Thefirst version of this standard was developed under the auspices of the American Society for Testing and
Materials (ASTM) and published in April 1992 as ASTM E1460-92. This new and revised version, developed and
published under Health Level Seven, Inc (HL7), isin most cases backward compatible and is based on the previous
ASTM version. The authors of the standard, and the members of the HL7 committee administering the standard,
wish to acknowledge and thank ASTM for their contributions to the Arden Syntax standard.

Arden Syntax for Medical
Logic Systems
I

TABLE OF CONTENTS

TABLE OF CONTENTS ..ottt ettt e e e ettt e e e e e ettt e e e e e e s s eaabbbaeeeeeeessasbbbaeeseesssaassbaeeesaeessanssbbeneeaassaansees 1
S (0 | = TSP URRROPP 7
2 REFERENCED DOCUMENTSttt ettt e ettt e e e e e s e eab b e e e e e e e e s s eabbbeeeeaeeessssbbaeeeeesssanabreeess 7
2.1 ASTM SEANAAIAS: ... cuviieeiee ettt e e e e e e e e e s e et b e e e e e e e s sabbbaeeeeeeesaassbbaeeeeesssanssbbaeeeaesssanssrreness 7

A IS O B = 1016 = 10 RSP ERRRRS PO 7

2.3 ANSI SEANUAIAS.......uvieeiiie ettt e e e e e e e e e et b e e e e e e e s aabbbaeeeeeeeaaaabbbaereaeeeaanbbrareaaeeeaanarrraeeas 7

2.4 Health LeVE SEVEN SLANAAITS.......ccccooiiiiiiiiiee ettt e e e et r e e e e e e s bbb e e e e e e e e s saabbeeeeeeessensrraeess 8

I B = Y 11 N (@ @) 2SO RROPP 8
I A B T 11 11 10 SRS ETRRRS PO 8
3.1.1 Medical Logic MOAUIE (IMLIM), N.eeiiiiieiie ettt be e et e e ees 8

3.2 Descriptions of Terms Specific 10 This StaNTard:ceeeiieiiiiiii e 8
T N {1 =T OO ETTRRPPP 8

A 1] 4= 20 e = A o TR USSP 8

I I r= (=T o [OOSR PP 8

I o (V= (o o N o DO PR PP 8

I I = 0110 N o OO RRRRR PP 8

B.2.6 BVENE, N 8

3.3 Notation Used iN ThiS SLANUAITcooiiiiiiiie ettt e e st e e e e e e saabr e e e e e e e s s ennsrreeess 8

4 SIGNIFICANCE AND USE.....coii oottt ettt sttt e e e e s ettt e e e e e e e s seaabbaeeeeeessasasbbeeeseeessaaasbraneeaassannsses 9
D IMILIM FORM A T ettt ettt ettt e e e e e e et e e e e e e e s e ab b e e e e e eeesaasabbaeeeeeeesaassbbaeeeaeessassbbaneeaeneaasarraness 9
T A S oY T4 017 RSP EETRRS PO 9

A O 0= T o (= < RSOOSR 9

R I I 10 (oY =] == ST PR 9
Y g (S o= o= TSRO OPRI 10

5.5 GENEIEI LBYOUL......c.eiiieii ettt ettt ettt b e a e st e et et e b e e e e h b e e sabe e e abe e e be e e eaee e smbeesnbeeenbeeeaanean 10

N SR O < (o == SRR OPRPI 10

TS o) TSRO URRRRRRRIRS 10

R I o1 =Te o VN Y o= T SRR OPRI 10
B.8.1 TEXIUA SIOLS .. .uutiiiiiiii ittt e e e e e ettt e e e e e e s e eatb b e e e e e eeessaabbbeeeeeeessanbbbeeeeaeessannres 10

B.8.2 TEXIUAl LISt SIOIS ..ciiiiiiiiiiiieiee ettt e e et e e e e e e et e e e e e e s seabbbeeeeeeessanbbaeeeeaeessannres 11

RS RS R 000 (< o IS [0 1= TSRO URRRRRRORS 11

B.8.4 SHUCLUNEA SIOS....eeiiiiiiiiiitiieie e e ettt e e e et e e e e e e ettt e e e e e e s eeatb b e e e e e esessaatbreeeeaeessasbbaeeeeaeessasres 11

5.9 MLIM TEIMINGLION.uttiiiieiiiiiiiiieee et e ettt e e e e e eeb e e e e eeeesastbraeeeeaeessasbbaeeeaaeessasssbaeeesasessasssrreeesassssnnsses 11
5,10 Case INSENSILIVITYveeiiee ettt ettt ettt ettt ettt b et a et e st e s bt e e ebe e e shbe e sabe e sabe e e bee e eaeeesmbeesnbeeenbeeesnneas 11
Health Level Seven © 1999. All rights reserved. Page 1

Final Standard 07/1999

Arden Syntax for Medical Logic Systems

B SLOT DESCRIPTIONS.....coitiiitieitteitteitee sttt ettt b e sb e sb e e sb e e sb e e s beesb e e sb e e sb e e sbe e sbe e sbeesbeesbeenbeenneesneesneennnas 11
6.1 MaINTENANCE CALOUOIY .. .eeeeteeeiuteeiteeaiteeaatee e aubeesbeeateeaabeeeaseeesabeaabeeaabeeeaabeaaabeesabeeaabeeeaaseesabeesabeeeabeeeaaneas 11
6.1.1 Title (textual, reQUITEA)..... ..ottt sb et e bt e et e e e sbe e e sane e snreaa 11
6.1.2 MImname (coded, reqUITEA)ottt ettt e b e e e sbe e e sane e sarean 11
6.1.3 Arden Syntax version (coded, reqUITEd)coieiiiiiiii e 12
6.1.4 Version (textual, FEQUITE)cuiieiiiiee ettt et e et sbe e e sabe e s be e s beeerbeeesaneesnreaans 12
6.1.5 Institution (textual, FEQUITE)c.eiiiiieiiie ettt ettt et e e e rbe e e saee e snreaan 12
6.1.6 Author (textual liSt, FEQUITEH)ooiei ettt ettt et e e e sbe e e saee e snrean 12
6.1.7 Specialist (textual, FEQUITEM)cceiiiiieiiee ittt ettt seee et e st e e be e e sbe e e saneesnreaas 12
6.1.8 Date (COded, FEQUITE)c . eeitiieiet ettt ettt ettt ettt et e e e sbe e e sbee e sabe e sabeeebeeesbeeesnneesnreans 13
6.1.9 Validation (coded, reqUITE):cceiiiiieiiee ettt ettt e b e e e sbe e e saae e snreea 13
A I o = VA O (<o oY AR UUP R TOPR 13
6.2.1 Purpose (textual, reQUITEA)eiiei ettt et sb et e et e e rbe e e sane e snreen 13
6.2.2 Explanation (textual, reQUITE)...........oouee ittt ettt e e sbe e e saee e snreen 13
6.2.3 Keywords (textual list, FEQUITE)cuei ittt saee e 13
6.2.4 Citations (structured / textual, OPtIONAL)coiieiiiiiiie e 14
6.2.5 Links (structured / textual, OPtIONAL)ooiiiiiiiieie et 14
6.3 KNOWIEAGE CBIEQONY ..ntetetiieiuiee ittt et ettt tte e bt e ettt sbee e sa et e s abeeeabe e e abe e e eabe e sabeesabeeabeeeaaeeesmbeesabeeeabeeesaneas 15
6.3.1 Type (coded, reQUITEO)oi ittt ettt ettt e bt e bt sae e e sab e e s be e e be e e sbeeesaneesnreaans 15
6.3.2 Data (Structured, FEQUITEM)eiiieieieie ettt ettt et e sbe e sae e e sab e e s beeebeeesbeeesaneesnreans 15
6.3.3 Priority (COAEd, OPLIONEL)oiiiiiiiiieitie ettt sae et e et e e e sbe e e saneesnrean 15
6.3.4 Evoke (Structured, rEQUITE)ooiiei ettt ettt sa e sabe e st e e e be e e rbe e e saneesnreean 15
6.3.5 Logic (Structured, reqQUITEA)ooeiiiieeiee ettt et st e b e e e sbe e e sane e snreen 15
6.3.6 Action (Structured, FEQUITE)ceiiiuieeiiee ettt ettt et et sae et e et e e be e e sbee e saneesnneeas 15
6.3.7 This dlot contains the action produced when the logic slot concludes true. The details of thisdlot are
explained in Section 12. Urgency (coded, Optional)ooeioiiiiiieiiiin e 15
7 STRUCTURED SLOT SYNTAX . eeiittiitieiteeitee sttt e sttt ettt ste et sse e sseesbeesbeesbeesseesbeesbeesseesbeesbeesneesneesnnesneas 16
% R 0 (= 1 TP P PSP PP TRTP 16
7.1.1 RESEIVEA WOIS ..ottt ettt ettt ettt e b e bbbt bbbt b e b e b e ne e b e ne e reenne e 16
A I Lo = g) = £ T TSP TPV R PR PRPP 16
7.1.3 SPECIAl SYMIDOIS. ...ttt sttt b et sh et e sab e e s be e e be e e sbe e e saee e snrean 16
7.1.4 NUMBEE CONSEANLS. ... eeetieieeitieite ettt ettt ettt r e bbb bbbt e e b e e r e e ne e reene e reenre e 16
7.1.5 TIME CONSLANTS ...couveeteeteeste ettt ettt ettt b et b e bt bt e bt bt b e e bt e be e bt e r e e b e e b e e aneeareenneenreenre e 17
7.0.6 SHING CONSEANLSceteieieieeiiteeiteeeetee st ee e stte e s bt e s be e e sbe e e abeeesabeesabeeaabeeaabeeeaaseesabeesmbeesbeeeabeeesnneesnreasns 17
.07 TeIM CONSLANES ...ttt e e e b e e sb e s b e e s e e s r e e e sbe e e snne e seree e 18
7.0.8 MBPPING ClIALSES.eeeeieiie ittt ettt e bt b e e s bt e e eabe e s abe e e abe e e abee e eheeesmbeesabeesbeeaabeeeaaneesnbean 18
7.0.9 COMIMENTS. ...ttt r e b e s bt e s e e s s e s e b e e e sb e e e sab e e sar e e s r e e e abe e e snneesnne e e 18
7110 WHITE SPACE. ... ecte ettt ettt ettt b e bt bbbt bbbt bt b e ne e r e n e r e re e 18
FAV AN ® (o g .= 1 Lo o FE SRR OPR 19
7. 2.1 SEAEEIMENES. ... ettt e e r e 19
T.2.2 EXPIESSIONS. ... eeiiutieetit ettt ettt et ee e be e sttt e sate e s e be e e abe e e bt e e ehe e e eabe e o abe e eabe e e bee e ehee e eRbe e eabeeebeeeabeeeanneeanrean 19
T 2.3 VATADIES.....eeeeeeeeee bbbt r e r e 20
I N I I o = TSP PR TR OPROPRO 20
S0 A N U T TP TP UP TP TRTP 21
S = ToTo == o TP TP P PP 21
LSRG I N [U 0o = TP TP TP PP TP PP 21
S 1111 TP TP TP UR PP TRTP 21
S R €1 = U =1 YOO R TR 21
842 MIUNIGNL ...t b e bbbt bbbt ne e r e 21
BLA.3 INOW ..ttt E bt E Rt E e R R R Rt Rt Rt E e E e e Rt re e ne e re e re e 22
844 EVENIIMIE. ...ttt b e bbbt bt bt e b e e bt e b bt e b e b e e ne e r e e ne e reenre e 22
o R o o= (] = OO P SRR 22
LRI B 1U = (o o D TP TP PP 22
B.5. L SUD-TYPES ..ttt E et E et re e re e r e 22
Page 2 Health Level Seven © 1999. All rights reserved.

07/1999

Final Standard.

Arden Syntax for Medical Logic Systems

8.5.2 Time and DUration AFTMELICooiiiiie e 22

S SR 1] oo SRR OPRI 24
S A = 1 T PP P TR PP R PPROT 24
S I I E= ST TP U P PP TR 24
8.9 QUENY RESUILS......eeee ettt ettt b e h e st e ettt e ebe e e ehbe e sabe e s abe e e be e e eaeeesabeesabeeenbeeeaaneas 24
891 PrIMAIY TIIME ... tiieitit ettt ettt ettt e bt be e e s bt e e sabe e s abe e e abe e e abee e ehee e sabeesmbeeenbeeeabeeeanneesnbean 24
8.9.2 REMEVA OFUEN......c.teetieitiee ettt b et b e bbbt e b e e r e e re e re e ne e reere e 25
B.9.3 DAAVEIUE.......eeieetieee ettt bbbttt r e re e 25
8.9.4 TimMeE FUNCLION OPEIALONteeitiietet ettt et ettt bee e sabe e s be e s be e e sbee e saee e smbeesabeesbeeeabeeesaneesnrenns 25

9 OPERATOR DESCRIPTIONS.......coittiitieitteitee sttt sttt sttt sbeesbeesneesbeesbeesbeesbe e sbeesbeesseesbeesbeesneesneesneennnas 25
R T os e I e (0] 0T 1= TSP OPR 25
9.2.1 NUMDEr OF AFQUMIBNLS.......coiieiitiieiei ettt ettt et sa e et e e be e e sbe e e sbee e sabeesabeeebeeeabeeesaneesnrean 25
0.1.2 Data TYPE CONSIAINTSeeeuteeiteeeitet ettt e ette e st e e e e e bt e e sbeeesabeesabeesbeeaabeeeabeeesabeesabeesbeeaabeeesaneesnneans 25

LS S B I E= o =0 o [Vo [RO UR USRI 26
9.2.4 Primary Time HanIiNGooiiiiiii ettt sttt sa et e bt e e be e e rbe e e saneesnrean 32
O.1.5 OPErALOr PrECEOENCE. ... eeeieiee ittt ettt ettt ettt sa b e et e e e bt e e sbee e sbee e sabeesabeeebeeasbeeesabeesnreans 32
O.1.6 ASSOCIBLIVITY ..veeuveetieteesteeste e st ettt ettt et b et b e bt e bt e bt bt et e e bt e b e e b e e re e b e e b e e n e e n e e neereere e 32
O.1.7 ParENNESES.ee ettt et r e re e r e 33

A I o= = (o £SO OPR 33
0.2.1 , (DINary, 1Eft @SSOCIALIVE)ceiteiiiet ettt ettt ettt ettt e bt e e sbe e saee e sabe e s abe e e beeesbeeesaeeesnneeans 33
0.2.2 , (UNAY, NON-GSSOCIALIVE) ... veeiuteeetetesteeesite e st e e be e e bt e e steeesabeasbeesbeeaabeeasbeeesmbeesabeesbeeeabeeeanneesnsean 33
9.2.3 Merge (binary, |6ft-aSSOCIALIVE).eeiiuiieiiee ittt ettt et e e sbe e e sane e sareen 33
9.2.4 Sort Operators (UNary, NON-8SSOCIBLIVE)...........uetiiueierieierieeaieesieeaeteeesteeesseeessbeesbeessbeeasseeesaseesnneeans 34

R Y 1 (o @0 1< = o SRR RTOPR 34
9.3.1 Where (binary, NON-8SSOCIBLIVE)ciuuieireeiieeaieeerteeesteeesite e bt e sbe e e sbee e saee e ssbeesbeesbeeasbeeesaneesnbeeans 34

S el o= @ o = (o =S UPRTOPRI 35
9.4.1 Or (binary, [Eft @SSOCIALIVE).........eiiiteieitiee ittt ettt e bt sbe e sabe e s be e s be e e sbee e saneesnreaans 35
9.4.2 And (binary, [Eft @SSOCIALIVE)ceiiueiiitiee ittt ettt et sae e st e e be e e be e e sbee e saneesneeeans 36
9.4.3 NOt (UNArY, NON-ASSOCIALIVE)veiiteieitieeieieesieeeteeestee e steeesabe e s beesbeeasbeeasaeeesabeesabeasbeeaabeeesaneesnrean 36

9.5 Simple ComMPariSON OPEIELOIS:coiitiiaieeeiieeiteaeiteeeateeeseaeesbeaabeeaabeeaaaeeesabeasbeeasbeeeaseeesabeasnbeesabeeeaanens 36
9.5.1 = (DINAry, NON-GSSOCIALIVE).......c.veiiietiitiee ittt ettt ettt ettt et e e sbe e e sae e e sabe e s abeeebeeesbeeesaneesnreeans 36
9.5.2 <> (DINAry, NON-ASSOCIALIVE)........ciiiueiiitiee ittt ettt ettt et et e e sbe e e saee e ssbe e s abeeebeeesbeeesaneesnbeeans 37
9.5.3 < (DINAry, NON-GSSOCIALIVE).....cccuveiiieieitie ettt ettt ettt ettt et e bt sae e e sabe e s abe e e beeesbeeesaneesnreens 37
9.5.4 <= (DINArY, NON-ASSOCIALIVE)........ciiiteieitie ettt ettt ettt ettt e bt e e sbe e e saee e sabe e sabeeebeeesbeeesaneesnreeans 37
9.5.5 > (DiNary, NON-GSSOCIALIVE).......c.ueiiieieitie ettt ettt et e bt she e e sabe e sbe e e be e e sbeeesaneesnreeas 37
9.5.6 >= (DiNary, NON-8SSOCIALIVE)ceirteiiitiieiiie e eiee et ettt sebe e s bt e e bt e e sbee e saee e sabeesabeesbeeesbeeesaneesnbeans 38

0.6 1S COMPAITSON OPEIBIONSveieuteeeteeeteeeateeestbeesbe e e bt e e abeeeaaeeesabeaaabeeaabeeaaaeeasabeesabeeaabeeeaaseesnbeesabeeeabeaeaaneas 38
9.6.1 Is[not] Equal (binary, NON-8SSOCIBLIVE)ueeiiueearieieitieeriieesteesieeestee e saee e ssbeesbeessbeeesbeeesaneesnreeans 38
9.6.2 Is[not] Less Than (binary, NON-aSSOCIAIVE)c.eiiieiiiiieiieerieeetee ettt snee e 38
9.6.3 Is[not] Greater Than (binary, NON-8SSOCIALIVE).........cuuiiiiieiieeiiee ettt 38
9.6.4 Is[not] Less Than or Equal (binary, NON-aSSOCIALIVE)ueeiueriiieriniieesiieesieesieeesiee e siee s 38
9.6.5 Is[not] Greater Than or Equal (binary, NON-8SSOCIALIVE)ccccueriieiiniieeiie e 38
9.6.6 Is[not] Within ... TO (ternary, NON-8SSOCIBLIVE)c.eieieeeiieeiieeeieeeriee ettt e see e sbee e saee e saee e 38
9.6.7 Is[not] Within ... Preceding (ternary, NON-asSOCIatiVE)ccocueriieraiieeiiieesieesieesieeesiee e seee e 39
9.6.8 Is[not] Within ... Following (ternary, NON-8SSOCIALIVE)cciueriiieriniiiesiieesiee s iee e e 39
9.6.9 Is[not] Within ... Surrounding (ternary, NON-aSSOCIALIVE)..........cueriieiiriieriieesieeeieeeiee et 39
9.6.10 Is[not] Within Past (binary, NON-aSSOCIALIVE)coieieiieeiiereiee et et steestee e siee e seaeesnee e 39
9.6.11 Is[not] Within Same Day As (binary, NON-8SSOCIALIVE)ceoitiiiiiieiiee et 39
9.6.12 Is[not] Before (binary, NON-8SSOCIALIVE)cceierteiaiuieeiieariteeeteeesieeesieeesibeesbeessaeeesbee e saneesneeeans 39
9.6.13 Is[not] After (Dinary, NON-aSSOCIALIVE)cciieiirieieiie ettt saee e 39
9.6.14 Is[not] In (binary, NON-8SSOCIBLIVE)cccutriieraieieaiieeriieerteeeete e e siee e saee e sabeesbeessbeeesbeeesaneesnreeaas 40
9.6.15 Is[not] Present (UNary, NON-aSSOCIALIVE)ccccueririereiuieeriieerieeerteeesieeesaeeessbeesbeesnbeeesbeeesaneesneeaans 40
9.6.16 Is[not] Null (UNary, NON-8SSOCIALIVE)..........ueiiiereieieriieeriiearteeeteeesieeesaee e ssbeesbeessbeeesbeeesaeeesnreaaas 40
9.6.17 Is[not] Boolean (Unary, NON-8SSOCIALIVE).........ciiieiiiiiaiiee e eiee ettt site et essbe e e sbee e saee e snneaaa 40
9.6.18 Is[not] Number (Unary, NON-8SSOCIBLIVE)eeeruereiieeiiee e eieeesteeesieeessbeesbeesnbeeesbee e saeeesnreeaas 40
9.6.19 Is[not] String (UNary, NON-8SSOCIALIVE)ccecueriiteiaiuieariieerteaateeesieeesseeessbeesbeessbeeesbeeesaneesnneeans 41
Health Level Seven © 1999. All rights reserved. Page 3

Final Standard 07/1999

Arden Syntax for Medical Logic Systems

9.6.20 Is[not] Time (Unary, NON-8SSOCIALIVE)eeiiieriieieriieeriieesieeeiee e sbee e saee e sabe e be e s be e e sbee e saeeesnreeans 41
9.6.21 Is[not] Duration (Unary, NON-8SSOCIBLIVE)ccerueieiuereiuieerieeaieeesieeesieeesiteesbeesneeeesbeeesaneesnneaans 41
9.6.22 Is[Nnot] List (UNary, NON-8SSOCIALIVE)cciuveiiieeaieiaitieeriieesteeeteeestee e saee e ssbeesbeessbeeesbeeesaeeesnreeans 41

