections describing testing like genetic variation or gene expression.

1. SHALL contain exactly one [1..1] code/code=“51969-4” Genetic analysis summary report (CodeSystem: 2.16.840.1.113883.6.1 LOINC) (CONF-GTR-1)
2. SHALL contain exactly one [1..1] title (CONF-GTR-7)
   • Default title is "Genetic Testing Report".
3. SHALL contain exactly one [1..1] component
   a. Contains exactly one [1..1] Summary Section (templateId: 2.16.840.1.113883.10.20.20.1.1)
4. Contains at least one [1..*] component
   a. Contains exactly one [1..1] Test Details Section (templateId: 2.16.840.1.113883.10.20.20.1.8)
5. Contains zero or one [0..1] component
   a. Contains exactly one [1..1] Test Information Section (templateId: 2.16.840.1.113883.10.20.20.1.9)
6. Sections and subsections SHALL have a title and the title SHALL NOT be empty. Text of a section title can specialize the section code by being more specific, for example, a hearing loss genetic testing report.
7. Sections SHALL appear in the order they are presented in this guide. Thus, SummarySection which SHALL appear first and TestInformationSection which SHOULD appear last. In between, TestDetailsSection can be repeated per the no. of genetic tests performed. Note that a TestInformationSection can appear in each of the specific test sections.

```xml
<?xml version="1.0" encoding="UTF-8"?>
<ClinicalDocument xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xmlns="urn:hl7-org:v3" xsi:schemaLocation="urn:hl7-org:v3 CDA.xsd">
  <typeId root="2.16.840.1.113883.1.3" extension="POCD_HD000040"/>
  <templateId root="2.16.840.1.113883.10.20.20"/>
  <id root="2.16.840.1.113883.18.12.7.30.9.1" extension="c266"/>
  <code code="51969-4" codeSystem="2.16.840.1.113883.6.1" codeSystemName="LOINC" display="Genetic analysis summary report"/>
  <title>Genetic Testing Report</title>
  <effectiveTime value="20100809"/>
  <code/systemName="CONF-GTR-1" display="
```
Table of Contents
- Summary Section
- Genetic Variations Section
- Genetic Variations Section

Summary Section

Indications
- Clinical Diagnosis and Family History of DCM

Specimen and Genomic Source
- Peripheral Blood
- Genomic source class: Germline

Tests Performed
- Dilated Cardiomyopathy Panel B (5 genes)

Overall Interpretation
- Positive. DNA sequencing of the coding regions and splice sites of the ACTC, LDB3, LMNA, PLN and TAZ genes revealed a heterozygous R377C variant in exon 6 of the LMNA gene (NM_170707.1). The R377C variant has been reported in the literature (Mucir 2000, Ki 2002, Klibben 2006, van Tintelen 2007). As such, this variant is highly likely to be pathogenic and therefore causative for DCM. Genetic testing of this patient's biological parents and other family members, particularly those who are affected, may help to confirm the significance of this variant. Please note that the laboratory can attempt testing on tissue specimens from deceased family members. It should be noted that the expression of DCM is the product not only of a DCM gene variant, but also of other modifier genes and environmental factors. The significance of a variant should always be interpreted in the context of the patient's clinical manifestations. COMMENTS: Common sequence variants of unlikely clinical significance are not included in this report but are available upon request.

Recommendations
- If you would like more information about the clinical manifestations of DCM variants we recommend you visit a cardiology center with expertise in the management of dilated cardiomyopathy such as the SWH Cardiovascular Genetics Center at 617-732-4037 (www.b Brighamandwomens.org/cvcenter/Services/genetics.asp). DCM caused by LMNA variants is inherited in an autosomal dominant manner where each first-degree relative of an individual with a DCM causing mutation has a 50% (or 1 in 2) chance of inheriting the mutation. Genetic testing is available for at-risk family members if desired. Genetic counseling is recommended for this patient and his family. For assistance in locating nearby genetic counseling services please call the laboratory at 617-768-8500 or email at LMM@partners.org.