9.7 OCCUr COMPAITSON OPEIBLOIS: ... e teeetieeiteteauteeateaaateeeateeesaeeeabeasbeeaabeeeaaeeesabeasabeeaabeeeaaseesabeesabeeeabeeesaneas 41
O.7.1 GENEIAl PrOPEITIES: ... i eeieiiee it ee ettt ettt ettt b et bt e sa b e e s abe e eabe e e sbe e e saee e smbeesabeeebeeeabeeesnneesnreans 41
9.7.2 Occur [not] Equal (binary, NON-aSSOCIAIVE):c.eiiiuiieiieeiieerieeeiee ettt et e st e sbee e saeeesnneaas 42
9.7.3 Occur [not] Within ... To (ternary, NON-aSSOCIALIVE):eeeireeiieeeiee et et et esteessbe e seee e saeeeseee s 42
9.7.4 Occur [not] Within ... Preceding (ternary, NON-aSSOCIALIVE):ccoceiireieieieiieeeiee e siee e sieeeseee e 42
9.7.5 Occur [not] Within ... Following (ternary, NON-aSSOCiAIVE):cceiereeeiiieiieesieeeieeesiee e 42
9.7.6 Occur [not] Within . . . Surrounding (ternary, NON-aSSOCIALIVE):ccoeerieeerieeiieeeiee e 42
9.7.7 Occur [not] Within Past (binary, NON-aSSOCIALIVE):cuiiiieiiiieeiie et 42
9.7.8 Occur [not] Within Same Day As (binary, NON-assOCiatiVe):cevereeaiiieiiee e 42
9.7.9 Occur [not] Before (binary, NON-aSSOCIAtIVE):coiiiiiiiieiee ettt 42
9.7.10 Occur [not] After (binary, NON-8SSOCIALIVE):ccciuiriueieiieeiieeeieeesieeesteeesbeesbe e nbe e sbee e saeeesaneaas 42

RIS 10 lo @ ol = o] £ TSRO OPR 43
9.8.1 || (binary, [Eft @SSOCIALIVE)cciteiiiei ettt ettt ettt sbe et e s be e s be e e sbe e e sane e snbeeans 43
9.8.2 Formatted with (binary, [Eft-8SSOCIALIVE)coiiiiiii ettt 43
9.8.3 String ... (UNary, right @SSOCIALIVE)..........eeiiieiiee ettt ettt e e e sbe e e saee e snreaa 44
9.8.4 Matches pattern (binary, NON-8SSOCIBLIVE)ccoeiirieiiiiieiiee e eieeesiee et sbe et e sbe e sbee e saeeesnneaaas 44

RS N (115100 1ol O o = = o] £ TSRO OPR 45
9.9.1 + (DiNary, |6t BSSOCIBLIVE)..... .. ueiiieieitie ettt ettt ettt sbe e sabe e s be e e be e e rbe e e saeeesnbeens 45
9.9.2 + (UN@rY, NON-GSSOCIALIVE) ... eeiuteieteteitieeeeieesteeetee e bt e e stee e sabe e s beesbeeaabeeasaeeeaabeesabeesbeeaabeeesaneesnreans 45
9.9.3 - (DINary, [Eft @SSOCIALIVE)cciteiiieieitie ettt ettt e et sae e e sabe e s be e e be e e sbee e saneesnreens 46
9.9.4 - (UNAIY, NON-GSSOCIALIVE).eeiteieteteitiee e e steeabeeasteeesteeesabeasabeesbeeaabeeaaaeeesabeesabeeabeeaabeeesnneesnrean 46
9.9.5 * (binary, [Eft @SSOCIALIVE)cciuei ittt et sa e st e st e st e e e sbee e sane e snbeeans 46
9.9.6 / (DINAry, |6t @SSOCIALIVE).......cciteieiteieitie ettt ettt et e et sbe e e sabe e s be e e be e e sbee e saeeesnneens 46
9.9.7 ** (DINArY, NON-GSSOCIALIVE)veiiiteieitieeiuieestee et e ettt stee e sabe e s beesbeeasbaeasaeeesabeesabeesbeeaabeeesaneesnrean 47
.10 TEMPOIEl OPEIBIOIS ..c.teeeteeeiuteeeteeeeteeestee e eabeesbe e e bt e e abeeesaeeesabeaaabeeaabeeeeabeeaabeesabeeabeeeaaseesabeesnbeesabeeesaeeas 47
9.10.1 After (binary, NON-8SSOCIALIVE)c.ueeiuiieiieiiiee ettt ettt et e et saee e sabe e s be e s be e e rbee e saneesnreaans 47
9.10.2 Before (DiNary, NON-aSSOCIALIVE)ceiuuieiieiiiee ettt e tee s sbe e sbee e saee e ssbe e sbeesbeeesbeeesaneesnneeans 47
9.10.3 AQO (UN@rY, NON-8SSOCIBLIVE)eeeieeeeiueeeiieeatee ettt e stee e sibeesbeesbeeasbeeesaeeesabeesabeesbeeesbeeesaneesnreaans 47
O.11 DUIBLION OPEIALOLS ...ceuveeeiteeeiuteeiteaaateeaateeeauteesateasbeeaabeeaaseeeaabeaabeeaabeeaaaseesabeasabeeaabeeeaaseesnbeasabeeeabeeesaneas 47
9.11.1 Year (UNary, NON-8SSOCIBLIVE)ceeiueeeiureerieeiteeaateeeateeesuteasbeasbeeasbeeesaeeesabeesabeasbeeaabeeesaneesnsensns 47
9.11.2 Extract year (Unary, rght-8SSOCIALIVE)cciieririeiiiieeiieeeieeeieeesiee et sbe e sbe e be e e sbee e saeeesnneans 47
9.11.3 Month (UNary, NON-8SSOCIBLIVE)eeeiurieiieeiieeerteeertee et e tee e be e e sbe e saee e sabe e sbeesbeeesbeeesaneesnbeeaas 48
9.11.4 Extract month (Unary, rght-8SSOCIBLIVE)ceeerieiiiieeiiee ettt et ee e sbee e saee e snneans 48
9.11.5 Waeek (UNary, NON-8SSOCIALIVE)c.ueeiueieiieeiieearteeesteeestbeesbeesbe e e sbeeesaeeesabeesabeeebeeasbeeesaneesnseeans 48
9.11.6 Day (UNary, NON-aSSOCHBLIVE)eeeiueeeiureerieeateeaateeesteeessteesbeasabeeasbeeesseeesabeesnbeeabeeasbeeesaseesnseaan 48
9.11.7 Extract day (Unary, right-aSSOCIAHIVE)eeiiueiiiiieiie ettt saee e sabe e 48
9.11.8 HoUr (UNary, NON-8SSOCIBLIVE).cciuuieiureeruteaiteeaateeeateeesuteasbeessbeeasbeeasaeeesabeesabeesbeeasbeeesaseesnseans 48
9.11.9 Extract hour (Unary, right-aSSOCIALIVE)ceiiueiiiiieiie ettt sane e 48
9.11.10 Minute (UNary, NON-8SSOCIBLIVE)ceiuueerureeiteeaateeesteeesiteesteasabeeasteeesseeessbeesabeesbeeasbeeesaneesnsensn 48
9.11.11 Extract minute (uUnary, right-aSSOCIAHIVE)c.eeiieiiiiieiiee ettt 49
9.11.12 Second (UN@ry, NON-8SSOCIALIVE)ceiuvieiieeiiee ettt e steeesibe e be e be e e sbee e saee e ssbeesbeesbeeesbeeesaneesnneeans 49
9.11.13 Extract second (Unary, right-aSSOCIALIVE)c.eeiiieiiiiieiiee ettt see e 49
0.12 AQQrEgatioN OPEIBIOIS: ...ceveeeieteeiteeateeaateeeaubeesbe e s teeaabeeeaaeeeaabeaabeeaabeeaaabeaaabeesabeeaabeeeaaeeesnbeesabeeeabeeeaaneas 49
0.12.1 GENEral PrOPEITIES.eiiiieiiiee ettt ettt ettt ettt et e e b et e sae e e sabe e s abeeebeeerbeeesateesnrean 49
9.12.2 Count (UNary, right @SSOCIALIVE)eeeieeeiieeiiee ettt ettt et et sae e sabe e sbe e s be e e sbee e saeeesnneaas 49
9.12.3 EXist (UNary, right @SSOCIAIVE)c.ueeiiieiieeiiee ettt ettt et saee et e e sbe e be e e sbee e saneesnreans 50
9.12.4 Average (Unary, rght 8SSOCIALIVE)ueeiueiiieeeiet et rie et et e et seee et e st e be e sbee e saaeesnreeaas 50
9.125 Median (Unary, right @SSOCIBLIVE)........ccuieiieiiiee ettt ettt e et e et e e sbee e sabe e be e be e e sbee e saneesaneeans 50
9.12.6 SUM (UNary, Mght @SSOCIALIVE)cceiueieieieeiieeeiee ettt ettt e bt e e sbe e sae e e sabe e sbe e e beeesbeeesaneesnbeaaas 50
9.12.7 stddev (Unary, rght @SSOCIALIVE)ceieieiieeiiee ettt ettt saee et e s be e be e e sbe e e saneesnreeans 51
9.12.8 Variance (Unary, Hgt 8SSOCIALIVE)eeiueiiieeerieeariieerieesieeeete e sbee e seee e sabe e sbeesbeeesbeeesaneesnneeaas 51
9.12.9 Minimum (Unary, right 8SSOCIBLIVE)cciveiiieeeieieriieerteesiee et e et e sae e ssbe e s be e s be e e sbee e saeeesnreaas 51
9.12.10 Maximum (uUnary, rght 8SSOCIBLIVE)cueiiiueririeiaiieeriieestee et et e e saee e sabe et esbe e e sbee e saneesnneeaas 51
Page 4 Health Level Seven © 1999. All rights reserved.
07/1999 Final Standard.

Arden Syntax for Medical Logic Systems

9.12.11 Last (Unary, rght 8SSOCIBLIVE)........ccuuieireeiieeeiee ettt ettt et e s be e sbe e saee e sabe e sbeesbeeesbeeesaneesnreeans 52
9.12.12 First (Unary, Fight @SSOCIBLIVE)cciuuieiueeeiieeiieeertee et e sete e bee e be e sbee e saee e sabe e sbeesbeeesbeeesaneesnreaans 52
9.12.13 Any (Unary, rght 8SSOCIBLIVE)........ccuueeiueieiieeeiee ettt ettt et e be e sbee e saee e sabe e sbeeebeeesbeeesaeeesnreens 52
9.12.14 All (Unary, right @SSOCIALIVE)eeeiuieeieteeiieeeiee ettt ettt et e st e e e sbee e saee e sabe e sbeesbeeesbeeesaneesnreeans 52
9.12.15 NO (UNary, right @SSOCIALIVE).eeeiuieeiiee e eiee ettt ettt e be e sbe e sae e e sabe e sbeesbeeesbeeesaneesnreans 53
9.12.16 Latest (Unary, right @SSOCIALIVE)eeeiueieiieiiiee ettt ettt e st be e e sbe e e saneesnneean 53
9.12.17 Earliest (Unary, right @SSOCIBLIVE)........ccuieiieeiiee ettt et e et e ettt sabe e sbe e be e e sbee e saeeesnreens 53
0.12.18 EIEMENE (DINAIY) ..eeeeieieeiiee ettt ettt ettt ettt et e e rbe e e sae e e smbe e s abeeebeeeabeeesaneesnrean 53
9.12.19 Extract characters ... (Unary, right 8SSOCIALIVE)ccoiereiieiiiie ittt 54
9.12.20 Seqto (DiNary, NON-ASSOCIALIVE)..........eeieieiieeeieeertee ettt et et e st e et e sbe e ssbeesbeesbeeesbeeesaneesnbeeans 54
9.12.21 Reverse (Unary, Mght-8SSOCIALIVE).........ueeiuiiiieearteeeriie st e tea et e seee e saee e sabe e sbeesbeeesbeeesaeeesnreeaas 54
9.12.22 Index Extraction AQQregation OPEIELOISceiarteiaiererteerieaateeasieeesieeessbeesbeessseeesseeesaneessseasns 54
9.13 QUENY AQOregation OPEIELOIS:........ceeiteeaiteeeiuteaateaaateeaateeesueeesbeaabeeaaseeaaseeesabeesbeeaabeeeaaseesnbeesbeesabeeesanens 55
0.13.1 GENEIal PrOPEITIES:eeeiieeitie ettt ettt ettt ettt ettt et e e e b et e sae e e sabe e s abe e e be e e rbee e saneesnrean 55
9.13.2 Nearest ... From (binary, right asSOCIatiVE)..........ocuiiiiiiiiee et 56
9.13.3 Index Nearest ... From (binary, right @SSOCIAHIVE)ceeiveeiieriiei et 56
9.13.4 Slope (Unary, gt BSSOCIBLIVE).........ueeiueeeiieeiiee ettt et site et e et e e sbee e saee e sabe e sbeeabeeesbeeesaneesnreeans 56
9.14 TransSfOrMatioN OPEIBIOIS:c..ueeiteeeteeerteeeatte et e et e e stee e saee e sbeasbeeaabeeeaaeeesabeesabeeabeeeaaeeesabeesabeeeabeeeaaneas 56
0.14.1 GENEIal PrOPEITIES.eiieieeitie ettt ettt ettt ettt a bttt e bt e e sb et e saee e sabe e s abeeebeeeabeeesnbeesnrean 56
9.14.2 Minimum ... From (binary, right 8SSOCIALIVE)coeieiiiieiiiee it 57
9.14.3 Maximum ... From (binary, right @SSOCIAHIVE)ccoiuieiieiiiee ettt 57
9.14.4 First ... From (binary, right @SSOCIALIVE)cceiirieiiiii et riee ettt 57
9.145 Last ... From (binary, right @SSOCIAHVE)........cccieiiiieiiiieeiieerieeetee ettt ee e sbe e saae e saneeas 57
9.14.6 Increase (Unary, rgt 8SSOCIBLIVE)..........ueeiieeiiee et eriie et et eebe e sbee e saee e sabe e sbeesbeeesbeeesaneesnreeaas 58
9.14.7 Decrease (Unary, right @SSOCIALIVE)eeiuiiiiieiiiei ettt ettt e be e sbe e saee e saneea 58
9.14.8 % Increase (UNary, right @SSOCIALIVE)ueiiiieiiiiieiie ettt be e sbe e saee e saeeea 58
9.14.9 % Decrease (Unary, rght 8SSOCILIVE)eeiiueiirieierieeeriieesieeeteeesiee e seee e sibe e sbe e sbe e e sbee e saeeesnneeaas 59
9.14.10 Earliest ... From (binary, right aSSOCIatiVE)..........coeiiiiiiiiee ettt 59
9.14.11 Latest ... From (binary, right 8SSOCIBLIVE)eiiiiiiiiieeiiee ettt 59
9.14.12 Index Extraction Transformation OPEIratOrS.........cueeieierieeiiieeiieeeriee et e sbeesreessbeeesieeesaeeeseeaaas 59
9.15 Query Transformation OPEIELOL:ccoiuieieeerieeeiee ettt e sbeesteeesbee e sabeesabeesbeeasbeeesaeeesabeasbeeeabeeesaneas 60
0.15.1 GENEral PrOPEITIES.eiieieeitie ettt ettt ettt e bt e b et e eaee e sabe e s abe e e beeeabeeesaneesnrean 60
9.15.2 Interval (Unary, right @SSOCIALIVE)ccueeiieiiieieiee ettt et e ettt e be e sbe e e saee e sabeaans 60
9.16 NUMENTC FUNCLION OPEIGIOIScctiietieeitee et e stee et ettt et e be e e sbe e e saee e sabeesbeeasbeeeaaeeesabeesabeeeabeaeaaneas 61
9.16.1 Arccos (Unary, fght 8SSOCIBLIVE)ccueeireeiiee et et e eite e tee et et e saee e sabe e sbeesbeeesbee e saneesnneeaas 61
9.16.2 ArcSin (UNary, FQNt 8SSOCIALIVE)eeiureeiieeiiee ettt ettt e tee st e stee e sae e e ssbe e sbeesbeeesbeeesaneesnreeans 61
9.16.3 Arctan (Unary, right 8SSOCIALIVE)cciuie ittt et sae et e e be e sbe e e saneesnreaans 61
9.16.4 Cosine (UNary, fght 8SSOCTALIVE)........cciueerieeiiee et ertee et et e s be e sbee e sbee e ssbeesbeesbeeesbeeesaneesnneeans 61
9.16.5 Sine (Unary, right @SSOCIALIVE)ccuuieiiieiiie ettt ettt e et sae et e st e be e e sbee e saneesnreans 61
9.16.6 Tangent (Unary, right @SSOCIALIVE)..........ueeiieiiiee ettt ettt e sb e e sbee e saee e sareaan 61
9.16.7 EXpP (UNary, right 8SSOCIBLIVE)cciuueeiueieiieeiiee ettt ettt et e st e e sbe e saee e ssbe e sbeesbeeesbeeesaneesnbeaans 61
9.16.8 Log (Unary, rght 8SSOCIBLIVE)cccuuieireeiieeiieeertee et stbe e te et e e e sbe e saee e ssbe e sbeeebeeerbeeesaneesnreens 62
9.16.9 Logl0 (Unary, right @SSOCIALIVE)ceiuieiieiiiee ettt ettt et e et saee et esbe e s be e e sbee e saneesnreens 62
9.16.10 Int (UNary, right @SSOCIALIVE)eieiuieeiieeiiee ettt ettt et e et sbe e sabe e s be e s be e e sbeeesaneesnbeeans 62
9.16.11 Floor (Unary, gt 8SSOCIALIVE)eeieierieeiiee ettt tee st e et e sae e sabe e sbe e s be e e sbee e saneesnreeaas 62
9.16.12 Ceiling (Unary, gt 8SSOCIBLIVE)ccueeiiieiiee ettt eite e tee et e et e saee e ssbe e sbeeebe e e sbee e saneesnreeans 62
9.16.13 Truncate (uUnary, right aSSOCIALIVE)..........ceiueiiieeeiee ettt ettt sb e e sbe e saee e snneeans 62
9.16.14 Round (binary, right 8SSOCIBLIVE)cueeiieiiieiaiee ettt ettt e sbe e e saee e saeeesneeaans 62
9.16.15 ADS (UNary, rght 8SSOCIBLIVE)cccuuieiureeiieeeiee et ettt et e e sbe e saee e sabe e sbe e e beeesbeeesaneesnreaans 63
9.16.16 sqrt (Unary, right @SSOCIALIVE)ccoiueieiiie ettt ettt e be e e rbe e e saae e snreaaas 63
9.16.17 Asnumber (UNary, NON-aSSOCIALIVE)........cciueiiierarteterieeesiteesteeesteeesteeasaeeessbeesbeessbeeasbeeesaneesnreeans 63
9.17 TimME FUNCLION OPEIAION ... eeieieieeiteeetee ettt et e et e sttt saee e sabe e s bt e e abee e sabeesabeesabeeabeeeaaeeesmbeesabeeenbeeesaneas 64
9.17.1 Time (Unary, Fght 8SSOCIBLIVE)c.ueeiureeiieeiiee et ettt et et et e sbe e sae e e sabe e sbe e s beeesbeeesaneesnneeans 64

JO LOGIC SLOT ..ottt sttt ettt ettt sttt b e s bt s bt e s bt e s bt e e b e e e R e e s Re e sb e e aE e e ab e e aEeeaReeaE e e abeenbeenbeesbeenbeenbeenreenreens 64
O U100 = PO OT PP OUPUPTOUPP 64
10.2 LOQIC SIOt SEAEEIMENESteiiiei ettt ettt ettt et et e et e e sbe e e sab e e s abeeebe e e abee e sabeesmbeeanbeeaabeeesnseesabeaans 64
Health Level Seven © 1999. All rights reserved. Page 5

Final Standard

07/1999

Arden Syntax for Medical Logic Systems

10.2.1 ASSIONMENE SEAEEIMENL......eiitiiiiieeiiee ettt ettt e bt e b e e sbe e e sabe e sabe e s beeebee e saeeesabeesmbeeanreeenees 64
10.2.2 1F-TNEN SEAIEMENTeeieeeieeeiiee ettt ean e ne e nesaneenreenre s 65
10.2.3 CONCIUAE SEALEIMENTeiieieie ettt ettt sbe e e et e e st e e s be e e be e e sbeeesabeesmbeeanbeeenees 66
10.2.4 Call SEBIEMENLoveiiiiieieie ettt sa e e ar e e e e e neenneenreenre s 67
TO.2.5 WHITE LOOP. .. teiiteeitieitee sttt e et st ettt e e an e n e e nne e nr e 69
2 I o gl o o o O UT PRSP 70
T0.3 LOGIC SOt USAOR.eeeiteeiieeatee ettt ettt ettt ettt et e st et et e e e ehee e sabe e e abe e e abe e e abe e e aabeesmbeeenbeeaabeeeanneesnbeaans 71
L1 DATA SLOT ittt ettt h e b bt bt s bt e s bt e e bt e s bt e ab e e e b e e s Re e eReeaE e e aE e e eR e e aE e e aReeaE e e abeenbeenbeesbeenbeenbeenreenreens 71
I o U100 =TT OO PP OUPRPTOPPPN 71
11.2 Data SIOt SEEEMENESceiteeiiee ettt ettt ettt e e e st e s be e e be e e sbee e sabeesabeeabeeeabeeeeabeesmbeeanbeeaabeeeanseesnbeaans 71
R = o S = (S 1 11 o TP TP TP PP 71
R S 8 S (= 111 0| TP TP P PP 73
11.2.3 IMLM SEEIMENT ...ttt eab e eab e e e n e e enreere s 74
11.2.4 ArguMENE SEBEEIMENT ... eeeiee ettt et e et e et e e et e e e e s b e e e e sbe e e e e sabee e e s anbe e e e snbeeeeanbneeeeanres 75
11.2.5 MESSAGE SEALEIMEINLeeieeiiie ettt ettt e ettt e e sttt e e et b e e e e aabe e e e s aabe e e e aabb e e e e aabee e e s anbe e e e anbeeeeanbaeeeeannes 75
11.2.6 DeSHNGLION SEAEMENTeiiieie ettt ettt e rbe e sae e e be e s be e e rbe e e sbee e sabe e smbeesnneeenees 75
11.2.7 ASSIONMENE SEAEEIMENL.oieiie ittt ettt ettt sb e e sae e e sabe e sabe e s be e e abe e e sbeeesabeesmbeeanreeenees 76
11.2.8 1F-TNEN SEAIEMENTeeiiieieeeseee ittt sar e e e n e enresne s 76
11,219 Call SEBIEMENL ..ottt s e s e b an e e e e e aneennesnreeare s 76
11,210 W@ LOOP. ¢ teiteeitieitee stttk sae e st s et b an e e en e e enreenre s 76
2 B R o ol o o FO PP PT PP PRTO 76
11.2.12 INLEXTACE STAIEIMENLceieiie ittt ettt ettt sbe e e sab e e s abe e s be e e be e e sbee e sabeesmbeesnbeeenees 76
10.3 DAA SIOL USAE.eeeieeeiiee ettt ettt ettt ettt be e et e s e bt e st e e e be e e ahe e e sabe e sabe e e abe e e abee e eabeesmbeesnbeeaabeeeaneeesnbeaans 77
12 ACTION SLOT ..otiitieitieitee sttt ettt s et e s bt s bt e s b e e sb e e s bt e sb e e sb e e ab e e sE e e eReeab e e ab e e aReeaEeeaReeaE e e abeenbeesbeesbeesbeesbeenreenreens 77
F2.1 PUIPOSE.eeeee ettt ettt ettt e ettt e e e sttt e e e b bt e e e aa ke e e e e st e e e e e b b e e e e eabee e e e R be e e e aabee e e e ambeeeeanbeeeeabeeeeeanreeaeann 77
12.2 ACHON SIOL SEIEMENTS,eei ittt ettt et et e et e e sbe e e sat e e s abe e ebe e e abeeesabeesmbeesnbeeeabeeesneaesnbeaans 77
A R] (S 1 1= | R SURRPR 77
12.2.2 REIUMN SEBEEIMENT ...ttt e et e e e s sa b e e e e s bb e e e e st ee e e s ambe e e e anbeeesanbneeeeanres 78
12.2.3 IF-ThEN SEBLEMENL ...t n e n e e nre e 79
1224 Call SEBEMENL ..ottt e e ar e s e e e sn e eaneenreenre s 79
1225 WHILE LOOP...teitieiteeiteeitee sttt sttt sttt st st eae e ane e ne e e e nre s 79
12.2.6 FOR LOOP. . cteeteeitieiteestee st st sttt sie ekt ss e ss et she e s st s e sse e e se e e e s e s st et e eab e e an e e nneenneenreeare s 79
12.3 ACHON SIO USAQE ... ieeeiieeitee ettt ettt ettt et et e et e e e she e e sabe e st e e e abe e e abee e aabeesmbeeanbeeaabeeeanneesnbeaans 79
13 BV OKE SLOT ittt ettt ettt h e b s b e s bt e s bt e b e e s bt e e R e e sb e oo b e e e R e e nE e e aReenE e e abeenbeenbeeabeenbeesbeenreenreens 80
T o U100 =T PO O PP OUPUPOTPPR 80
13.1.1 OcCCUrrenCe Of SOME EVENL........uii ittt b e sae e sabe e b e b e e eees 80
13.1.2 A TimeDelay After an BVENT........c.oo i 80
13.1.3 Periodically After @ EVENLooiiiiii ettt sae e b e e 80
G Y= o TR T R OPROUROPO 80
N R s o | (0] 0= =T RSP 80
13.2.2 TiME OF EVENES ...ttt ettt ettt eb e ae e e sa b e e s abe e st e e e be e e sbee e sabe e smbeeenbeeenees 80
13.2.3 DECIaration Of EVENLS.......coiuiiiiieiiee ettt ettt sttt ettt et sae e sab e e s abe e s be e e be e e saee e sabeesmbeesnbeeenees 80
13.3 EVOKE SIOU SEBLEIMENTS.eeiieeieiteie it rtee ettt ee e stee et e st e e et e e e sbe e e sabe e st e e e be e e abeeesabeesmbeeanbeeeabeeeaneeesnbeans 81
13.3.1 SIMPle TrigQer STAIEMENL.ccieieiiee ettt ettt et sbe e be e e rbe e e sbee e sabe e smbeaenreeenees 81
13.3.2 Delayed Trigger SEAEMENT.oi ittt sbe e b e e s rbe e e saee e sabe e smbeesreeenees 81
13.3.3 PeriodiC Trigger SEAEMENT.eei ettt et e e be e e sbe e e sabe e sabe e sreeenees 82
13.3.4 Where Trigger SEAEMENTooiiieiiee ettt ettt et e st e e be e e sae e e sabe e smbeesnbeeenees 83
13.4 EVOKE SIOL USAOE. ... eeeeeiteeatee ettt ettt sttt et e sttt s bt e st e et e e e ebe e e sabe e s ab e e e be e e ebee e aabeesmbeeanbeeeabeeesnteesnbeaans 84
X1.2 Research Study SCreening IMLIM:o ittt et ebe e saee e sabe e s beeeees 106
ANNEXES (Mandatory Information)
YN R = = o (U = V= T o o TSR 85
A2 RESEIVEI WOITS......cceeieieieeiiee ittt ettt ettt et e e bt e s e e s e e e et e e e ebe e e ehee e smbe e ambe e eabe e e abeeesnbeesabeaenbeeanees 96
Page 6 Health Level Seven © 1999. All rights reserved.

07/1999 Final Standard.

Arden Syntax for Medical Logic Systems

A3 SPECIA SYMOIS. ..ttt b e b e ehe e aate e nabe e beeeees 98

A4 Operator Precedence and ASSOCIBLIVITYcciueiiieiiieie e e ettt et e e sbe e e sate e saae e beeeees 99

A5 Format Specifications (Formatted With, Section 9.8.2),coouiiiiiiiiiiiieee e 102

APPENDICES (Non-Mandatory Information)

XL SAMPIE MM, .ottt b et bt h e e s s bt e st et e be e e ehe e e sabe e sabe e e abeeeabeeesabeesnbeesnbeeantes 105

X2X2SUMMENY OF CRANQES.eeeeeieieiee ittt ettt et e e s bt e e sbe e e ebee e sabe e sabe e abeeeabeeesabeesnbeasnbeeenees 115
1 SCOPE

This specification covers the sharing of computerized health knowledge bases among personnel, information
systems, and ingtitutions. The scope has been limited to those knowledge bases that can be represented as a set of
discrete modules. Each module, referred to asaMedical Logic Module (MLM), contains sufficient knowledge to
make a single decision. Contraindication alerts, management suggestions, data interpretations, treatment protocols,
and diagnosis scores are examples of the health knowledge that can be represented using MLMs. Each MLM also
contains management information to help maintain a knowledge base of MLMs and links to other sources of
knowledge. Health personnel can create MLMs directly using this format, and the resulting MLMs can be used
directly by an information system that conforms to this specification.

2 REFERENCED DOCUMENTS

2.1 ASTM Standards®:

E 1238 Specification for Transferring Clinical Laboratory Data Messages Between |ndependent Computer
Systems

E 1384 Guide for Content and Structure of an Automated Primary Record of Care

2.2 1SO Standards?:

SO 8601 - 1988 Data Elements and Interchange Formats-1nformation Interchange (representation of dates
and times)

SO 8979 - 1986 Latin-1 Coded Character Set

2.3 ANSI Standards®:

ANSI X3.4 - 1986 Coded Character Sets-American Nationa Standard Code for Information Interchange
(7-bit ASCII)

ANSI/ISO 9899 Programming Language C

ANSI/ISO/IEC 9075 Information technology -- Database languages -- SQL

1 Annua Book of ASTM Standards, Vol 14.01.
2 Available from 1SO, 1 Rue de Varembe, Case Postale 56, CH 1211, Geneve, Switzerland.

3 Available from American Nationa Standards Institute, 1430 Broadway, New York, NY 10018.

Health Level Seven © 1999. All rights reserved. Page 7
Final Standard 07/1999

Arden Syntax for Medical Logic Systems

2.4

Health Level Seven Standards®*:

HL7 Version 2.3

3 TERMINOLOGY

3.1

3.11

3.2

3.2.1

3.2.2

3.2.3

3.24

3.2.5

3.2.6

3.3

Definitions:

Medical Logic Module (MLM), n

an independent unit in a health knowledge base. Each MLM contains maintenance information, links to
other sources of knowledge, and enough logic to make a single health decision.

Descriptions of Terms Specific to This Standard:

time, n

apoint in absolute time. Also known as a timestamp, it includes both a date and a time-of-day.

time-of-day, n

hours, minutes, seconds, and possibly, fractions of seconds past midnight.

date, n

Gregorian year, month, and day.

duration, n

aperiod of time (for example, 3 days) that has no particular start or end point.

institution, n

a health facility of any size that will provide automated decision support or quality assurance.

event, n

aclinically meaningful change in state. Thisis often, but not always, reflected by a change in the clinical
database. For example, ordering a medication is an event that could update the clinical database; when the
stop time of the medication order is passed, the stopping of the medication would be an event, even though
there might not be any change to the database.

Notation Used in This Standard

Throughout this standard, the location for optional elements is noted by placing the optional el ements
inside square brackets ([]). Thisis not to be confused with the element operator [] (see Section 9.12.18).
Thus, Is [Not] Equal meansthat Is Equal and Is Not Equal are both valid constructs. The two most
common optional elements are not and of

4 Available from Health Level Seven, Inc., 3300 Washtenaw Ave, Suite 227, Ann Arbor, M1 48104.

Page 8
07/1999

Health Level Seven © 1999. All rights reserved.

Final Standard.

Arden Syntax for Medical Logic Systems

4 SIGNIFICANCE AND USE

Decision support systems have been used for health care successfully for many years, and severa institutions have
already assembled large knowledge bases. There are many conceptual similarities among these knowledge bases.
Unfortunately, the syntax of each knowledge base is different. Since no one institution will ever define a complete
health knowledge base, it will be necessary to share knowledge bases among institutions.

Many obstacles to sharing have been identified: disparate vocabularies, maintenance issues, regional differences,
liahility, royalties, syntactic differences, etc. This standard addresses one obstacle by defining a syntax for creating
and sharing knowledge bases. In addition, the syntax facilitates addressing other obstacles by providing specific
fields to enter maintenance information, assignment of clinical responsibility, links to the literature, and mappings
between local vocabulary terms and termsin the knowledge base.

The range of health knowledge bases is large. This specification focuses on those knowledge bases that can be
represented as a set of Medical Logic Modules (MLMs). Each MLM contains maintenance information, linksto
other sources of knowledge, and enough logic to make a single health decision. Knowledge bases that are composed
of independent rules, formulag, or protocols are most amenable to being represented using MLMs.

This specification, which is an outcome of the Columbia-Presbyterian Medical Center 1989 Arden Homestead
retreat on sharing health knowledge bases, was derived largely from HELP of LDS Hospital, Salt Lake City, UT
(1)> and CARE, the language of the Regenstrief Medical Record System of the Regenstrief Institute for Health Care,
Indianapolis, IN (2).

5 MLM FORMAT

51 File Format

An MLM isastream of text stored in an ASCII file (ANSI X3.4 - 1986) [international users may extend
this by using 1SO 8859/1 ("Latin-1"), but a conforming implementation need only implement X3.4]. One or
more MLMs may be placed in the same file. Within afile, an MLM begins with the marker maintenance:
and ends with the marker end:. MLMs may be separated by white space, as defined in Section 7.1.10
and/or comments as defined in Section 7.1.9.

5.2 Character Set

Within an MLM only the printable ASCII characters (ASCII 33 through and including 126), space (ASCII
32), carriage return (ASCII 13), line feed (ASCII 10), horizontal tab (ASCII 9), vertical tab (ASCII 11), and
form feed (ASCII 12) may be used. The use of horizontal tab is discouraged because there is no agreement
on how many spaces it represents. Other characters, such as the bell and backspace, are not allowed within
the MLM. Inside a string constant (Section 7.1.6) or comment (Section 7.1.9), these character set
restrictions are lifted.

5.3 Line Break

Lines are delimited by line breaks, which are any one of the following: a single carriage return, asingle line
feed, or a carriage return-line feed pair.

> The boldface numbers in parentheses refer to the list of references at the end of this standard.

Health Level Seven © 1999. All rights reserved. Page 9
Final Standard 07/1999

Arden Syntax for Medical Logic Systems

5.4

5.5

5.6

5.7

5.8

58.1

White Space

The space, carriage return, line feed, horizontal tab, vertical tab, and form feed are collectively referred to
as white space. See also Section 7.1.10.

General Layout

Annex A1 contains a context-free grammar (formal description) of Arden Syntax MLMs expressed in
Backus-Naur Form (3). See Appendix X1 for MLM examples. A typical MLM is arranged like this.
mai nt enance:
sl ot nanme: sl ot - body; ;

sl ot nane: sl ot - body; ;
library:

sl ot nane: sl ot - body; ;
know edge:

sl ot nane: sl ot - body; ;

end:

Categories

An MLM is composed of sots grouped into three categories: maintenance, library, and knowledge. A
category isindicated by a category name followed immediately by a colon (that is, maintenance:, library:,
and knowledge:).White space may precede the category name and follow the colon, but no white space is
allowed between the category name and the colon. Categories must appear in the order they appear in this
standard.

Slots

Within each category is a set of dots.

Each dot consists of a dot name, followed immediately by a colon (for example, title:), then followed by
the slot body, and terminated with two adjacent semicolons (;;) which is referred to as double semicolon.
White space may precede the slot name and follow the colon, but no white space is allowed between the
dot name and the colon. The content of the slot body depends upon the dlot, but it must not contain a
double semicolon, except inside comments (Section 7.1.9), string constants (Section 7.1.6), and mapping
clauses (Section 7.1.8).

Each dot must be unique in the MLM, and categories and slots must follow the order in which they are
listed in this standard. Some dlots are required and others are optional.
Slot Body Types

These are the basic types of dot bodies:

Textual Slots

A textual slot contains arbitrary text (except for double semicolon, which ends the dot). Asthe MLM
standard is augmented, dots that are currently considered to be textual may become coded or structured. An

Page 10

07/1999

Health Level Seven © 1999. All rights reserved.

Final Standard.

Arden Syntax for Medical Logic Systems

5.8.2

5.8.3

58.4

5.9

5.10

example of atextual dot isthetitle slot, which can contain arbitrary text. For required textual dlots, the text
may be empty.
Textual List Slots

Some dlots contain textual lists. These are lists of arbitrary textual phrases, optionally separated by single
semicolons (;). An example of atextual list dot isthe keywords dot. The list may be empty. It may not
contain a double semicolon (which ends the slot).

Coded Slots

Coded dots contain a simple coded entry like a number, a date, or aterm from a predefined list. For
example, the priority slot can only contain a number, and the validation slot can contain only the terms
production, research, etc.

Structured Slots

Structured slots contain syntactically defined slot bodies. They are more complex than coded dlots, and are
further defined in Section 7. An example of thiskind of ot isthe logic dot.

MLM Termination

The end of the MLM is marked by the word end followed immediately by a colon (that is, end:). White
space may precede the terminator and follow the colon but no white space is allowed between the
terminator and the colon.

Case Insensitivity

Category names, slot names, and the end terminator may be typed in uppercase (for example, END),
lowercase (for example, end), or mixed case (for example, eNd). See also Sections 7.1.1.2 and 7.1.2.1.

6 SLOT DESCRIPTIONS

Next to each slot name is an indication of whether the dlot istextual, textual list, coded, or structured, and whether it
isrequired or optional. Slots must appear in the order they appear in this specification.

6.1 Maintenance Category
The maintenance category contains the slots that specify information unrelated to the health knowledge in
the MLM. These dots are used for MLM knowledge base maintenance and change control. The
maintenance category also contains information about the version of the Arden Syntax that is being used.
6.1.1 Title (textual, required)
Thetitle serves as a comment that describes briefly what the MLM does. For example,
title: Hepatitis B Surface Antigen in Pregnant Wonen;;
6.1.2 MIimname (coded, required)
The mimname uniquely identifiesan MLM within asingle authoring institution. It is represented as a string
of characters beginning with aletter and followed by letters, digits, and underscores (_). An mimname may
be 1 to 80 charactersin length. MImnames are insensitive to case. The mimname is distinct from the name
of the ASCII file, which happens to hold one or more MLMs. For example,
Health Level Seven © 1999. All rights reserved. Page 11

Final Standard 07/1999

Arden Syntax for Medical Logic Systems

m mMmane: hepatitis_B in_pregnancy;;

While mlmname is preferred as the name of this slot, filename is also permitted for backward compatibility.

6.1.3 Arden Syntax version (coded, required)

The Arden Syntax version informs the compiler which version of the standard has been used to write the
MLM. If thisdot is missing, the MLM is assumed to be written with the ASTM E1460-1992 standard
(which didn't include this dot). Otherwise, the slot is of the following form (the string "Version 2" may use
upper or lower case letters):

arden: Version 2;;

Thisdot isrequired for version 2 of the syntax, but is optional for backward compatibility. That is, if itis
missing, the assumed version isversion 1.

6.1.4 Version (textual, required)

The current version of the MLM is arbitrary text, up to 80 charactersin length, asis convenient for the
institution's version control system (such as SCCS or RCYS). It is suggested that versions start at 1.00 and
advance by .01 for small revisions and by 1 for large revisions. The exact form of the version information is
institution-specific, but must allow determining which MLM is the most recent (see Section 11.2.3). For
example,

version: 1.00;;

6.1.5 Institution (textual, required)

Theinstitution slot contains the name of the authoring institution, up to 80 charactersin length. For
example,

institution: Colunbia University;;

6.1.6 Author (textual list, required):

The author dot is free-form text. It should contain alist of the authors of the MLM, delimited by
semicolons. The following format should be used: first name, middle name or initial, last name, comma,
suffixes, comma, and degrees.

An electronic mail address enclosed in parentheses may optionally follow each author's name. Internet
addresses are assumed. For example,

author: John M Smith, Jr., MD. (jns@anms.colunbia.edu);;

6.1.7 Specialist (textual, required)

The domain specialist is the person in the institution responsible for validating and installing the MLM.
This dot should aways be present but blank when transferring MLMs from one institution to another. Itis
the borrowing institution's responsibility to fill this slot and accept responsibility for the use of the MLM.
The format is the same as for the author slot. For example,

speci alist: Jane Doe, Ph.D.;;
or

speci al i st:

Page 12 Health Level Seven © 1999. All rights reserved.

07/1999 Final Standard.

Arden Syntax for Medical Logic Systems

6.1.8 Date (coded, required)
The date of last revision of the MLM must be placed in thisslot. Either adate or a date-time (that is, a
point in absolute time composed of a date plus atime-of-day) can be used. The format for dates and for
date-time combinations is | SO extended format (with the T or t separator) with optional time zones (1SO
8601:1988 (E)). Dates are yyyy-mm-dd so that January 2, 1989 would be represented as 1989-01-02. The
earliest date-time Arden has to support is January 1, 1800 (1800-01-01T00:00:00Z). Times are yyyy-mm-
ddThh:mm:ss with optional fractional seconds and optional time zones. Thus, 1:30 p.m. on January 2,
1989 UTC would be represented as 1989-01-02T13:30:00Z. For example,
date: 1989-01-02;;
6.1.9 Validation (coded, required):
The validation dot specifies the validation status of the MLM. Use one of the following terms:
a) production—approved for use in the clinical system,
b) research—approved for usein aresearch study,
c) testing—for debugging (when an MLM is written, this should be the initial value), or
d) expired—out of date, no longer in clinical use.
Anexampleis:
val i dation: testing;;
MLMs should never be shared with a validation status of production, since the domain specialist for the
borrowing institution must set that validation status.
6.2 Library Category
The library category contains the slots pertinent to knowledge base maintenance that are related to the
MLM's knowledge. These slots provide health personnel with predefined explanatory information and links
to the health literature. They also facilitate searching through a knowledge base of MLMs.
6.2.1 Purpose (textual, required)
The purpose slot describes briefly why the MLM is being used. For example,
purpose: Screen for newborns who are at risk for devel oping hepatitis B;;
6.2.2 Explanation (textual, required)
The dot explains briefly in plain English how the MLM works. The explanation can be shown to the health
care provider when he or she asks why an MLM came to its decision. For example,
expl anation: This woman has a positive hepatitis B surface antigen titer
within the past year. Therefore her newborn is at risk for devel opi ng
hepatitis B.;;
6.2.3 Keywords (textual list, required)
Keywords are descriptive words used for searching through modules. UMLS terms (4) are preferred but not
mandatory. Terms are delimited by semicolons (commas are allowed within a keyword). For example,
keywords: hepatitis B; pregnancy;;
Health Level Seven © 1999. All rights reserved. Page 13

Final Standard 07/1999

Arden Syntax for Medical Logic Systems

6.2.4 Citations (structured / textual, optional)

There are two supported formats for the citations slot. The first is atextual format with no implied
structure. The textual format is provided for backward compatibility and is a deprecated form. The second
isastructured format described later in this section. Citationsto the literature should be entered in
Vancouver style (5). Citations must be numbered, serving as specific references. Theindividua citations
may also be assigned atype. The type should follow the number and specify the function of the citation for
the particular MLM. Citation types are:

a) Support -- citations which support, verify, or validate the algorithm in the logic slot;

b) Refute -- citations which refute or offer aternativesto the algorithm in the logic sot;

For example,

citations:

1. SUPPORT Steiner RW Interpreting the fractional excretion of sodium Am
J Med 1984; 77: 699-702.

2. CGoldman L, Cook EF, Brand DA, Lee TH, Rouan GW Wisberg MC, et al. A
conputer protocol to predict nyocardial infarction in energency departnent
patients with chest pain. N Engl J Med 1988;318(13): 797-803.