Test Information

Background
- Dilated cardiomyopathy (DCM) is characterized by ventricular chamber enlargement and systolic dysfunction with normal left ventricular wall thickness. The estimated prevalence of DCM is 1/2,500 and about 20-35% of cases have a family history showing a predominantly autosomal mode of inheritance. Mutations in more than 20 genes have been shown to cause DCM, several of which (including MYH7, MYBPC3, TNNT2, TNNI3, TPM1 and ACTC), are also known to cause hypertrophic cardiomyopathy. Mutations in some genes cause additional abnormalities: Lamin A/C (LMNA) mutations are frequently found in DCM that occurs with progressive conduction system disease. Mutations in the Tafazzin (TAZ) gene cause Barth syndrome, an X-linked cardiomyopathy in infants. In addition, mutations in several genes (including LMNA, DES, SGCD and TAN5) can cause DCM in conjunction with skeletal myopathy. Genetic testing can confirm the diagnosis of DCM in patients with disease as well as identify at risk family members prior to the onset of symptoms.
# HL7 Version 2.5.1 Implementation Guide: Clinical Genomics; Fully LOINC-Qualified Cytogenetics Model, Release 1

**ORU^R01**

**HL7 Version 2.5.1**

September, 2011

| **Chapter Chair:** | Amnon Shabo  
<table>
<thead>
<tr>
<th></th>
<th>IBM</th>
</tr>
</thead>
</table>
| **Chapter Chair and Contributing Author:** | Mollie Ullman-Cullere  
|                   | Dana-Farber Cancer Institute |
| **Project Chair and Contributing Author:** | Stan Huff  
|                   | Intermountain Healthcare |
| **Principal Author:** | Yan Heras  
|                   | Lantana Consulting Group  
|                   | Dept. of Biomedical Informatics, University of Utah |
| **Contributing Author** | Clement McDonald  
|                   | Lister Hill Center for Biomedical Communication, National Library of Medicine |
| **Contributing Author** | Grant Wood  
|                   | Intermountain Healthcare |
| **Subject Matter Advisor** | Arthur Brothman  
|                   | ARUP Laboratories |
The hierarchical structures of panels are shown in the following diagrams:

Figure 1: Chromosome analysis master panel
Figure 4: Chromosome analysis arr copy number change panel
Personalized Medicine Use Case

Scientists find genes that could predict Type 2 diabetes
International scientists identified five different genetic variations tied to adult-onset diabetes and believed to be responsible for 70% of the genetic risk for the diabetes, also known as Type 2. One of the lead scientists says the findings "mean we can create a good genetic test to predict people's risk of developing this type of diabetes."

1. Family history risk assessment
2. Order genetic test
3. Test interpretation
4. Store results (family health history, sequence data, alleles, exons, SNP’s also called variations or mutations)
5. Clinical decision support
6. Pharmacogenomics for targeted drugs
Adding to the List

- V3 Family Health History model
- V2 Genetic Variation model
- CDA Genetic Test Result electronic document
- V2 Cytogenetics model
- Gene Expression – for laboratory research and drug discovery
- Next Generation Sequencing
Stakeholder Landscape

- Vendors
  - Life Technologies: SOLiD 4, 5500
  - Ion Torrent: PGM
  - Illumina: HiSeq, MiSeq
  - Complete Genomics
  - Pacific Biosciences

- Consumers
  - Clinical Reference Labs
  - Academic Clinical labs
  - Hospital Labs

- Other Stakeholders
  - FDA, NIST, CAP
Detailed Use Cases to drive workflow from order to report

- Rooted in existing technologies
  - Genome Analysis (whole genome, whole exome)
  - SNP Genotyping and genetic rearrangements
  - Multiplex gene panels or arrays (CFTR, array CGH, cancer panels)
  - Targeted gene sequencing (developmental delay, cardiomyopathy)
Detailed Use Cases to drive workflow from order to report

- Near term use cases
  - Cancer (risk assessment, somatic mutations, low frequency)
  - Germline / Constitutional (trios, pedigrees)
  - Infectious Diseases (viral, bacterial)
  - Re-interpretation of existing data
  - Research (microbiome, immunome)
Invitation and Challenge

HL7 Clinical Genomics is also calling on forward thinking organizations to test and comment on Genetic/Genomic/Sequencing models, as we work towards extending the standard.
Contact Information

- Find the HL7 Clinical Genomics workgroup at –
  - [http://www.hl7.org/Special/committees/clingenomics/index.cfm](http://www.hl7.org/Special/committees/clingenomics/index.cfm)

- Contact the co-chairs:
  - Amnon Shabo
    IBM Haifa Research Lab
    shabo@il.ibm.com
  - Mollie Ullman-Cullere
    Dana-Farber Cancer Institute
    mollie_ullman-cullere@dfci.harvard.edu
  - Joyce Hernandez
    Merck
    joyce_hernandez@merck.com

- Contact Grant Wood
  Intermountain Healthcare Clinical Genetics Institute
  grant.wood@imail.org
Questions