6.2.5 Links (structured / textual, optional)

There are two supported formats for the links slot. The first is atextual format with no implied structure.
The textual format is provided for backward compatibility and is a deprecated form. The second isa
structured format described later in this section. The links slot allows an institution to define links to other
sources of information, such as an electronic textbook, teaching cases, or educational modules. The
individual links are delimited by semicolons. The contents of the links are institution-specific. Linksto
sites on intranets or the internet should be prefixed by the term "URL"" (Uniform Resource Locator) and
the title of the document and link text should follow the defined standards for representing protocols and
data sources (e.g. "Document Title", 'FILE://link.html"; " Second Document”, "http://www.nlm.nih.gov/").
Electronic material can also be entered in the citations slot above. The preferred form for structured links
is.

link type, space (ASCII 32), link description (Arden Syntax string), comma, link text (Arden Syntax
term). The only required element is the link text.

For example:

I'i nks:
OTHER_LINK ' CTIM . 34.56.78";
MESH ' agr anul ocyt osi s/ ci and sul f amet hoxazol e/ ae' ;
URL "NLM Web Page", 'http://ww. nl mnih.gov/';
URL "Visible Human Project",
"http://ww. nl mnih.gov/research/visibl e/visible_human. htm ' ;
URL "DOS HTM. File", 'file://doslinx.htm;
URL "UNI X HTM. File", 'file://UnixLinx.html/";

Each institution should test for expired links when receiving shared MLMs.

Page 14 Health Level Seven © 1999. All rights reserved.

07/1999 Final Standard.

Arden Syntax for Medical Logic Systems

6.3

6.3.1

6.3.2

6.3.3

6.3.4

6.3.5

6.3.6

6.3.7

Knowledge Category

The knowledge category contains the slots that actually specify what the MLM does. These dots define the
terms used in the MLM (data dlot), the context in which the MLM should be evoked (evoke dlot), the
condition to be tested (logic slot), and the action to take should the condition be true (action dlot).

Type (coded, required)

The type slot specifies what dots are contained in the knowledge category. The only type that has been
defined so far is data_driven, which implies that there are the following slots: data, priority, evoke, logic,
action, and urgency. For backward compatibility with the 1992 standard, the type data-driven (with a dash
"-" separating the words) is also permitted. That is,

type: data_driven;;
or

type: data-driven;;

Data (structured, required)

In the data slot, terms used locally in the MLM are mapped to entities within an institution. The actual
phrasing of the mapping will depend upon the institution. The details of this ot are explained in Section
11

Priority (coded, optional)

The priority isanumber from 1 (low) to 99 (high) that specifiesthe relative order in which MLMs should
be evoked should several of them satisfy their evoke criteria simultaneoudly. An institution may choose
whether or not to use a priority. The ingtitution is responsible for maintaining these numbers to avoid
conflicts. A borrowing institution will need to adjust these numbers to suit its collection of MLMs. If the
priority slot is omitted, a default value of 50 is used. For example,

priority: 90;;

Evoke (structured, required)

The evoke dot contains the conditions under which the MLM becomes active. The details of this Sot are
explained in Section 13.

Logic (structured, required)

This dot contains the actual logic of the MLM. It generally tests some condition and then concludes true or
false. The details of this dlot are explained in Section 10.

Action (structured, required)

This slot contains the action produced when the logic slot concludes true. The details of this slot

are explained in Section 12. Urgency (coded, optional)

The urgency of the action or message is represented as a number from 1 (low) to 99 (high), or by avariable
representing a number from 1 to 99. Whereas the priority determines the order of execution of MLMs as
they are evoked, the urgency determines the importance of the action of the MLM only if the MLM
concludes true (that is, only if the MLM decides to carry out its action). If the urgency dlot is omitted, or the
variable representing urgency is null or outside the range 1 to 99, a default urgency of 50 is used. For
example,

Health Level Seven © 1999. All rights reserved. Page 15
Final Standard 07/1999

Arden Syntax for Medical Logic Systems

urgency: 90;;

urgency: urg_var;;

7 STRUCTURED SLOT SYNTAX

7.1

7.1.1

7.1.1.1

7.1.1.2

7.1.2

7.1.2.1

7.1.3

7.1.4

Tokens

The structured slots consist of a stream of character strings known as lexical elements or tokens. These
tokens can be classified as follows:

Reserved Words

Reserved words are predefined tokens made of letters and digits. They are used to construct statements, to
represent operators, and to represent data constants. Some are not currently used, but are reserved for future
use. The predefined synonyms of operators as well as the operators themselves are considered synonyms.

The existing reserved words are listed in Annex A2.

The

The isaspecial reserved word which isignored wherever it isfound in a structured dlot (that is, it is treated
exactly the same as white space). Its purpose is to improve the readability of the structured slots by
permitting statements to be more like English.

Case Insensitivity

With the exception of the format with ... format specification, the syntax is insensitive to the case of
reserved words. That is, reserved words may be typed in uppercase, lowercase, and mixed case. For
example, then and THEN are the same word. See Sections 5.10 and 9.8.2 and Annex A5.

Identifiers

| dentifiers are al phanumeric tokens. The first character of an identifier must be a letter, and the rest must be
letters, digits, and underscores (). Identifiers must be 1 to 80 charactersin length. It is an error for an
identifier to be longer than 80 characters. Reserved words are not considered identifiers; for example, then
isareserved word, not an identifier. Identifiers are used to represent variables, which hold data.

Case Insensitivity

The syntax isinsensitive to the case of identifiers. See Sections 5.10 and 7.1.1.2.

Special Symbols

The special symbols are predefined non-alphanumeric tokens. Special symbols are used for punctuation
and to represent operators. They arelisted in Annex A3.

Number Constants

Constant numbers contain one or more digits (0 to 9) and an optional decimal point (.). (Asin Specification
E 1238 and HL7 2.3, .1 and 345. are valid numbers.) A number constant may end with an exponent,
represented by an E or e, followed by an optional sign and one or more digits. These are valid numbers:

0

345

Page 16

07/1999

Health Level Seven © 1999. All rights reserved.

Final Standard.

Arden Syntax for Medical Logic Systems

7.14.1

0.1

34. 5E34
0.1le-4
.3

3.

3el0

Negative Numbers

Negative numbers are created using the unary minus operator (-, see Section 9.9.4). The minussignis not
strictly a part of the number constant.

7.1.5 Time Constants
Time constants use the SO extended format (with the T or t separator) for date-time combinations with
optional fractional seconds (using . format) and with optional time zones (see Section 6.1.8).

7.151 Fractional Seconds
Fractional seconds are represented by appending adecimal point (.) and one or more digits (for example,
1989-01-01T13:30:00.123).

7.15.2 Time Zones
Thelocal time zone is the default. SO Coordinated Universal Time (UTC) is represented by appending a z
to the end (for example, 1989-01-01T13:30:00.123Z). The local time zone can be explicitly stated by
appending + or - hh:mm to indicate how many hours and minutes the local time is ahead or behind UTC.
Thus the EST (Eastern Standard Time, North America) time zone would use 1989-01-01T13:30:00-05:00,
which would be equivalent to 1989-01-01T18:30:00Z.

7.1.5.3 Constructing times
The + operator can be used to construct atime from durations. Hereis an example of constructing atime:
1800-01-01 + (1993-1800)years + (5-1)months + (17-1)days produces the value 1993-05-17.

7.1.6 String Constants
String constants begin and end with the quotation mark (', which is ASCII 34). For example,

"this is a string".

Thereis no limit on the length of strings.

7.1.6.1 Internal Quotation Marks
A quotation mark within a string is represented by using two adjacent quotation marks. For example,

"this string has one quotation mark: "" "

7.1.6.2 Single Line Break
Within a string, white space containing a single line break (see Section 5.3) is converted to a single space.
For example,

"this is a string with
one space between 'with' and 'one'"
Health Level Seven © 1999. All rights reserved. Page 17

Final Standard 07/1999

Arden Syntax for Medical Logic Systems

7.1.6.3

7.1.7

7.1.8

7.1.9

7.1.10

Multiple Line Breaks

Within a string, white space containing more than one line break is converted to a single line break.

"this is a string with

one line break between 'with' and 'one'"

Term Constants

Term constants begin and end with an apostrophe (' which is ASCII 39), and they contain a valid mlmname.
For example,

"m m_nane'

Mapping Clauses

A mapping clause is a string of characters that begins with { and ends with } (ASCII 123 and 125,
respectively). Mapping clauses are used in the data slot to signify institution-specific definitions such as
database queries. The only requirement imposed on what is within the curly brackets is that curly brackets
are not allowed within mapping clauses. The definition of comments and quotes inside mapping clausesis
not specified by this standard; it is recommended that they be the same as those given in this standard. The
Arden Syntax conventions for variable names, such as case insensitivity or the treatment of the as white
space, need not be observed in amapping clause. A <mapping> may (in an implementation-defined
manner), within the curly brackets, use Arden variables; but it cannot set any Arden variables (Arden
variables can only set by the <var>(s) on the left side of the assignment operator). Because of this, an
MLM may require some modification before it can be processed at another ingtitution, even if the other
institution's compiler is set to skip over read mappings.

It is strongly recommended that MLM authors include comments to all the mapping clauses used in an
MLM, so MLM recipients understand the intention of the mapping clause definition when sharing MLMs.
Identifiers from the UMLS Metathesaurus could aid in identifying and describing the conceptsin the
comments. Authors should also put all literals and constants in the data slot, with explanation, to allow
MLM recipients to more easily customize MLMSs.

Comments

A comment isa string of characters that begins with /* and ends with */. Comments are used to document
how the slot works, but they are ignored logically (like the and other white space). Comments do not nest
(e.g., /* A comment /* */ isasingle comment). A comment need not be preceded or followed by white
space. Thus, x/**/y isthe sameasx y.

A comment may also be specified by the characters // through line break (see Section 5.3). When // is
encountered, everything else on the lineisignored, including */.

White Space

Any string of spaces, carriage returns, line feeds, horizontal tabs, vertical tabs, form feeds, and commentsis
known as white space. White space is used to separate other syntactic elements and to format the ot for
easier reading. White spaceis required between any two tokens that may begin or end with letters, digits,
or underscores (for example, if done). They are also required between two string constants. They are
optional between other tokens (for example, 3+4 versus 3 + 4). See also Sections 5.4 and 7.1.1.1.

Page 18

07/1999

Health Level Seven © 1999. All rights reserved.

Final Standard.

Arden Syntax for Medical Logic Systems

7.2

7.2.1

7.2.1.1

7.2.2

7.2.2.1

7.2.2.2

Organization

The tokens are organized into the following constructs:

Statements

A structured slot is composed of a set of statements. Each statement specifies alogical constraint or an
action to be performed. In general, statements are carried out sequentially in the order that they appear.
These are examples of statements (each is preceded by a comment that tells what it does):

/* this assigns 0 to variable "varl" */

let varl be 0;

/* this causes the M.M nanmed "hyperkal em a" to be executed */

call “hyperkalema’;

/* this concludes "true" if the potassiumis greater than 5 */

if potassium> 5.0 then

concl ude true;

endi f;
Statement Termination

All statements except for the last statement in a slot must end with a semicolon (;). Thus, the semicolon
acts as a statement separator. If the last statement of a slot has a terminating semicolon, there must be at
least one white space between it and the double semicolon that terminates the slot (;;; isillega but ;/**/;;
is legal). For example, the logic ot could contain:

| ogi c:

| ast _potas := last potas_list;
if last_potas > 5.0 then

concl ude true;

endi f;

The syntax of the statements depends upon the individual slot. For a detailed description of the allowable
statement types in each structured slot, see Sections 10, 11 12, and 13.

Expressions

Statements are composed of reserved words, special symbols, and expressions. An expression represents a
data value, which may belong to any one of the types defined in Section 8. Expressions may contain any of
the following:

Constant

The data value may be represented explicitly using a constant like the number 3, the time 1991-03-
23T00:00:00, etc. These are valid expressions:

nul |

true

345. 4

"this is a string"

1991- 05- 01T23: 12: 23

Variable

An identifier (see Section 7.1.2) within an expression signifies a variable (see Section 7.2.3). These are
valid variables:

Health Level Seven © 1999. All rights reserved. Page 19
Final Standard 07/1999

Arden Syntax for Medical Logic Systems

7.2.2.3

7.2.3

7.23.1

7.2.3.2

varl
this_is_a_variable

a
Operator and Arguments

An expression may contain an operator and one or more sub-expressions known as arguments. For
example, in 3+4, + is an operator and 3 and 4 are arguments. The result of such an expression is a new data
value, whichis 7 in this example. Expressions may be nested so that an expression may be an argument in
another expression. These are valid expressions:

4 * cosine 5
varl = 7 and var2 = 15
(4+43) * 7

For details on operators, precedence, associativity, and parentheses, see Section 9.1.

Variables

A variable isatemporary holding area for a data value. Variables are not declared explicitly, but are
declared implicitly when they arefirst used. A variableis assigned a data value using an assignment
statement (see Section 10.2.1). When it islater used in an expression, it represents the value that was
assigned to it. For example, varl isavalid variable name. If the variable is used before it is assigned a
value, then itsvalueisnull.

Scope

The scope of avariable isthe entire MLM, not an individual slot. MLMs cannot read variables from other
MLMs directly; thus, variables used in an MLM are not available to MLMs that are called (see Section
10.2.4). Non-Arden variables may be referenced and set within mapping statements, as restricted by the
special rules for the individual mapping statements (for example, Section 11.2.3); in mapping statements,
Arden variables may be referenced but not set. It isinstitution-defined how conflicts between Arden and
non-Arden variable names are resolved.

Special Variables

Some variables, such as event variables, MLM variables, message variables, and destination variables, are
special. They can only be used in particular constructs, and not in general expressions. These variables use
special assignment statements in the data slot as defined in Section 11 (these special assignment statements
are equivalent to declarations for the special variables). Special variables can be converted to strings and
passed as arguments. The only valid operators on special variables are is [not] equal (Section 9.6.1), =
(Section 9.5.1), and <> (Section 9.5.2).

8 DATATYPES

The basic function of an MLM isto retrieve patient data, manipulate the data, come to some decision, and possibly
perform an action. Data may come from various sources, such as a direct query to the patient database, a constant in
the MLM, or the result of an operation on other data.

Dataitems may be kept in an ordered collection, called alist (ordered by position in the list, not by primary time).
Lists are described further in Section 8.8.

The data are classified into several datatypes.

Page 20

07/1999

Health Level Seven © 1999. All rights reserved.

Final Standard.

Arden Syntax for Medical Logic Systems

8.1

8.2

8.3

8.4

8.4.1

8.4.2

Null

Null is a specia datatype that signifies uncertainty. Such uncertainty may be the result of alack of
information in the patient database or an explicit null value in the database. Null results from an error in
execution, such as atype mismatch or division by zero. Null may be specified explicitly within aslot using
the word null (that is, the null constant). The following expressions result in null (each is preceded by a
comment):

/* explicit null */
nul |

/* division by zero */
3/0

/* addition of Boolean */

true + 3

Boolean

The Boolean data type includes the two truth values: true and false. The word true signifies Boolean true
and the word false signifies Boolean false.

The logical operators use tri-state logic by using null to signify the third state, uncertainty. For example,
true or null istrue. Although null is uncertain, a disunction that includes true is aways true regardless of
the other arguments. However, false or null is null because false in a digunction adds no information. See
Section 9.4 for full truth tables.

Number

Thereisasingle number type, so there is no distinction between integer and floating point numbers.
Number constants (for example, 3.4E-12) are defined in Section 7.1.4. Internally, all arithmetic isdonein
floating point. For example, 1/2 evaluatesto 0.5.

Time

The time data type refers to points in absolute time; it is also referred to as timestamp in other systems.
Both date and time-of-day must be specified. Times back to the year 1800 must be supported and times
before 1800-01-01 are not valid. Time constants (for example, 1990-07-12T00:00:00) are defined in
Section 7.1.5.

Granularity

The granularity of timeisaways infinitesimal (not discrete seconds). Times stored in patient databases
will have varying granularities. When atimeisread by the MLM, it is aways truncated to the beginning of
he granule interval. For example, if the time-of-day is recorded only to the minute, then zero seconds are
assumed; if only the date is known, then the time-of-day is assumed to be midnight.

Midnight

Midnight (that is, T00:00:00 in the time-of-day fields) is the beginning of the day to come (not the end of
day that just ended).

Health Level Seven © 1999. All rights reserved. Page 21
Final Standard 07/1999

Arden Syntax for Medical Logic Systems

8.4.3

8.4.4

8.4.5

8.5

8.5.1

8.5.2

8.5.2.1

8.5.2.2

Now

The word now is atime constant that signifies the time when the MLM started execution. Now is constant
through the execution of the MLM; that is, if now is used more than once, it will have the same value
within the same MLM. Now inside a nested MLM may be different from the now of the calling MLM.

Eventtime

One way that MLMs are evoked is by atriggering event. For example, the storage of a serum potassium in
the patient database is an event that might evoke an MLM. The word eventtime is atime constant that
signifies the time that the evoking event occurred (for example, the time that the database was updated).
The eventtime is useful because MLMs may be evoked after atime delay; using eventtime, the MLM can
query for what has occurred since the evoking event.

Triggertime

If the MLM istriggered directly by an event or another MLM, the triggertime is the same asthe
eventtime. If the MLM istriggered by a delayed trigger (see Section 13.3.2) or adelayed MLM call (see
Section 12.2.4), the triggertime is the eventtime plusthe delay time. Using triggertime, an MLM can
trigger another MLM asif the second MLM were directly triggered by the event. The following inequality
is guaranteed within asingle MLM: eventtime < triggertime < now.

Duration

The duration data type signifies an interval of time that is not anchored to any particular point in absolute
time. There are no duration constants. Instead one builds durations using the duration operators (see
Section 9.11). For example, 1 day, 45 seconds, and 3.2 months are durations.

Sub-types

The duration data type has two sub-types: months and seconds. The reason for the division is that the
number of secondsin a month or in ayear depends on the starting date. Durations of months and years are
expressed as months. Durations of seconds, minutes, hours, days, and weeks are expressed as seconds.
There are no complex durations; the sub-type must be either months or seconds, but not both. For both
types of durations, the duration amount may be a floating point value.

The printing of aduration (that is, its string version) isindependent of its internal representation. The
health care provider who reads the result of an MLM may not realize that there are two sub-types of
durations. How durations are printed is location-specific. For example, the string version of 6E+08
seconds might be 19.01 years. See Section 9.8.
Time and Duration Arithmetic
Operations among times and durations are carried out as follows:

Time - Time

The subtraction of two times always results in a seconds duration. For example, 1990-03-01T00:00:00 -
1990-02-01T00:00:00 resultsin 2419200 seconds.

Time and Seconds

The addition or subtraction of atime and a seconds duration resultsin atime. The arithmetic is
straightforward: the time is expressed as the number of seconds since some anchor point (for example,

Page 22

07/1999

Health Level Seven © 1999. All rights reserved.

Final Standard.

Arden Syntax for Medical Logic Systems

8.5.2.3

8.5.2.4

1800-01-01T00:00:00) and the number of seconds is added to or subtracted from the time. For example,
1990-02-01T00:00:00 + 2419201 seconds resultsin 1990-03-01T00:00:01.

Time and Months

The addition or subtraction of atime and a months duration resultsin atime. Thetimeis expressed in date
and time-of-day format (for example, 1991-01-31T00:00:00). Months are then added to or subtracted from
the year and month components of the date (that is, 1991-01 in the example). If theresulting timeisinvalid
due to the number of days in the new month, then the days are truncated to the last valid day of the month.
For example, 1991-01-31T00:00:00 + 1 month resultsin 1991-02-28T00:00:00. If the month hasa
fractional component (for example, 1.1 months) then integer months are used (that is, 1 month and 2
months in the example) and the result is computed through interpolation (the integer part of the months are
added; then the fractional part is used on the next month for addition and on the previous month for
subtraction). For example, 1991-01-31T00:00:00 + 1.1 months resultsin 1991-02-28T00:00:00 + (0.1 *
2629746 seconds) or 1991-03-03T01:02:54.6. Explanation:

1991-01-31T00:00:00 + 1 month = 1991-02-28T00:00:00
and
0.1 Months* 2629746 seconds/ month [from 8.5.24] = 262974.6 seconds
262974.6 seconds/ (60 seconds/ minute) / (1440 minutes/day) = 3.0436875 days
0.0436875 days * 1440 minutes/ day = 62.91 minutes
=1 hour, 2 minutes, 54.6 seconds.
therefore
0.1 months = 3 days 1 hours 2 minutes 54.6 seconds
thus
1991-01-31T00:00:00 + 1.1 months = 1991-02-28T00:00:00 + 3 days 1 hour 2 minutes 54.6 seconds
=1991-03-03T01:02:54.6

Contrary to addition and subtraction on numbers, addition and subtraction of durationsis not invertible.
For example:

1993-01-31 + 1 nonth = 1993-02- 28
1993-02-28 - 1 nmonth = 1993-01-28 (3 days earlier)

The order of operationsisimportant: (d+1 month)+1 day may have a different value than d+(1 month+1
day).
Other examples:

1991-01-31T00: 00: 00 - 2.1 nonths = 1990-11-27T00: 00: 00
1991-01-31T00: 00: 00 - 1.1 nonths = 1990-12-27T21: 36: 00
1991- 04-30T00: 00: 00 - 0.1 nonths = 1991-04- 27T00: 00: 00

Months and Seconds

Operations between months and seconds are done by first converting the months arguments to seconds
using this conversion constant: 2629746 seconds/month (the average number of secondsin amonthin the
egorian calenda QI eXampIe MONTN eCcond resuy in 2629746

Health Level Seven © 1999. All rights reserved. Page 23
Final Standard 07/1999

Arden Syntax for Medical Logic Systems

8.6

8.7

8.8

8.9

8.9.1

String

Strings are streams of characters of variable length. String constants are defined in Section 7.1.6. For
example,

"this is a string constant"

Term

Terms are currently used only to represent mimnames within a structured slot and the link text portion of a
structured link record. MImnames are used only in acall statement (see Section 10.2.4). In the future they
will be used for controlled vocabulary terms. Term constants are defined in Section 7.1.7. For example,

"m m nanme2'

"http://ww.nl mnih.gov/'

List

A list is an ordered set of elements, each of which may be null, Boolean, event, destination, message, term,
number, time, duration, or string. There are no nested lists; that is, alist cannot be the element of another
list. Lists may be heterogeneous; that is, the elementsin alist may be of different types. Thereisonelist
constant, the empty list, which is signified by using apair of empty parentheses: (). White space is allowed
within an empty list's parentheses. Other lists are created by using list operators like the comma (,) to build
lists from single items (see Section 9.2). For the output format of lists (including single element lists), see
Section 9.8. For example, these are valid lists:

4, 3, 5

3, true, 5, null
, 1

0

Query Results

The result of a database query has atime value in addition to its data value.

Queriesin the data dot retrieve data from the patient database or from other databases (for example, a
controlled vocabulary database or afinancial database). The result of a query is assigned to a variable for
usein the other slots.

Primary Time

Every item in the patient database is assumed to have some primary time (also called time of occurrence)
the primary time might signify different times. The primary time of ablood test might be the time it was
drawn from the patient (or the closest to that time), whereas the primary time of a medication order might
be the time the order was placed. If thereis no medically relevant time for a dataitem, its primary time
value should be equivalent to the eventtime (the time when the information was correct).

Implicit in every query to the patient database is a request for the primary time of the data. For example,
when one retrieves alist of serum potassiums, one actually retrieves alist of pairs. Each pair contains a
data value (the serum potassium numeric value) and atime value (for example, when the specimen was
drawn).

Page 24

07/1999

Health Level Seven © 1999. All rights reserved.

Final Standard.

Arden Syntax for Medical Logic Systems

8.9.2

8.9.3

8.9.4

Retrieval Order

Theresult of aquery is by default sorted in chronological order by the primary time of the result. The
query may specify a different sort order.

Data Value

If avariable has been assigned the result of a query, then the use of the variable aways refers to the data
value. For example, if potas is a variable that has been assigned alist of serum potassiums, then one could
use this statement to check the value of the most recent potassium measurement:

if latest potas > 5.0 then
concl ude true;

endi f;

Time Function Operator

By using the time operator (see Section 9.17), one can set or retrieve the primary time associated with a
variable or list element. The time retrieve function is describe in Section 9.17.1. Setting primary timesis
discussed in the second paragraph of Section 9.17.1. For example, one could use this statement to check
the primary time of the most recent potassium measurement:

if tine of latest potas is within the past 3 days then
concl ude true;
endi f ;
The eventtime is not necessarily the primary time of the evoking event. For example, if the storage of a

serum potassium evokes an MLM, then the eventtime is the time that the result was stored in the database,
but the primary time of the result is the time that it was drawn from the patient.

9 OPERATOR DESCRIPTIONS

9.1

9.1.1

9.1.2

General Properties

Operators are used in expressions to manipulate data. They accept one or more arguments (data val ues)
and they produce aresult (a new datavalue). The following properties apply to the operator definitionsin
this section.

Number of Arguments

Operators may have one, two, or three arguments. Some operators have two forms. one with one argument
and one with two arguments. Operators are described as follows:

unary operator: one argunent
bi nary operator: two argunents

ternary operator: three arguments

Data Type Constraints

Most operators work on only a subset of all the datatypes. Every operator description includes atype
congtraint that shows the position and allowable types of al of its arguments. Its general format islike this:

<num type> := <numtype> op <numtype>

In this constraint, op is the operator being described.

Health Level Seven © 1999. All rights reserved. Page 25
Final Standard 07/1999

Arden Syntax for Medical Logic Systems

9.1.2.1

9.1.2.2

9.1.2.3

9.1.2.4

Each num is one of the following:
1—the operator requires asingle element

k, m, or n—the operator normally takes a single element but alist with 0, 1, or more elements may be used
as described below. If the same letter appears more than once in a data type constraint, then the arguments
so indicated must have the same number of elements; otherwise the operation resultsin null. Refer to
Section 9.1.3.4 regarding the replication of the single element n times.

Each type is one of the following:
null—null data type
Boolean—Boolean data type
number—number data type
time—time data type
duration—duration data type
string—string data type
item—~not used in expressions, only in "call" statements (see 10.2.4)
any-type—null, Boolean, number, time, duration, or string
non-null—Boolean, number, time, duration, or string

ordered—number, time, duration, or string

<num:type>(s) to the right of the := indicates the data type(s) of the argument(s). If the operator is applied
to an argument with atype outside of its defined set, then null results. For example, ** is not defined for
the time data type so 3**1991-03-24T00:00:00 resultsin null. For most operators, null isnot in the
defined set, so null is returned when null is an argument. For example, null is not defined for + so 3+null
resultsin null.

<num:type> to the left of the := indicates the data type of the result. Unless stated otherwise, the operators
can aso return null regardless of the stated usual result.

9.1.3 List Handling
Except as otherwise stated, lists are treated as follows.
9.1.31
When an operator has atemplate of the form <n:type> := op <n:type> or <n:type> := <n:type> op, the
scalar operator is applied to each element of the list, producing a list with the same number of elements (if
thelist is empty, the resulting list is aso empty). For example, -(3,4,5) resultsin -3, -4, -5.
Unary operators that act thisway are:
not ...
is present
Page 26 Health Level Seven © 1999. All rights reserved.

07/1999

Final Standard.

Arden Syntax for Medical Logic Systems

...is not present
..is nul

..is not nul

..i s Bool ean
..is not Bool ean
..i's nunber

..i's not nunber
.is time

..is not tine
..is duration
..is not duration
..is string

..is not string

..ago
..year
..years
..mont h
..mont hs

.. day

.. days

.. hour
..hours
..mnute
..mnutes
..second
..seconds
time [of]
arccos [of]
arcsin [of]
arctan [of]
cos [of]
cosine [of]
sin [of]
sine [of]
tan [of]
tangent [of]
exp [of]
truncate [of]
floor [of]
ceiling [of]
log [of]

1 0g10 [of]
abs [of]
year [of]
month [of]

Health Level Seven © 1999. All rights reserved. Page 27
Final Standard 07/1999

Arden Syntax for Medical Logic Systems

9.1.3.2

9.1.3.3

Unary operators that act this way are:

Page 28

07/1999

day [of]
hour [of]
m nute [of]
second [of]
sort data ...
sort time ..

reverse ...

When an operator has atemplate of the form <1:type> := op <n:type> or <l:type> := <n:type> op, the
operator is applied to the entire list, producing a single element. For example, max(3,4,5) resultsin 5.

Unary operators that act thisway are:

count [of]
exi st [of]
avg [of]
average [of]
medi an [of]
sum [of]
stddev [of]
variance [of]
any [of]

all [of]

no [of]

mn [of]

m ni mum [of]
max [of]
maxi mum [of]
last [of]
first [of]
earliest [of]
latest [of]
string [of]
...is list
...is not list

index mn [of]

i ndex
i ndex
i ndex
i ndex

i ndex

m ni mum [of]
max [of]
maxi mum [of]
earliest [of]

latest [of]

When an operator has atemplate of the form <m:type> := op <n:type> or <m:type> := <n:type> op, the
operator is applied to the entire list, producing another list. For example, increase(11,15,13,12) resultsin

(4, -2, -1).

Health Level Seven © 1999. All rights reserved.

Final Standard.

Arden Syntax for Medical Logic Systems

sl ope [of]

increase [of]
decrease [of]

percent increase [of]
% i ncrease [of]
percent decrease [of]
% decrease [of]
interval [of]

extract characters [of]
9.1.34

When an operator has atemplate of the form <n:type> := <n:type> op <n:type>, the scalar operator is
applied pair-wise to the elements of the lists, producing alist with the same number of elements (if the list
is empty, the resulting list is a'so empty). For example, (1,2)+(3,4) resultsin (4,6) and Q)+ () resultsin ().

If one of the operandsis a single element and the other operand has n elements, the single element is
replicated n times. For example, 1+(3,4) is equivalent to (1,1)+(3,4) and resultsin (4,5).

If the number of elementsin the two arguments differ and one argument is not a single el ement, the result is
null.

Binary operators that act this way are:

...or ..

...and ...

...eq ...
s oL
<>
...ne ...

...is not equal

...is less than ...

...is not greater than or equal

...is less than or equal

...is not greater than ...

...is greater than ...

...is not less than or equal

...is greater than or equal
...is not less than ...
...is within past

...is not within past

is within same day as

Health Level Seven © 1999. All rights reserved. Page 29
Final Standard 07/1999

Arden Syntax for Medical Logic Systems

...is not within same day as ...
...is before ...

...is not before ...

...is after ...

...is not after ..

...matches pattern ...

...occur equal

...occur within past

...occur not w thin past
...occur within same day as ...
...occur not within sane day as ...
...occur before ...

...occur not bhefore ...

...occur after ..

...occur not after ...

U

..*

o

.- **
...before ...
..after ..

...round ...

The following operators are of the form <n:type> := <m:type> op <m:type>; they replicate the
arguments if necessary but may return alist with a different number of elements:

...where ...
9.1.35

When an operator has atemplate of the form <n:type> := <n:type> op; <n:type> op, <n:type>, the scalar
operator is applied triple-wise to each element of the lists, producing alist with the same number of
elements (if the list is empty, the resulting list is also empty). For example, (1,2) is within (0,2) to (3,4)
resultsin (true,true).
If one of the operandsis a single element and the other operands have n elements, the single element is
replicated n times. If two of the operands are a single element and the other operand hasn elements, the
single elements are replicated n times. For example, (1,2) is within 2 to (3,4) isequivalent to (1,2) is
within (2,2) to (3,4) and resultsin (false,true).
If the number of elementsin any pair of arguments differ and one argument is not a single element, the
resultis null.
Ternary operators that act this way are:

..iswithin ..to ..

...is not within ..to ...

..is wthin ...preceding ...

...is not within ...preceding ...

..iswithin ..following ...

...is not within ...follow ng ...

Page 30 Health Level Seven © 1999. All rights reserved.

07/1999 Final Standard.

Arden Syntax for Medical Logic Systems

9.1.3.6

..is within ..surrounding ...

...is not within ...surrounding ...
...occur within ...to ...

...occur not within ...to ...
...occur within ...preceding ...
...occur not within ...preceding ...
...occur within ...followi ng ...
...occur not within ...following ...
...occur within ...surrounding ...

...occur not within ..surrounding ...

When an operator has atemplate of the form <n:type> := op; <l:type> op, <m:type>, the operator is
applied to the entire second argument, producing a new list. The first argument must be a single element (if
not, the result of the operator is null). For example, min 2 from (5,3,4) resultsin (3, 4).

Binary operators that act this way are:

mn ...from ..

mni mum ...from ...

max ... from ...

maxi mum ...from ...

last ...from ...

first ...from ...

latest ...from ...
earliest ...from ...
index mn ...from ...
index mnimm ..from ...
index max ... from ...

i ndex maxi mum ...from ...
index latest ...from ...

index earliest ...from...

9.1.3.7
When an operator has atemplate of the form <n:type> := op; <n:type> op, <m:type>, the operator is
applied to the entire second argument, producing a new list. The first argument is typically asingle
element. For example, 1 is in (0,3) resultsin false and (1,2,3) is in (0,3) resultsin (false,false,true).
Binary operators that act this way are:
nearest ...from ...
s in ..
..is not in ..
i ndex nearest ...from ...
9.1.3.8
When an operator has atemplate of the form <n:type> := <k:type> op <m:type>, the operator is applied
to the entire two lists, producing anew list. For example, 1,(3,4) resultsin (1,3,4).
Binary operators that act this way are:
Health Level Seven © 1999. All rights reserved. Page 31

Final Standard 07/1999

Arden Syntax for Medical Logic Systems

...merge ...
el
...seqto ...
9.1.4 Primary Time Handling
Queries attach primary times to their results (see Sections 8.9.1). Some operators maintain those primary
times and others lose them. Except as otherwise stated, primary times are treated as follows.
9.141 Unary Operators
Unary operators maintain primary times. In thisexample, resultl still has primary times attached if datal
isthe result of aquery:
resultl := sin(datal);
9.14.2 Binary and Ternary Operators
Binary and ternary operators maintain primary times if all operands have primary times and al of the
primary times are equal. If any operand is missing a primary time or if the primary times are not all equal,
the primary time islost.
Example (primary times are the same, the primary timeis kept):
DataValues. 6 = 2 * 3
TimeValues:(Jan1) (Jan1) (Jan1);
Example (primary times are different, then primary timeislost):
DataValues: 42 .= 6 * 7,
TimeValues: (null) (Feb 1) (Jan 1);
9.1.5 Operator Precedence
Expressions are nested structures, which may contain more than one operator and severa arguments. The
order in which operators are executed is decided by using an operator property called precedence.
Operators groups into several precedence groups. Operators of higher precedence are performed before
operators of lower precedence. For example, the expression 3+4*5 (three plus four timesfive) is executed
asfollows: since * has higher precedence than +, it is performed first so that 4*5 resultsin 20; then + is
performed so that 3+20 resultsin 23. Parentheses can aways be used to override operator precedence.
9.151 Precedence Table
The operators are shown grouped by precedence in Annex A4.
9.1.6 Associativity
When an expression contains more than one operator within the same precedence group, the operators
associativity property decides the order of execution. The associativity of each operator is shown in Annex
A4. There arethree types of associativity:
Page 32 Health Level Seven © 1999. All rights reserved.

07/1999

Final Standard.

Arden Syntax for Medical Logic Systems

9.16.1

9.1.6.2

9.1.6.3

9.1.7

9.2

9.2.1

9.2.2

9.2.3

Left

L eft associative operators are executed from left to right. For example, 3-4-5 has two subtractions (-).
Since they are the same operator, they must be in the same precedence group. Since - isleft associative, 3-
4 is performed first resulting in (-1); then (-1)-5 is performed, resulting in (-6).

Right

Right associative operators are executed from right to left. For example, average sum 3 has two operators
in the same precedence group. Sincethey are right associative, sum 3 is performed first resulting in 3; then
average 3 is performed, resulting in 3.

Non-Associative

Non-associative operators cannot have more than one operator from the same precedence group in the same
expression unless parentheses are used. Thus the expression 2**3**4 jsillegal since ** (the
exponentiation operator) is non-associative (however, (2**3)**4 and 2**(3**4) are both legal).

Parentheses

One can use parentheses to force a different order of execution. Expressions within parentheses are always
performed before ones outside of parentheses. For example, the expression (3+4)*5 is executed as follows:
3+4 iswithin parentheses, so it is performed first regardless of precedence, resultingin 7; then * is
performed so that 7*5 resultsin 35. Similarly, (2**3)**4 isalega expression which resultsin 4096.

List Operators
The list operators do not follow the default list handling. Primary times are maintained according to
Section 9.1.4.

, (binary, left associative)

Binary , (list concatenation) appendstwo lists. Primary times are maintained in 9.2.1. ltsusageis:
<n:any-type> := <k:any-type> , <m any-type>
(4,2) := 4, 2
(4,"a",null) :

(4,"a") , null

, (unary, non-associative)

Unary , turnsasingle element into alist of length one. It does nothing if the argument is already alist. Its
usageis (where (3) means alist with 3 asits only element):

<1l:any-type> : =, <l:any-type>
(,3) :=, 3

Merge (binary, left-associative)

The merge operator appends two lists, appends asingle item to alist, or creates alist from two single
items. It then sorts the result in chronological order based on the primary times of the elements (as defined
in 9.2.4). All elements of both lists must have primary times; otherwise null is returned (the construct x
where time of It Is present canbeused to select only elements of x that have primary times).
The primary times are maintained. Merge istypically used to put together the results of two separate
gueries. The expression x merge y is equivalent to sort time (x,y). Its usage is (assuming that datal hasa
data value of 2 and atime of 1991-01-02T00:00:00, and that data2 has data values 1,3 and time values
1991-01-01T00:00:00, 1991-01-03T00:00:00):

Health Level Seven © 1999. All rights reserved. Page 33
Final Standard 07/1999

Arden Syntax for Medical Logic Systems

9.24

9.3

9.3.1

<n:any-type> : = <k:any-type> MERGE <m any-type>
(1, 2, 3) := datal MERCE data2
null := (4,3) MERGE (2,1)

Sort Operators (unary, non-associative)

The sort operators (sort data and sort time) reorder alist based on element keys, which are either the
element values (sort data) or the primary times (sort time). Direction of sorting is always ascending. For
a descending sort, reverse can be used.

When sorting by primary times, if any of the elements do not have primary times, the result isnull. (The
sort argument can always be qualified by where time of it is present, if thisisnot desired behavior.)
Elements with the same key will be kept in the same order as they appear in the argument. If any pair of
element key cannot not be compared because of type clashes, sort returns null (that is, when sorting by
data, any null value (or non-comparable value) results in null; when sorting by time, any null primary time
resultsin null). Itsusageis (assuming that datal has a data value of 30,10,20 with time values 1991-01-
01T00:00:00, 1991-02-01T00:00:00, 1991-01-03T00:00:00):

<n:any-type> : = SORT DATA <n: any-type>
<n:any-type> := SORT Tl ME <n: any-type>
(10, 20, 30) := SORT DATA datal

(30, 20, 10) := REVERSE SORT DATA datal
nul | := SORT DATA (3,1,2, null)

nul | := SORT DATA (3,"abc")

() 1= SORT TIME ()

(1, 2, 3, 3) := SORT DATA (1,3,2,3)
(30, 20, 10) := SORT TIME datal

Where Operator

The where operator does not follow the default list handling or the default time handling.

Where (binary, non-associative)

The where operator performs the equivalent of arelational select ... where ... onitsleft argument. In
general, the left argument is alist, often the result of a query to the database. The right argument is usually
of type Boolean (although thisis not required), and must be the same length as the left argument. The
result isalist that contains only those elements of the left argument where the corresponding element in the
right argument is Boolean true. If the right argument is anything else, including false, null, or any other
type, then the element in the left argument is dropped. The where operator maintains the primary time(s)
of the operand(s) to the left of WHERE. The primary time(s) of the operand(s) to the right of WHERE
aredropped. Itsusageis:

<n:any-type> := <m any-type> WHERE <m any-type>
(10,30) := (10, 20, 30,40) WHERE (true,fal se, true, 3)

Example
7.38 = (7.34, 7.38, 7.4) WHERE time of it is within 20 minutes after time of VentChange
(/116:20) (1/118:01) (/116:20) (Jan 1 02:06) (Jan 116:12)

Where handles mixed single items and lists in a manner analogous to the other binary operators. If the
right argument to where isasingle item, then if it is true, the entire left argument is kept (whether or not it

Page 34

07/1999

Health Level Seven © 1999. All rights reserved.

Final Standard.

Arden Syntax for Medical Logic Systems

isalist); if it isnot true, then the empty list isreturned. If only the left argument is a single item, then the
result isalist with as many of the single items as there are elements equal to true in the right argument. If
the two arguments are lists of different length, then a single null results (the rules in Section 9.1.3.4 are
used to replicate a single-element argument if necessary). For example,

1 := 1 WHERE true

(1,2,3) := (1,2,3) WHERE true

(1,1) := 1 WHERE (true, fal se, true)

null := (1,2,3,4) WHERE (true,false,true)

Where is generally used to select certain itemsfrom alist. Thelist is used as the |eft argument, and some
comparison operator is applied to the list in the right argument. For example, potassium_list where
potassium_list > 5.0 would select from the list those values that are greater than 5.

Where can be used to filter out invalid data. For example, if a query returns either numeric values or text
comments, the following can be used to select elements from the query that have proper numeric values:

queryResult where they are nunber

Similarly, if aquery returns some values without primary times, the following can be used to select
elements from the query that have proper primary times:

queryResult where time of it is present

In this example, the unary operator time is applied to the queryResult (which is what the value of "it" is),
resulting in alist of times (for those results that have a primary time) and nulls (for those results that do not
have a primary time). The unary operator is present isthen applied to that list, give alist of Booleans: true
where there is a primary time and false where there is no primary time. Finally, the where operator is used
to remove those values that do not have primary times.

9.3.11 It
The word it and synonym they are used in conjunction with where. To simplify where expressions, it may
be used in the right argument to represent the entire left argument. For example, potassium_list where
they > 5.0 would select those values from the list that are greater than 5. It is most useful when the left
argument is a complex expression; for example, (potassium_list + sodium_list/3) where it > 5.0 would
assign the entire expression in parentheses to it. If there are nested where expressions, it refers to the left
argument of the innermost where. If it is used outside of awhere expression, then it has avalue of null.
An implementation of the Arden Syntax may choose to flag use of it outside a where expression as an error
at compiletime.
9.4 Logical Operators:
9.4.1 Or (binary, left associative)
The or operator performsthe logical digunction of its two arguments. If either argument is true (even if
the other is not Boolean), the result istrue. If both arguments are false, the result isfalse. Otherwise the
result isnull. Itsusage is:
<n: Bool ean> : = <n:any-type> OR <n: any-type>
true := true OR fal se
false := false OR fal se
true := true OR null
null := false OR null
null := false OR 3.4
(true, true) := (true, false) OR (false, true)
0 =0 RO
Health Level Seven © 1999. All rights reserved. Page 35

Final Standard 07/1999

Arden Syntax for Medical Logic Systems

Itstruth table is given here. Other means any of these data types: null, number, time, duration, or string.

OR TRUE FALSE Other (Right
argument)
(Left TRUE TRUE TRUE TRUE
argument) FALSE TRUE FALSE NULL
other TRUE NULL NULL
9.4.2 And (binary, left associative)
The and operator performs the logical conjunction of itstwo arguments. If either argument is false (even if
the other is not Boolean), the result is false. If both arguments are true, the result istrue. Otherwise the
result isnull. Itsusage is:
<n: Bool ean> : = <n:any-type> AND <n: any-type>
false := true AND fal se
null := true AND null
false := fal se AND nul |
Itstruth table is given here. Other means any of these data types: null, number, time, duration, or string.
AND TRUE FALSE other (Right
argument)
(Left TRUE TRUE FALSE NULL
argument)
FALSE FALSE FALSE FALSE
other NULL FALSE NULL
9.4.3 Not (unary, non-associative)
The not operator performs the logical negation of its argument. Thus true becomes false, false becomes
true, and anything else becomes null. Its usageiis:
<n: Bool ean> : = NOT <n: any-type>
true := NOT fal se
nul |l := NOT null
Itstruth table is given here. Other means any of these data types: null, number, time, duration, or string.
NOT TRUE FALSE other
FALSE TRUE NULL
9.5 Simple Comparison Operators:
9.5.1 = (binary, non-associative)
The = operator has two synonyms: eq and is equal. It checks for equality, returning true or false. If the
arguments are of different types, false isreturned. If an argument is null, then null is aways returned.
Primary times are not used in determining equality; the primary time of the result is determined by the rules
in Section 9.1.4. Itsusageis:
<n: Bool ean> : = <n:non-null> = <n:non-nul | >
false := 1 =2
(null,true, false) := (1,2,"a") = (null,2,3)
null = (3/0) = (3/0)
null :=5 = ()
null = (1,2,3) = ()
Page 36 Health Level Seven © 1999. All rights reserved.
07/1999 Final Standard.

Arden Syntax for Medical Logic Systems

O :=null =()
0O :=0=0

null :=5 = nul

(null,null,null) :=(1,2,3) = nul

null := null = nul

(true,true,false) :=(1,2,3) = (1,2,4)

Use is present or exists instead of = to test whether an argument is equal to null. See Sections 9.6.15 and
9.12.3.
9.5.2 <> (binary, non-associative)

The <> operator has two synonyms: ne and is not equal. It checks for inequality, returning true or false.
If the arguments are of different types, true isreturned. If an argument is null, then null is returned. Its

usageis:
<n: Bool ean> : = <n:non-null> <> <n:non-nul | >
true := 1 <> 2(null,false,true) := (1,2,"a") <> (null, 2,3)
null := (3/0) <> (3/0)

9.5.3 < (binary, non-associative)

The < operator has three synonyms: It, is less than, and is not greater than or equal. Itisused on
ordered types; if the types do not match, null isreturned. Itsusageis:

<n: Bool ean> : = <n: ordered> < <n:ordered>

true :=1 <2

true := 1990- 03-02700: 00: 00 < 1990- 03- 10T00: 00: 00

true := 2 days < 1 year
true := "aaa" < "aab"
null := "aaa" <1

9.5.4 <= (binary, non-associative)

The <= operator has three synonyms: le, is less than or equal, and is not greater than. Itisused on
ordered types; if the types do not match, null isreturned. Itsusageis:

<n: Bool ean> : = <n: ordered> <= <n: ordered>

true := 1 <=2

true := 1990- 03- 02700: 00: 00 <= 1990- 03- 10T00: 00: 00

true := 2 days <= 1 year
true := "aaa" <= "aab"
null := "aaa" <=1

9.5.5 > (binary, non-associative)

The > operator has three synonyms: gt, is greater than, and is not less than or equal. It isused on
ordered types; if the types do not match, null isreturned. Itsusageis:

<n: Bool ean> : = < n:ordered> > <n:ordered>

false :=1 > 2

fal se := 1990- 03- 02700: 00: 00 > 1990- 03- 10T00: 00: 00

false := 2 days > 1 year
false : = "aaa" > "aab"
Health Level Seven © 1999. All rights reserved. Page 37

Final Standard 07/1999

Arden Syntax for Medical Logic Systems

9.5.6

9.6

9.6.1

9.6.2

9.6.3

9.6.4

9.6.5

9.6.6

null := "aaa" > 1

>= (binary, non-associative)

The >= operator has three synonyms: ge, is greater than or equal, and is not less than. Itisused on
ordered types; if the types do not match, null isreturned. Itsusageis:

<n: Bool ean> : = <n: ordered> >= <n: ordered>

false := 1 >= 2

fal se := 1990- 03- 02700: 00: 00 >= 1990- 03- 10T00: 00: 00

false := 2 days >= 1 year

false := "aaa" >= "aab"

null := "aaa" >= 1

Is Comparison Operators

The following comparison operators include the word is, which can be replaced with are, was, or were.
An optional not may follow the is, negating the result (using the definition of not, see Section 9.4.3). For
example, these are valid:

surgery_tinme WAS BEFORE di scharge_tine
surgery_tinme |'S NOT AFTER di scharge_tine
Is [not] Equal (binary, non-associative)

See Section 9.5.1.

Is [not] Less Than (binary, non-associative)

See Section 9.5.3.

Is [not] Greater Than (binary, non-associative)

See Section 9.5.5.

Is [not] Less Than or Equal (binary, non-associative)

See Section 9.5.4.

Is [not] Greater Than or Equal (binary, non-associative)

See Section 9.5.6.

Is [not] Within ... To (ternary, non-associative)

The is within ... to operator checks whether the first argument is within the range specified by the second
and third arguments; the rangeisinclusive. It isused on ordered types; if the types do not match, null is
returned. Itsusageis:

<n: Bool ean> : = <n:ordered> IS WTHI N <n: ordered> TO <n: or der ed>

true := 3 1ISWTHN 2 TO5

true := 1990-03-10T00:00: 00 I'S WTHI N 1990- 03-05T00: 00: 00 TO 1990-03-
15T00: 00: 00

true := 3 days IS WTHIN 2 days TO 5 nont hs

Page 38

07/1999

Health Level Seven © 1999. All rights reserved.

Final Standard.

Arden Syntax for Medical Logic Systems

true := "ccc" IS WTHIN "a" TO "d"
9.6.7 Is [not] Within ... Preceding (ternary, non-associative)
The is within ... preceding operator checks whether the left argument is within the inclusive time period
defined by the second two arguments (from the third argument minus the second to the third). Itsusageis:
<n: Bool ean> := <n:time> | S WTHI N <n: durati on> PRECEDI NG <n:ti me>
true := 1990-03-08T00: 00: 00 IS WTHI N 3 days PRECEDI NG 1990- 03- 10T00: 00: 00
9.6.8 Is [not] Within ... Following (ternary, non-associative)
The is within ... following operator checks whether the left argument is within the inclusive time period
defined by the second two arguments (from the third argument to the third plus the second). Itsusageis:
<n: Bool ean> := <n:time> IS WTHI N <n: duration> FOLLON NG <n: ti me>
fal se := 1990- 03-08T00: 00: 00 |'S WTHI N 3 days FOLLOA NG 1990- 03- 10T00: 00: 00
9.6.9 Is [not] Within ... Surrounding (ternary, non-associative)
The is within ... surrounding operator checks whether the left argument is within the inclusive time period
defined by the second two arguments (from the third argument minus the second to the third plus the
second). Itsusageis:
<n: Bool ean> := <n:time> | S WTHI N <n: duration> SURROUNDI NG <n:ti me>
true := 1990-03-08T00: 00: 00 IS WTHI N 3 days SURROUNDI NG 1990- 03- 10T00: 00: 00
9.6.10 Is [not] Within Past (binary, non-associative)
The is within past checks whether the left argument is within the time period defined by the right argument
(now minus the right argument to now). Its usage is (assuming now is 1990-03-09T00:00:00):
<n: Bool ean> := <n:time> | S WTH N PAST <n: duration>
true := 1990-03-08T00: 00: 00 |'S W THI N PAST 3 days
9.6.11 s [not] Within Same Day As (binary, non-associative)
The is within same day as operator checks whether the left argument is on the same day as the second
argument. ltsusageis:
<n: Bool ean> := <n:time> |S WTH N SAME DAY AS <n:time>
true := 1990-03-08T11:11:11 IS W THI N SAME DAY AS 1990- 03- 08T01: 01: 01
9.6.12 Is [not] Before (binary, non-associative)
The is before operator checks whether the left argument is before the second argument; it is not inclusive.
Itsusageis:
<n: Bool ean> := <n:time> | S BEFORE <n:ti me>
fal se : = 1990- 03- 08T00: 00: 00 | S BEFORE 1990- 03- 07700: 00: 00
fal se : = 1990- 03- 08T00: 00: 00 | S BEFORE 1990- 03- 08T00: 00: 00
9.6.13 s [not] After (binary, non-associative)
The is after operator checks whether the left argument is after the second argument; it is not inclusive. Its
usageis:
<n: Bool ean> := <n:time> | S AFTER <n:ti me>
Health Level Seven © 1999. All rights reserved. Page 39

Final Standard 07/1999

Arden Syntax for Medical Logic Systems

true := 1990-03-08T00: 00: 00 I S AFTER 1990-03- 07T00: 00: 00

9.6.14 s [not] In (binary, non-associative)
The s in operator does not follow the default list handling. It checks for membership of the left argument
in the right argument, which isusualy alist. If the left argument isalist, then alist results; if the left
argument isasingle item, then asingleitem results. If the right argument isasingle item, then it is treated
asalist of length one. Primary times are retained only if they match (that is, the = operator is used for
determining membership, except that null will match). Itsusageis:
<n: Bool ean> : = <n:any-type> IS I N <m any-type>
false := 2 ISIN (4,5,6)
(false,true) :=(3,4) ISIN(4,5,6)
true :=null is in (1/0,2)
9.6.15 s [not] Present (unary, non-associative)
The is present operator has one synonym: is not null. (Similarly, is not present has one synonym: is
null.) It returnstrue if the argument is not null, and it returns false if the argument isnull. Is present
never returns null. This operator is used to test whether an argument is null since arg=null always results
in null regardless of arg. Itsusageiis:
<n: Bool ean> : = <n:any-type> | S PRESENT
true := 3 |'S PRESENT
false := null |I'S PRESENT
(true,false) := (3,null) IS PRESENT
(false,true) := (3,null) I'S NULL
9.6.16 Is [not] Null (unary, non-associative)
See Section 9.6.15.
9.6.17 s [not] Boolean (unary, non-associative)
The is Boolean operator returns true if the argument's data type is Boolean. Otherwise it returns false. Is
Boolean never returnsnull. Itsusageis:
<n: Bool ean> : = <n:any-type> | S BOOLEAN
true := false | S BOOLEAN
true := 3 |'S NOT BOOLEAN
(false,true,false) := (null,false,3) IS BOOLEAN
9.6.18 Is [not] Number (unary, non-associative)
The is number operator returnstrue if the argument's data type is number. Otherwise it returns false. Is
number never returns null. ltsusageis:
<n: Bool ean> : = <n:any-type> | S NUVBER
true := 3 |'S NUMBER
false := null |I'S NUMBER
The is number isuseful for ensuring that alist is all numbers before an aggregation operator is applied.
This avoids returning null. For example,
sum(serum K where it | S NUMBER)
Page 40 Health Level Seven © 1999. All rights reserved.

07/1999

Final Standard.

Arden Syntax for Medical Logic Systems

9.6.19

9.6.20

9.6.21

9.6.22

9.7

9.7.1

Is [not] String (unary, non-associative)

The is string operator returns true if the argument's datatype is string. Otherwiseit returns false. Is
string never returns null. Itsusageis:

<n: Bool ean> : = <n:any-type> | S STRI NG

true := "asdf" 1S STRING

false := null IS STRING

Is [not] Time (unary, non-associative)

The is time operator returnstrue if the argument's datatypeistime. Otherwiseit returns false. Is time
never returnsnull. Itsusageis:

<n: Bool ean> : = <n:any-type> IS TI ME

true := 1991-03-12T700: 00: 00 IS TI ME

false := null IS TIME

Is [not] Duration (unary, non-associative)

The is duration operator returns true if the argument's data type is duration. Otherwiseit returns false. Is
duration never returns null. Itsusageis:

<n: Bool ean> : = <n:any-type> | S DURATI ON

true := (3 days) | S DURATI ON

false := null |I'S DURATI ON

Is [not] List (unary, non-associative)

The s list operator returns true if the argument isalist. Otherwiseit returns false. Is list never returns
null. Itsusageis:

<1: Bool ean> : = <n:any-type> IS LI ST

true := (3, 2, 1) IS LIST

False := 5 IS LIST

false := null IS LIST

The is list operator does not follow the default list handling because it does not operate on each item in the
argument, but rather operates on the argument as awhole. Thusit never returnsalist. Notice the
difference:

true := (3, 2, "asdf") IS LIST
(true, true, false) := (3, 2, "asdf") IS NUMBER

Occur Comparison Operators:

General Properties:

The following comparison operators are analogous to the is comparison operatorsin Section 9.6. They use
the word occur instead of is. The word occur can be replaced with occurs or occurred. An optiona not
may follow the occur, negating the result (using the definition of not, see Section 9.4.3).

The effect is that rather than using the left argument directly, the primary time of the left argument is used
instead (that is, the time of the left argument is used; see Section 9.17). The following pairs are equivalent
expressions:

time of var IS NOT BEFORE 1990-03-05T11:11:11

Health Level Seven © 1999. All rights reserved. Page 41
Final Standard 07/1999

Arden Syntax for Medical Logic Systems

var OCCURRED NOT BEFORE 1990-03-05T11:11:11

time of surgery IS WTH N THE PAST 3 days
surgery OCCURRED W THI N THE PAST 3 days

time(a) 1S WTH N 1990- 03-05T11: 11: 11 TO ti me(b)
a OCCURRED W THI N 1990- 03- 05T11: 11: 11 TO ti me(b)

In the following operator examples, data is the result of a query; its primary time is 1990-03-05T11:11:11;
and now is 1990-03-06T00:00:00.

9.7.2 Occur [not] Equal (binary, non-associative):
<n: Bool ean> : = <n:any-type> OCCUR EQUAL <n:tine>
false := data OCCURED EQUAL 1990- 03- 01700: 00: 00
9.7.3 Occur [not] Within ... To (ternary, non-associative):
<n: Bool ean> : = <n:any-type> OCCUR WTHI N <n:time> TO <n:ti me>
true := data OCCURED W THI N 1990- 03- 01T00: 00: 00 TO 1990- 03- 11700: 00: 00
9.7.4 Occur [not] Within ... Preceding (ternary, non-associative):
<n: Bool ean> : = <n:any-type> OCCUR W THI N <n: dur ati on> PRECEDI NG <n: ti ne>
false : = data OCCURRED W THI N 3 days PRECEDI NG 1990- 03- 10700: 00: 00
9.7.5 Occur [not] Within ... Following (ternary, non-associative):
<n: Bool ean> : = <n:any-type> OCCUR W THI N <n: durati on> FOLLON NG <n: ti ne>
false := data OCCURRED W THI N 3 days FOLLOA NG 1990- 03- 10T00: 00: 00
9.7.6 Occur [not] Within . . . Surrounding (ternary, non-associative):
<n: Bool ean> : = <n:any-type> OCCUR W THI N <n: dur ati on> SURROUNDI NG <n: ti me>
false := data OCCURED W THI N 3 days SURROUNDI NG 1990- 03- 10T00: 00: 00
9.7.7 Occur [not] Within Past (binary, non-associative):
<n: Bool ean> : = <n:any-type> OCCUR W THI N PAST <n: durati on>
true := data OCCURED W THI N PAST 3 days
9.7.8 Occur [not] Within Same Day As (binary, non-associative):
<n: Bool ean> : = <n:any-type> OCCUR W THI N SAME DAY AS <n:ti me>
false := data OCCURED W THI N SAME DAY AS 1990- 03- 08T01: 01: 01
9.7.9 Occur [not] Before (binary, non-associative):
<n: Bool ean> : = <n: any-type> OCCUR BEFORE <n:ti me>
true := data OCCURRED BEFORE 1990- 03- 08T01: 01: 01
9.7.10 Occur [not] After (binary, non-associative):
<n: Bool ean> : = <n:any-type> OCCUR AFTER <n:ti me>
false : = data OCCURED AFTER 1990- 03- 08T01: 01: 01
Page 42 Health Level Seven © 1999. All rights reserved.

07/1999

Final Standard.

Arden Syntax for Medical Logic Systems

9.8 String Operators
The string operators do not follow the default list handling or the default primary time handling.
9.8.1 || (binary, left associative)
The || operator (string concatenation) converts its arguments to strings and then concatenates those strings
together. The null datatype is converted to the string null and then appended to the other argument. Thus
|| never returns null. Lists are converted to strings and then appended to the other argument; the list is
enclosed in parentheses and the elements are separated by , with no separating blanks. The string
representation of Booleans, numbers, times, and durations is location-specific to allow for the use of the
native language. The formatted with operators %z operator is used to convert values to strings (see
Section 9.8.2). Thestring operator is a generalization of the || operator (see Section 9.8.3), except that the
string operator does not do anything specia for lists. The primary times of its arguments are lost. Its usage
is:
<l:string> := <many-type> || <n:any-type>
"nul 13" :=null || 3
"45" 1= 4 || 5
"4, 7four” 1= 4.7 || "four”
"true" :=true ||
"3 days left" := 3 days || " left"
"on 1990-03-15T13:45:01" := "on " || 1990-03-15T13:45: 01
"list=(1,2,3)" :="list="]] (1,2,3)
9.8.2 Formatted with (binary, left-associative)
The formatted with operator allows aformatting string to be used for additional control over how data
items are output. The formatting string is similar to the ANSI C language printf control string, with
additional ability to format an Arden time. The primary times of its arguments are lost.
<string> := <data> formatted with <format_string>
"01::02::03" :=(1,2,3) formatted with "9%.2d:: 9%. 2d: : %R. 2d"
"The result was 10.61 ng"
;= 10.60528 formatted with "The result was % 2f ng"
"The date was Jan 10 1998"
:= 1998-01-10T17:25:00 fornatted with "The date was % 2t"
"The year was 1998"
:= 1998-01-10T17: 25: 00 formatted with "The year was % Ot"
/* 1 onger exanple */
a = "ten",
b := "twenty";
c :="thirty";
f:="%, %, % or nore";
"ten, twenty, thirty or nmore" := (a, b, c) formatted with f;
Health Level Seven © 1999. All rights reserved. Page 43

Final Standard 07/1999

Arden Syntax for Medical Logic Systems

9.8.3

9.8.4

If data isasingleitem, it serves as the single parameter for format string substitution. If data isalist, the
list is not formatted asalist. Instead, it isassumed to be alist of parameters for format string substitution.
Parameters are substituted into the format string as described below, which becomes the result of the
operation.

A format string consists of aliteral string and typically contains 1 or more format specifications.

A format specification, which consists of optional and required fields, has the following form:
% flags][w dth][.precision]type

Each field of the format specification is a single character or a number signifying a particular format
option. The simplest format specification contains only the percent sign and a type character (for example,
%s). If apercent signisfollowed by acharacter that has no meaning as aformat field, the character is not
revised. For example, to print a percent-sign character, use %%.

Note that to retain compatibility with C language functions, several formatting type specifiers have been
retained that will probably not be useful to the Arden MLM author. The most likely format specification
types an MLM author will use are:

% (for outputting special characters)

Y%s (string width control)

% (integer formatting)

% (time formatting)

%e (floating point nunber formatting with exponent)

% (floating point nunber formatting w thout exponent)
% (floating point nunber formatting using % or %)

A complete description of supported types within the format specification can be found in Annex A5.

String ... (unary, right associative)

The string operator expects a string or list of strings asits argument. It returns a single string made by
concatenating all the elements, asthe || operator (see Section 9.8.1). If the argument is an empty list, the
result is the empty string (""). The element operator (Section 9.12.18) can be used to select certain items
fromthelist. The primary times of itsarguments are lost. Itsusageis:

<1l:string> := STRING <m any-type>
STRING ("a","b","c")
STRING ("a", "bc")
" 1= STRING ()
"edcba" := STRI NG REVERSE EXTRACT CHARACTERS "abcde"

"abc"

"abc"

Matches pattern (binary, non-associative)

The effect of this operator is similar to the LIKE operator in SQL (1SO/ 1EC 9075). Matches pattern is
used to determine whether or not a particular string matches a pattern. This operator expects two string
arguments. Thefirst argument is a string to be matched, and the second is the pattern used for matching.
Matches pattern returns a Boolean value: true if the pattern of the second argument matches the first
argument and falseif it does not. The first argument also may be alist of strings, in which case the result is
alist of Boolean values, each corresponding to the match between one string and the pattern of the second
argument. If the arguments are not strings, null isreturned. Matching is case-insensitive. The primary
time of the arguments are lost.

Page 44

07/1999

Health Level Seven © 1999. All rights reserved.

Final Standard.

Arden Syntax for Medical Logic Systems

The pattern of the second argument may be any legal string character. In addition, two wild-card characters
may be used. The underscore () will match exactly any one character. The percent sign (%) will match O
to arbitrarily many characters. In order to match one of the literal wild-card character, precede it with an
escape (\) character.

<n : Boolean> := <k : string> MATCHES PATTERN <m: string>

<n : list of Boolean> := <k : list of strings> MATCHES PATTERN <m: string>
true := "fatal heart attack" MATCHES PATTERN "%heart 9% ;
false := "fatal heart attack" MATCHES PATTERN "heart"
true := "abnormal val ues" MATCHES PATTERN "%al ue_";
false := "fatal pneunpnia" MATCHES PATTERN " %pul nonary% ;
(true, false) := ("stunned nmyocardiun, "myocardial infarction") MATCHES
PATTERN
"ogyocar di unt'
true := "5% MATCHES PATTERN "_\ 9% ;
9.9 Arithmetic Operators
The behavior of time and duration data typesis explained in Section 8.5.2.
9.9.1 + (binary, left associative)
Binary + (addition) adds the left and right arguments. It can perform simple addition, add two durations, or
increment atime by a duration. Underflow or overflow resultsin null. Its usage is:
<n: nunber > : = <n: nunber> + <n: nunber >
6 :=4 + 2
() :=5+()
null :=(1,2,3) + ()
() :=null + ()
null :=5 + nul
(null,null,null) :=(1,2,3) + nul
null := null + nul
<n:duration> := <n:duration> + <n:duration>
3 days := 1 day + 2 days
<n:tinme> := <n:tinme> + <n:duration>
1990- 03- 15T00: 00: 00 : = 1990- 03- 13T00: 00: 00 + 2 days
1993- 05-17T00: 00: 00 : = 0000-00-00 + 1993 years + 5 nonths + 17 days
<n:tinme> := <n:duration> + <n:tinme>
1990- 03- 15T00: 00: 00 : = 2 days + 1990-03-13T00: 00: 00
9.9.2 + (unary, non-associative)
Unary + has no effect on itsargument if it isof avalid type. Itsusageis:
<n: nunber> : = + <n: nunber>
2:=+2
null := + "asdf"
<n:duration> := + <n:duration>
2 days := + 2 days
Health Level Seven © 1999. All rights reserved. Page 45

Final Standard 07/1999

Arden Syntax for Medical Logic Systems

9.9.3 - (binary, left associative)
Binary - (subtraction) subtracts the right argument from the left. It can perform numeric subtraction,
subtract two durations, decrement atime by a duration, or find the duration between two times. Underflow
or overflow results in null. In writing expressions, care must be taken that the subtraction operator is not
confused with the "-"" in time constant (Section 7.1.5). Any ambiguity isresolved in favor of time
constants. Its usageis:
<n: nunber > : = <n:nunber> - <n: nunber>
4:=6- 2
<n:duration> := <n:duration> - <n:duration>
1 day := 3 days - 2 days
<n:time> := <n:time> - <n:duration>
1990- 03- 13T00: 00: 00 : = 1990- 03- 15T00: 00: 00 - 2 days
<n:duration> := <n:time> - <n:time>
2 days := 1990-03- 15T00: 00: 00 - 1990- 03- 13T00: 00: 00
9.9.4 - (unary, non-associative)
Unary - isused for arithmetic negation; this is how one makes negative number constants. Underflow or
overflow resultsin null. One cannot put two arithmetic operators together, so the following expression is
illegal: 3 + -4. Instead one must use one of these: 3 + (-4), 3 - 4, or -4 + 3. Itsusage is:
<n:nunmber> := - <n:nunber>
(-2) :=- 2
<n:duration> := - <n:duration>
(-2) days := - (2 days)
9.9.5 *(binary, left associative)
The * operator (multiplication) multiplies the left and right arguments. Underflow or overflow resultsin
null. It can perform numeric multiplication or multiply a duration by anumber. Itsusageis:
<n: nunmber> : = <n:nunber> * <n:nunber>
8 :=4* 2
<n:duration> := <n:nunber> * <n:duration>
6 days := 3 * 2 days
<n:duration> := <n:duration> * <n:nunber>
6 days := 2 days * 3
9.9.6 / (binary, left associative)
The / operator (division) divides the left argument by the right one. It can perform numeric division, divide
aduration by a number, or find the ratio between two durations. Null results from division by zero,
underflow, or overflow. Duration unit conversion can be done with the/ operator (e.g., %2 / 1 year turns
any duration into years). Itsusageis:
<n: nunber> : = <n:nunber> / <n: nunber>
4:=81/ 2
<n:duration> := <n:duration> / <n:nunber>
2 days := 6 days / 3
<n: nunber> := <n:duration> / <n:duration>
120 := 2 minutes / 1 second
Page 46 Health Level Seven © 1999. All rights reserved.
07/1999

Final Standard.

Arden Syntax for Medical Logic Systems

36 := 3 years / 1 nonth

9.9.7 ** (binary, non-associative)

The ** operator (exponentiation) raises the left argument to the power of the right argument. Itsusageis:

<n: nunber > : = <n: nunber> ** <n:nunber>

9 :=3* 2

9.10 Temporal Operators

The behavior of time and duration data typesis explained in Section 8.5.2.

9.10.1 After (binary, non-associative)

The after operator is equivalent to addition between aduration and atime. Itsusageis:
<n:time> := <n:duration> AFTER <n:ti me>

1990- 03- 15T00: 00: 00 : = 2 days AFTER 1990- 03- 13T00: 00: 00

9.10.2 Before (binary, non-associative)

The before operator is equivalent to the subtraction of a duration from atime. ltsusageis:

<n:tinme> := <n:duration> BEFORE <n:tine>
1990- 03-11T00: 00: 00 : = 2 days BEFORE 1990- 03- 13T00: 00: 00

9.10.3 Ago (unary, non-associative)

The ago operator subtracts a duration from now, resulting in atime. Its usage is (assuming that now is
1990-04-19T00:03:15):
<n:time> := <n:duration> AGO
1990- 04- 17T00: 03: 15 : = 2 days AGO

9.11 Duration Operators

The behavior of the duration data type is explained in Section 8.5.2. Because the precedence of the
temporal operatorsislower than that of the duration operators, 3 hours before 3 days ago is parsed as (3
hours) before ((3 days) ago), and it would return what time it was three days and three hours before the
current time.

9.11.1 Year (unary, non-associative)

The year operator has one synonym: years. It creates a months duration from a number: one year is 12
months. Itsusageis:

<n:duration> := <n: nunber> YEAR

24 nmonths := 2 YEAR

9.11.2 Extract year (unary, right-associative)

The extract year operator extracts the year from atime. ltsusageis:

<n: nunber > : = EXTRACT YEAR <n:ti me>
1990 : = EXTRACT YEAR 1990-01-03T14:23:17.3
nul | := EXTRACT YEAR (1 YEAR)

Health Level Seven © 1999. All rights reserved. Page 47
Final Standard 07/1999

Arden Syntax for Medical Logic Systems

9.11.3 Month (unary, non-associative)

The month operator has one synonym: months. It creates a months duration from anumber. Itsusageis:

<n:duration> := <n: nunber> MONTH

9.11.4 Extract month (unary, right-associative)

The extract month operator extracts the month from atime. Itsusageis:

<n: nunber > : = EXTRACT MONTH <n:ti ne>
1 := EXTRACT MONTH 1990-01-03T14: 23:17.3
nul |l := EXTRACT MONTH 1

9.11.5 Week (unary, non-associative)

The week operator has one synonym: weeks. It creates a seconds duration from a number: one week is
604800 seconds. Itsusageis:

<n:duration> := <n: nunber> WEEK

9.11.6 Day (unary, hon-associative)

The day operator has one synonym: days. It creates a seconds duration from a number: one day is 86400
seconds. Itsusageis:

<n:duration> := <n:nunber> DAY

9.11.7 Extract day (unary, right-associative)

The extract day operator extracts the day from atime. Itsusageis:

<n: nunber > : = EXTRACT DAY <n:tine>
3 := EXTRACT DAY 1990-01-03T14:23:17.3
null := EXTRACT DAY "this is not a tine"

9.11.8 Hour (unary, non-associative)

The hour operator has one synonym: hours. It creates a seconds duration from a number: one hour is 3600
seconds. Itsusageis:

<n:duration> := <n: nunber> HOUR

9.11.9 Extract hour (unary, right-associative)

The extract hour operator extracts the hour from atime. Itsusageis:

<n: nunber > : = EXTRACT HOUR <n:ti me>
14 := EXTRACT HOUR 1990-01-03T14: 23:17.3
nul | := EXTRACT HOUR (1 HOUR)

9.11.10 Minute (unary, non-associative)

The minute operator has one synonym: minutes. It creates a seconds duration from a number: one minute
is 60 seconds. Itsusageis:

<n:duration> := <n:nunber> M NUTE

Page 48 Health Level Seven © 1999. All rights reserved.

07/1999 Final Standard.

Arden Syntax for Medical Logic Systems

9.11.11 Extract minute (unary, right-associative)

The extract minute operator extracts the minute from atime. Itsusageis:

<n: nunber> : = EXTRACT M NUTE <n:ti me>
23 : = EXTRACT M NUTE 1990- 01- 03T14: 23:17.3
0 : = EXTRACT M NUTE 1990-01-03
nul | := EXTRACT M NUTE 0000- 00- 00

9.11.12 Second (unary, hon-associative)

The second operator has one synonym: seconds. It creates a seconds duration from anumber. Itsusageis:

<n:duration> := <n: nunber> SECOND

9.11.13 Extract second (unary, right-associative)

9.12

9.12.1

9.12.2

The extract second operator extracts the second from atime. Itsusageis:

<n: nunber > : = EXTRACT SECOND <n:ti ne>
17.3 := EXTRACT SECOND 1990- 01-03T14:23:17.3
null := EXTRACT SECOND (1 second)

Aggregation Operators:

General Properties:

The aggregation operators do not follow the default list handling, or the default primary time handling.
They perform aggregation on alist. That is, they take alist as an argument (they are all unary) and return a
singleitem as aresult. Unless otherwise noted, if al the elements of the list have the same primary time,
the result maintains that primary time (otherwise the primary timeislost). An argument that isasingle
itemistreated as alist of length one.

Each of the operators may be followed by the word of. Parentheses are not required. For example, these
aredll the same:

SUM a_li st

SUM OF a_list

SUMa_list)

SUM OF(a_list)

Multiple aggregation and transformation operators (for example, see Section 9.14) may be placed in an
expression without parentheses; for example:

AVERACGE OF LAST 3 FROM a_li st

Count (unary, right associative)

The count operator returns the number of items (including null items) in alist. Count never returns null.
The result loses the primary time. Itsusageis:
<1: nunber> := COUNT <n:any-type>
4 = COUNT (12,13,14,null)
1 := COUNT "asdf"
0 := COUNT ()
1 := COUNT null

Health Level Seven © 1999. All rights reserved. Page 49
Final Standard 07/1999

Arden Syntax for Medical Logic Systems

9.12.3 Exist (unary, right associative)

The exist operator has one synonym: exists. It returnstrue if thereis at least one non-null itemin alist of
any type. Exist never returns null. If al the elements of the list have the same primary time, the result
maintains that primary time (otherwise the primary timeislost). Itsusageis:
<1: Bool ean> : = EXI ST <n: any-type>

true := EXI ST (12,13, 14)

false : = EXI ST null

false := EXIST ()

true := EXI ST ("plugh",null)

9.12.4 Average (unary, right associative)

The average operator has one synonym: avg. It calculates the average of a number, time, or duration list.
If al the elements of the list have the same primary time, the result maintains that primary time (otherwise
the primary timeislost). Itsusageis:
<1: nunber> : = AVERAGE <n: nunber >
14 = AVERAGE (12,13, 17)
3 := AVERAGE 3
nul |l := AVERAGE ()
<l:time> := AVERAGE <n:time>
1990- 03- 11T03: 10: 00 : = AVERAGE (1990- 03- 10T03: 10: 00, 1990- 03- 12T03: 10: 00)
<l:duration> := AVERAGE <n:duration>
3 days := AVERAGE (2 days, 3 days, 4 days)

9.12.5 Median (unary, right associative)

The median operator calculates the median value of a number, time, or duration list. Thelist isfirst sorted.
If thereis an odd number of items, it selects the middle value. If thereisan even number of items, it
averages the middle two values. If thereisatie, then it selects the latest of those elements that have a
primary time. If asingle element is selected or if the two selected elements of the list have the same
primary time, the result maintains that primary time (otherwise the primary timeislost). Itsusageis:
<1: nunber> : = MEDI AN <n: nunber >
13 := MEDI AN (12,17, 13)
3 := MEDIAN 3
null := MEDI AN ()
<l:time> := MEDI AN <n:time>

1990-03-11T03: 10: 00 = MEDI AN (1990-03-10T03: 10: 00, 1990-03-11T03: 10: 00,
1990- 03- 28T03: 10: 00)

<l:duration> := MEDI AN <n: duration>
3 days := MEDIAN (1 hour, 3 days, 4 years)

9.12.6 Sum (unary, right associative)

The sum operator calculates the sum of a number or duration list. If al the elements of the list have the
same primary time, the result maintains that primary time (otherwise the primary timeislost). Itsusageis:
<1: nunber> : = SUM <n: nunber >
39 := SUM (12,13, 14)
:= SUM 3
1= SUM ()
Page 50 Health Level Seven © 1999. All rights reserved.

3
0

07/1999 Final Standard.

Arden Syntax for Medical Logic Systems

9.12.7

9.12.8

9.12.9

<l:duration> := SUM <n: duration>
7 days := SUM (1 day, 6 days)

stddev (unary, right associative)

The stddev operator returns the sample standard deviation of anumeric list. If al the elements of the list
have the same primary time, the result maintains that primary time (otherwise the primary timeislost). Its

usageis:
<1: nunber> : = STDDEV <n: nunber >
1.58113883 : = STDDEV (12, 13, 14, 15, 16)
null := STDDEV 3
null := STDDEV ()

Variance (unary, right associative)

The variance operator returns the sample variance of anumeric list. If al the elements of the list have the
same primary time, the result maintains that primary time (otherwise the primary timeislost). Itsusageis:
<1: nunmber> : = VARI ANCE <n: nunber >
2.5 .= VAR ANCE (12, 13, 14, 15, 16)
nul | = VAR ANCE 3
VARI ANCE ()

nul |

Minimum (unary, right associative)

The minimum operator has one synonym: min. It returns the smallest value in a homogeneous list of an
ordered type (that is, all numbers, all times, al durations, or al strings), using the <= operator (see Section
9.5.4). If thereisatie, it selects the element with the latest primary time. The primary time of the selected
argument is maintained. Itsusageis:

<1l:ordered> := M N MUM <n: or der ed>
12 := M NITMWM (12, 13, 14)

3:=MN3
null := MN MM ()
null := M N MM (1, "abc")

9.12.10 Maximum (unary, right associative)

The maximum operator has one synonym: max. It returns the largest value in a homogeneous list of an
ordered type, using the >= operator (see Section 9.5.6). If thereisatie, it selects the element with the latest
primary time. The primary time of the selected argument is maintained. Itsusageis:

<1:ordered> := MAXI MUM <n: or der ed>
14 := MAXI MUM (12, 13, 14)
3 = NMAXI MM 3

null = MAXI MUM ()
null := MAXI MW (1, "abc")
Health Level Seven © 1999. All rights reserved. Page 51

Final Standard 07/1999

Arden Syntax for Medical Logic Systems

9.12.11 Last (unary, right associative)

The last operator returns the value at the end of alist, regardless of type. If thelistisempty, null is
returned. The expression last x is equivalent to x[count x]. Last on the result of atime-sorted query will
return the most recent value. The primary time of the selected argument is maintained. Note that last is
different than last specified in Arden Syntax version E 1460-92. That operator is now called latest (see
Section 9.12.16). Itsusageis:

<1:any-type> := LAST <n:any-type>
14 := LAST (12,13, 14)
3 := LAST 3
null := LAST ()

9.12.12 First (unary, right associative)

The first operator returns the value at the beginning of alist. If thelist isempty, null isreturned. The
expression First Xisequivalenttox[1]. First onthe result of atime-sorted query will return the
earliest value. The primary time of the selected argument is maintained. Note that first is different than
first specified in Arden Syntax version E 1460-92. That operator is now called earliest (see Section
9.12.17). Itsusageis:

<1:any-type> := FIRST <n:any-type>
12 := FIRST (12,13, 14)
3 := FIRST 3
null := FIRST ()

9.12.13 Any (unary, right associative)

The any operator returns true if any of theitemsin alististrue. It returnsfalse if they are all false.
Otherwiseit returns null. The special case of alist with zero members, resultsin false. If all the elements
of the list have the same primary time, the result maintains that primary time (otherwise the primary time is
lost). Itsusageis:
<1: Bool ean> : = ANY <n: any-type>

true := ANY (true,false,fal se)

false : = ANY fal se

false := ANY ()
ANY (3, 5, "red")
false := ANY (false, false)
ANY (false, null)

nul |

nul |

9.12.14 All (unary, right associative)

The all operator returns true if al of theitemsin alist are true. It returns false if any of theitemsis false.
Otherwiseit returns null. The special case of alist with zero members, resultsin true. If all the elements
of the list have the same primary time, the result maintains that primary time (otherwise the primary time is
lost). Itsusageis:

<1: Bool ean> : = ALL <n: any-type>
false := ALL (true,false, false)
false : = ALL fal se

true := ALL ()
ALL (3, 5, "red")
ALL (true, null)

nul |

nul |

Page 52

07/1999

Health Level Seven © 1999. All rights reserved.

Final Standard.

Arden Syntax for Medical Logic Systems

9.12.15 No (unary, right associative)

The no operator returns true if al of theitemsin alist are false. It returnsfalse if any of the itemsistrue.
Otherwiseit returns null. The special case of alist with zero members, resultsin true. If all the elements
of the list have the same primary time, the result maintains that primary time (otherwise the primary time is
lost). Itsusageis:

<1: Bool ean> : = NO <n: any-type>
false := NO (true, fal se, fal se)
true := NO fal se
true := NO ()
null := NO (3, 5, "red")
null := NO (false, null)

9.12.16 Latest (unary, right associative)

The latest operator returns the value with the latest primary timein alist. If any of the elements do not
have primary times, the result is null (the argument can aways be qualified by where time of it is present,
if thisisnot desired behavior). If thelist isempty, null isreturned. The primary time of the selected
argument is maintained. ltsusageis:

<1:any-type> := LATEST <n:any-type>

nul | = LATEST ()

"penicillin” := LATEST ("penicillin”, "ibuprofen”, "pseudoephedrine HCL");

(T16:40) (T16:40) (T14:05) (T14:04)

9.12.17 Earliest (unary, right associative)

The earliest operator returns the value with the earliest primary timein alist. If any of the elements do not
have primary times, the result is null (the argument can aways be qualified by where time of it is present,
if thisis not desired behavior). If thelist isempty, null isreturned. The primary time of the argument is
maintained. Itsusageis:

<1:any-type> := EARLI EST <n:any-type>

nul | = EARLIEST ()

"pseudoephedrine HCL" := EARLIEST ("penicillin”, "ibuprofen”, "pseudoephedrine HCL");

(T14:04) (T16:40) (T14:05) (T14:04)

9.12.18 Element (binary)

The element ([%2]) operator is used to select one or more elements from alist, based on ordinal position
starting at 1 for the first element. The argumentsto "index" are alist expression (to the left of the [¥2]) and
alist of integers (inside the [¥2]). The element operator maintains the primary times of the selected
arguments, even if the data have different primary times. The use of the element operator is as follows:

<n:any-type> : = <k:any-type>[n:index] 20 := (10, 20, 30, 40)[2]

() =1(10,20)[()]

(null,20) := (10,20)[1.5,2]

(10, 30,50) := (10,20, 30, 40,50)[1,3,5]

(10, 30,50) := (10,20, 30,40,50)[1,(3,5)]

(10,20, 30) := (10,20, 30,40,50)[1 seqto 3]

Health Level Seven © 1999. All rights reserved. Page 53
Final Standard 07/1999

Arden Syntax for Medical Logic Systems

9.12.19 Extract characters ... (unary, right associative)

The extract characters operator expects a string asits argument. It returns alist of the single charactersin
the string. If the argument has more than one element, the elements are first concatenated, as for the ||
operator (see Section 9.8.1). If the argument is an empty list, the result isthe empty list (). Thestring
operator (Section 9.8.3) can be used to put the list back together; and the index operator (Section 9.12.18)
can be used to select certain items from the list. The primary times of its arguments are lost. Itsusageis:

<n:string> := EXTRACT CHARACTERS <m any-type>

("a","b","c") := EXTRACT CHARACTERS "abc"

("a","b","c") := EXTRACT CHARACTERS ("ab","c")

() := EXTRACT CHARACTERS ()

() := EXTRACT CHARACTERS ""

"edcha" := STRING REVERSE EXTRACT CHARACTERS "abcde"

9.12.20 Seqto (binary, non-associative)

The seqto operator generates alist of integersin ascending order. Both arguments must be single integers;
otherwise null isreturned. If the first argument is greater than the second argument, the result is the empty
list. Theprimary timesarelost. Itsusageis:
<n: nunber > : = <1: nunber> SEQTO <1: nunber >
(2,3,4) := 2 SEQTO 4
() := 4 SEQTO 2

null := 4.5 SEQTIO 2

(2) := 2 SEQTO 2

(-3,-2,-1) := -3 SEQTO -1
(2,4,6,8) := 2 * (1 SEQTO 4)
null := (1.5 seqto 5)

9.12.21 Reverse (unary, right-associative)

The reverse operator generates a new list with the elementsin the reverse order. The primary times of its
arguments are maintained. Itsusageis:
<n:any-type> : = REVERSE <n: any-type>
(3,2,1) :=reverse (1,2,3)
(6,5,4,3,2,1) :=reverse (1 seqto 6)

() :=reverse ()

9.12.22 Index Extraction Aggregation operators

These operators behave similarly to their non-index extracting counterparts with the exception that they
return the value of the index of the element that matches the specified criteria rather than the value of the
element. These operators do not maintain primary times.

9.12.22.1 Index Latest (unary, right associative)

The index latest operator returns the index of the element with the latest primary timein alist. If any of the
elements do not have primary times, the result is null (the argument can always be qualified by where time of it is
present, if thisis not desired behavior). If thelist isempty, null is returned. Its usage is:

<1:any-type> := | NDEX LATEST <n: any-type>

nul | := | NDEX LATEST ()

Page 54 Health Level Seven © 1999. All rights reserved.

07/1999 Final Standard.

Arden Syntax for Medical Logic Systems

1 := INDEX LATEST (“penicillin”, "ibuprofen", "psuedophedrine HCL");
(T16:40) (T14:05) (T14:04)

9.12.22.2 Index Earliest (unary, right associative)

The index earliest operator returns the index of the element with the earliest primary timein alist. If any
of the elements do not have primary times, the result is null (the argument can always be qualified by
where time of it is present, if thisis not desired behavior). If thelist is empty, null isreturned. Its usage
is:
<1:any-type> := EARLI EST <n: any-type>
nul | = EARLIEST ()

3 = INDEX LATEST (“penicillin", "ibuprofen', "psuedophedrine HCL");
(T16:40) (T14:05) (T14:04)

9.12.22.3 Index Minimum (unary, right associative)

The index minimum operator has one synonym: index min. It returns the index of the element with the
smallest value in a homogeneous list of an ordered type (that is, all numbers, all times, al durations, or all
strings), using the <= operator (see Section 9.5.4). If thereisatie, it selects the element with the latest
primary time. ltsusageis:

<l:ordered> := | NDEX M Nl MUM <n: or der ed>
1 := INDEX M N MUM (12, 13, 14)
3 := INDEX MN 3
null := INDEX M NI MM ()
null := INDEX M NI MM (1, "abc")

9.12.22.4 Index Maximum (unary, right associative)

The maximum operator has one synonym: max. It returns the largest value in a homogeneous list of an
ordered type, using the >= operator (see Section 9.5.6). If thereisatie, it selects the element with the latest
primary time. Itsusageis:

<1:ordered> : = | NDEX MAXI MUM <n: or der ed>
3 := | NDEX MAXI MUM (12, 13, 14)
3 := I NDEX MAX 3
nul | := | NDEX MAXI MUM ()
null := | NDEX MAXI MUM (1, "abc")

9.12.22.5

There are no index extraction equivalents for last and first as INDEX FIRST would always return 1 and
INDEX LAST isequivalent to the COUNT operator.

9.13 Query Aggregation Operators:

9.13.1 General Properties:
The query aggregation operators do not follow the default list handling, or the default primary time
handling. They perform aggregation on alist. That is, they take alist as one argument and return asingle
item asaresult. If thelist argument isasingle item, then it istreated asalist of length one. Unless
otherwise specified, if al the elements of the list have the same primary time, the result maintains that
primary time (otherwise the primary time lost).

Health Level Seven © 1999. All rights reserved. Page 55

Final Standard 07/1999

Arden Syntax for Medical Logic Systems

9.13.2

9.13.3

9.13.4

The unary query aggregation operators (that is, those that do not include the from word) may optionally be
followed by of.

Nearest ... From (binary, right associative)

The nearest ... from operator expects atime asitsfirst argument and a list asits second argument. It
selects the item from the list whose time of occurrence is nearest the specified time. If any of the elements
do not have primary times, the result is null (the argument can always be qualified by where time of it is
present, if thisis not desired behavior). In the case of atie, the element with the smallest index is used.
The primary times of the argument are maintained. Assume that data isalist that isthe result of a query
with these values: 12, 13, 14; data has these primary times:1990-03-15T15:00:00, 1990-03-16T15:00:00,
1990-03-17T15:00:00; and now is 1990-03-18T16:00:00. The usage of the nearest ... from operator is:

<n:any-type> : = NEAREST <n:tinme> FROM <m any-type>
13 := NEAREST (2 days ago) FROM data
nul | := NEAREST (2 days ago) FROM (3, 4)
null := NEAREST (2 days ago) FROM ()

Index Nearest ... From (binary, right associative)

The index nearest ... from operator functions exactly as the nearest ... from operator (Section 9.13.2),
except that it returns the index of the element rather than the element itself. Index nearest ... from does
not maintain primary time. Assume that data isalist that is the result of a query with these values: 12, 13,
14; data has these primary times:1990-03-15T 15:00:00, 1990-03-16T 15:00:00, 1990-03-17T15:00:00; and
now is 1990-03-18T16:00:00. The usage of the index nearest ... from operator is:

<n: nunber> : = | NDEX NEAREST <n:ti me> FROM <m any-type>
2 := I NDEX NEAREST (2 days ago) FROM data
nul | := I NDEX NEAREST (2 days ago) FROM (3, 4)

Slope (unary, right associative)

The slope operator performs aregression and returns the slope for the result of a query assuming they axis
contains the values and the x axis contains the times. The result is expressed as units per day, but is
considered to be a number. Null resultsif the argument has fewer than two items. If all the elements of the
list have the same primary time, the result isnull. If one or more of the primary times is non-existent, the
result is null. The result of the slope operator does not have a primary time. Itsusageis (assuming the
same data as above):

<1: nunber> : = SLOPE <n: nunber >
1 := SLOPE data

nul | = SLOPE (3,4)

9.14 Transformation Operators:

9.14.1 General Properties:
The transformation operators do not follow the default list handling, or the default primary time handling.
They transform alist, producing another list. If the list argument isasingle item, then it istreated as alist
of length one. Theresult isawaysalist even if thereis only one item (except if there is an error, in which
case theresult is null).
Operators that are unary (that is, that do not include the from word) may optionally be followed by of.

Page 56 Health Level Seven © 1999. All rights reserved.

07/1999

Final Standard.

Arden Syntax for Medical Logic Systems

9.14.2

9.14.3

Minimum ... From (binary, right associative)

The minimum ... from operator has one synonym: min ... from. It expects anumber (call it N) asitsfirst
argument and a homogeneous list of an ordered type asits second argument. It returnsalist with the N
smallest items from the argument list, in the same order that they are in the second argument, and with any
duplicates preserved. Theresult isnull if N is not a non-negative integer. If there are not enough itemsin
the argument list, then as many as possible are returned. If thereisatie, then it selects the latest of those
elements that have a primary time. The primary times of the argument are maintained. Itsusageis:

<n: ordered> : = M N MU <1: nunber > FROM <m or der ed>
(11,12) := M N MM 2 FROM (11, 14, 13, 12)
(,3) := MNIMUM 2 FROM 3
null := MNIMJM 2 FROM (3, "asdf")
() := MN MM 2 FROM ()
() := MNMMO FROM (2, 3)
(1,2,2) := MNIMUM 3 FROM (3,5, 1,2, 4, 2)

Maximum ... From (binary, right associative)

The maximum ... from operator has one synonym: max ... from. It expects anumber (call it N) asitsfirst
argument and a homogeneous list of an ordered type asits second argument. It returns alist with the N largest items
from the argument list, in the same order that they are in the second argument, and with any duplicates preserved.
Theresult isnull if N is not anon-negative integer. If there are not enough itemsin the argument list, then as many
aspossible arereturned. If thereisatie, then it selects the latest of those elements that have a primary time. The
primary times of the argument are maintained. Itsusageis:

<n: ordered> : = MAXI MUM <1: nunber > FROM <m or der ed>
(14,13) := MAXIMUM 2 FROM (11, 14, 13, 12)
(,3) := MAXI MUM 2 FROM 3
null := MAXIMUM 2 FROM (3, "asdf")
() := MAXIMUM 2 FROM ()
() := MAXIMUM O FROM (1,2, 3)
(5,4,4) := MAXIMUIM 3 FROM (1,5, 2,4,1,4)

9.14.4 First ... From (binary, right associative)
The first ... from operator expects a number (call it N) asitsfirst argument and alist asits second
argument. It returnsalist with the first N items from the argument list. The result isnull if N is not a non-
negative integer. If the list is the result of atime-sorted query, then the returned items are the earliest in
time. If there are not enough itemsin the argument list, then as many as possible are returned. This means
that first 1 from x differs from first x if x is empty; the former returns () and the latter returns null. The
primary times of the argument are maintained. Itsusageis:
<n:any-type> : = FI RST <1: nunber> FROM <m any-type>
(11,14) := FIRST 2 FROM (11, 14, 13, 12)
(3) := FIRST 2 FROM 3
(null,1) := FIRST 2 FROM (null, 1,2, null)
() := FIRST 2 FROM ()
9.14.5 Last ... From (binary, right associative)
The last ... from operator expects a number (call it N) asitsfirst argument and alist asits second argument.
It returns alist with the last N items from the argument list. The result isnull if N is not a non-negative
integer. If thelist isthe result of atime-sorted query, then the returned items are the latest in time. If there
are not enough itemsin the argument list, then as many as possible are returned. This meansthat last 1
Health Level Seven © 1999. All rights reserved. Page 57

Final Standard 07/1999

Arden Syntax for Medical Logic Systems

from x differs from last x if x is empty; the former returns () and the latter returns null. The primary times
of the argument are maintained. ltsusageis:
<n: any-type> := LAST <1: nunber> FROM <m any-type>
(13,12) := LAST 2 FROM (11, 14, 13, 12)
(3) := LAST 2 FROM 3
(2,null) := LAST 2 FROM (null, 1,2, null)
() := LAST 2 FROM ()

9.14.6 Increase (unary, right associative)
The increase operator returns alist of the differences between successive items in a homogeneous numeric,
time, or duration list. Thereis one fewer item in the result than in the argument; if the argument is an
empty list, then null isreturned. The primary time of the second item in each successive pair is kept. Its
usageis:
<n: nunber > : = | NCREASE <m nunber >
(4,-2,-1) := INCREASE (11,15, 13, 12)
() := I NCREASE 3
nul | = | NCREASE ()
<n: duration> := | NCREASE <mti me>
(1 day) := | NCREASE (1990-03-01, 1990- 03-02)
<n:duration> := | NCREASE <m durati on>
(1 day) := INCREASE (1 day, 2 days)
9.14.7 Decrease (unary, right associative)
The decrease operator returns alist of the negative differences between successive itemsin a homogeneous
numeric, time, or duration list. Thereisone fewer item in the result than in the argument; if the argument is
an empty list, then null isreturned. Decrease isthe additive inverse of increase. The primary time of the
second item in each successive pair is kept. ltsusageis:
<n: nunber > : = DECREASE <m nunber >
(-4,2,1) := DECREASE (11,15, 13, 12)
() := DECREASE 3
nul | := DECREASE ()
<n: duration> := DECREASE <mti me>
((-1) day) := DECREASE (1990-03-01, 1990-03-02)
<n:duration> : = DECREASE <m duration>
((-1) day) := DECREASE (1 day, 2 days)
9.14.8 % Increase (unary, right associative)
The % increase operator has one synonym: percent increase. It returnsalist of the percent increase
between items in successive pairs in a homogeneous number or duration list (the denominator is the first
item in each pair; if it is zero, then null is returned). The primary time of the second item in each
successive pair iskept. Itsusageis:
<n: nunber> : = % | NCREASE <m nunber >
(36.3636, - 13. 3333) : = % | NCREASE (11, 15, 13)
() := % | NCREASE 3
nul | = % | NCREASE ()
Page 58 Health Level Seven © 1999. All rights reserved.

07/1999

Final Standard.

Arden Syntax for Medical Logic Systems

<n: nunber> : = % | NCREASE <m dur ati on>
(100) := %I NCREASE (1 day, 2 days)

9.14.9 % Decrease (unary, right associative)

The % decrease operator has one synonym: percent decrease. It returnsalist of the percent decrease
between items in successive pairs in a homogeneous number or duration list (the denominator is the first
item in each pair, if it is zero, then null is returned). The primary time of the second item in each
successive pair iskept. Itsusageis:

<n: nunber > : = % DECREASE <m nunber >
(-36.3636, 13.3333) := % DECREASE (11, 15, 13)
() := % DECREASE 3
null := % DECREASE ()
<n: nunber > : = % DECREASE <m durati on>
(-100) := % DECREASE (1 day, 2 days)

9.14.10 Earliest ... From (binary, right associative)

The earliest ... from operator expects a number (call it N) asitsfirst argument and alist asits second
argument. It returnsalist with the earliest N items from the argument list, in the order they appear in the
argument list. The result isnull if N isnot a non-negative integer. If any of the elements do not have
primary times, the result is null (the argument can always be qualified by where time of it is present, if
thisis not desired behavior). If there are not enough itemsin the argument list, then as many as possible
arereturned. Thismeansthat earliest 1 from x differs from earliest x if x is empty; the former returns ()
and the latter returns null. The primary times of the argument are maintained. Itsusageis:

<n: any-type> : = EARLI EST <1: nunber> FROM <m any-type>
() := EARLIEST 2 FROM ()

<

9.14.11 Latest ... From (binary, right associative)

The latest ... from operator expects a number (call it N) asitsfirst argument and alist asits second
argument. It returns alist with the latest N items from the argument list, in the order they appear in the
argument list. Theresult isnull if N isnot a non-negative integer. If any of the elements do not have
primary times, the result is null (the argument can always be qualified by where time of it is present, if
thisis not desired behavior). If there are not enough itemsin the argument list, then as many as possible
arereturned. Thismeansthat latest 1 from x differs from latest x if x is empty; the former returns () and
the latter returns null. The primary times of the argument are maintained. Itsusageis:

<n: any-type> : = LATEST <1: nunber> FROM <m any-type>
() := LATEST 2 FROM ()

9.14.12 Index Extraction Transformation Operators

These operators behave similarly to their non-index extracting counterparts with the exception that they
return the value of the index of the element that matches the specified criteria rather than the element itself.
These operators do not maintain primary times.

9.14.12.1 Index Minimum ... From (binary, right associative)

The index minimum ... from operator has one synonym: index min ... from. It expectsanumber (call it N) asits
first argument and a homogeneous list of an ordered type asits second argument. It returns alist with the indices of
the N smallest items from the argument list, in the same order that they are in the second argument, and with any
duplicates preserved. Theresult isnull if N is not a non-negative integer. If there are not enough itemsin the

Health Level Seven © 1999. All rights reserved. Page 59
Final Standard 07/1999

Arden Syntax for Medical Logic Systems

argument list, then as many indices as possible are returned. If thereisatie, then it selects the latest of those
elements that have a primary time. The primary times of the argument are not maintained. Itsusageis:

<n: nunber> : = | NDEX M Nl MUM <1: nunber > FROM <m or der ed>
(1,4) := INDEX M NIMUM 2 FROM (11, 14, 13, 12)
(3,4,6) := INDEX M NI MJM 3 FROM (3,5, 1,2, 4, 2)
null := INDEX MN 2 FROM (3, "asdf")
(,1) := INDEX M NIMJUM 2 FROM 3
() := INDEX M NIMJM 0 FROM (2, 3)

9.14.12.2 Index Maximum ... From (binary, right associative)

The index maximum ... from operator has one synonym: index max ... from. It expects a number (call it
N) asitsfirst argument and a homogeneous list of an ordered type as its second argument. It returnsalist
with the indices of the N largest items from the argument list, in the same order that they are in the second
argument, and with any duplicates preserved. Theresult isnull if N isnot a non-negative integer. If there
are not enough itemsin the argument list, then as many indices as possible are returned. If thereisatie,
then it selects the latest of those elements that have a primary time. The primary times of the argument are
not maintained. Itsusageis:

<n: nunber> : = | NDEX MAXI MUM <1: nunber > FROM <m or der ed>
(2,3) := INDEX MAXI MUM 2 FROM (11, 14, 13, 12)
(2,3,5) := | NDEX MAXI MUM 3 FROM (3,5, 1, 2, 4, 2)
null := | NDEX MAX 2 FROM (3, "asdf")
(,1) := I NDEX MAXI MUM 2 FROM 3
() := I NDEX MAXI MUM 0 FROM (2, 3)

9.14.12.3 First... From; Last... From

9.15

9.15.1

9.15.2

There are no INDEX extraction operator parallelsfor First ... From and Last ... From asthese can be
generated using either the seqto operator (for First ... From) or the seqto and count operators (for Last ...
From). Thusif these functions are needed, use the following:

Index First x Fromy : 1 seqto x

Index Last x Fromy : (count(y)-x) seqto count(y)

Query Transformation Operator:

General Properties:

The query transformation operator does not follow the default list handling, or the default primary time
handling. It transforms alist, producing another list. If the list argument isa singleitem, then it is treated
asalist of length one. The result isalwaysalist even if thereisonly oneitem (except if thereisan error, in
which case the result is null).

The query transformation operator can only be applied to the result of a query, sinceit requires that atime
be associated with each item in the argument list. Null isreturned if it is used on other data.

The query transformation operator may optionally be followed by of.

Interval (unary, right associative)

The interval operator returns the difference between the primary times of succeeding itemsin alist. Itis
analogousto increase. The primary times of the argument are lost. Its usageis (assuming that data isthe

Page 60

07/1999

Health Level Seven © 1999. All rights reserved.

Final Standard.

Arden Syntax for Medical Logic Systems

result of a query with these primary times: 1990-03-15T15:00:00, 1990-03-16T15:00:00, 1990-03-
18T21:00:00):

<n:duration> := | NTERVAL <m any-type>
(1 day, 2.25 days) := INTERVAL data
nul | := INTERVAL (3,4)

9.16 Numeric Function Operators

The numeric function operators are all unary functions that work with numbers. When an illegal operation
is attempted (for example, log 0) then null is returned.

9.16.1 Arccos (unary, right associative)

The arccos operator calculates the arc-cosine (expressed in radians) of its argument. Itsusageis:

<n: nunber > : = ARCCCS <n: nunber >
0 := ARCCCS 1

9.16.2 Arcsin (unary, right associative)

The arcsin operator calculates the arc-sine (expressed in radians) of its argument. Itsusageis:

<n: nunber> : = ARCSI N <n: nunber >
0 := ARCSIN 0

9.16.3 Arctan (unary, right associative)

The arctan operator calculates the arc-tangent (expressed in radians) of its argument. Itsusageis:

<n: nunber > : = ARCTAN <n: nunber >
0 := ARCTAN 0O

9.16.4 Cosine (unary, right associative)
The cosine operator has one synonym: cos. It calculates the cosine of its argument (expressed in radians).
Itsusageis:

<n: nunber > : = COSI NE <n: nunber >
1 := COSINE O

9.16.5 Sine (unary, right associative)

The sine operator has one synonym: sin. It calculates the sine of its argument (expressed in radians). Itsusageis:
<n: nunber> : = S| NE <n: nunber >

0 :=SINE O

9.16.6 Tangent (unary, right associative)

The tangent operator has one synonym: tan. It calculates the tangent of its argument (expressed in
radians). Itsusageis:

<n: nunber > : = TANGENT <n: nunber >
0 := TANGENT 0

9.16.7 Exp (unary, right associative)

The exp operator raises mathematical e to the power of its argument. ltsusageis:
Health Level Seven © 1999. All rights reserved. Page 61
Final Standard 07/1999

Arden Syntax for Medical Logic Systems

<n: nunber> : = EXP <n: nunber >
1:=EXPO
9.16.8 Log (unary, right associative)

The log operator returns the natural logarithm of its argument. Itsusageis:
<n: nunber> : = LOG <n: nunber >
0:=L0G1
9.16.9 Log10 (unary, right associative)
The log10 operator returns the base 10 logarithm of its argument. Itsusageis:
<n: nunber> := LOGLO <n: nunber>
1 := LOGLO 10
9.16.10 Int (unary, right associative)

The int operator returns the largest integer less than or equal to its argument (truncates towards negative
infinity). It issynonymous with floor (Section 9.16.11). Itsusageis:

<n: nunber> : = | NT <n: nunber>
-2 :=INT -1.5
-2 :=INT -2.0
1 := INT (1.5)

9.16.11 Floor (unary, right associative)

The floor operator is synonymous with int. It returns the largest integer less than or equal to its argument
(truncates towards negative infinity).

9.16.12 Ceiling (unary, right associative)

The ceiling operator returns the smallest integer greater than or equal to its argument (truncates towards
positive infinity). ltsusageis:
<n: nunber > : = CEl LI NG <n: nunber >
-1 := CEILING -1.5
-1 := CEILING -1.0
2 .= CEILING 1.5

9.16.13 Truncate (unary, right associative)

The truncate operator removes any fractional part of a number (truncates towards zero). Itsusageis:
<n: nunber > : = TRUNCATE <n: nunber >

-1 := TRUNCATE -1.5
-1 := TRUNCATE -1.0
1 := TRUNCATE 1.5

9.16.14 Round (binary, right associative)

The round operator rounds a number to an integer.

For positive numbers: If the fractional portion of the operand is greater than or equal to 0.5, the operator
rounds to the next highest integer. Fractional portions less than 0.5 round to the next lowest integer.

Page 62 Health Level Seven © 1999. All rights reserved.

07/1999 Final Standard.

Arden Syntax for Medical Logic Systems

For negative numbers: If the absolute value of the fractional portion of the operand is greater than or equal
0.5, the operator rounds to the next lower negative integer. Fractional portions with absolute values less

than 0.5 round to the next highest integer.

Itsusageis:

<n: nunber> : = ROUND <n: nunber >
1 := ROUND 0.5
3 := ROUND 3.4
4 := ROUND 3.5
-3 := ROUND -3.5
-3 := ROUND -3.4
-4 := ROUND -3.7

9.16.15 Abs (unary, right associative)

The abs operator returns absolute value of its argument. Itsusageis:

<n: nunber> : = ABS <n: nunber >
1.5 := ABS (-1.5)

9.16.16 sqgrt (unary, right associative)

The sqrt operator returns the square root of its argument. Because imaginary numbers are not supported,

the square root of a negative number resultsin null. Itsusageis:

<n: nunber> : = SQRT <n: nunber>
2 1= SQRT 4
null := SOQRT(-1)

9.16.17 As number (unary, non-associative)

The as number operator attempts to convert a string or Boolean to a number. If conversion to a number is
possible, the number is returned, otherwise null isreturned. The primary time of the argument is
preserved. The usual use for thiswill be to convert a string which contains a valid number representation
i.e. "123" into the represented number. If the string does not contain a valid number then the result will be
null. Boolean values are trandated at follows: Boolean TRUE isrepresented at 1 and Boolean FALSE is

represented at 0.

<n: nunber> : = <n:nuneric string> AS NUMBER;

5 :="5" AS NUMBER,
null := "xyz" AS NUMBER;

<n: nunber > : = <n: Bool ean> AS NUMBER
1 := True AS NUMBER,
0 := Fal se AS NUMBER;

<n: nunber > : = <n: nunber> AS NUMBER
6 := 6 AS NUMBER;

(7, 8, 230, 4100, null, null, 1, 0, null,

null, null) :=("7", 8

"2.3E+2", 4.1E+3, "ABC', Null, True, False, 1997-10-31T00: 00: 60, ’now, 3

days) AS NUMBER:
():= () AS NUMBER

Health Level Seven © 1999. All rights reserved.
Final Standard

Page 63
07/1999

Arden Syntax for Medical Logic Systems

9.17

9.17.1

Time Function Operator

The time function operator does not follow the default primary time handling.

Time (unary, right associative)

The time operator returns the primary time (that is, time of occurrence) of the result of avalue derived
from aquery (see Section 8.9). Null isreturned if it is used on data that has no primary time. The result of
time preserves the primary time of its argument; so time time x is equivalent to time x. Itsusageis
(assuming that data is the result of a query with one element whose primary time is: 1990-03-
15T15:00:00):

<n:tinme> := TIME [OF] <n:any-type>
1990- 03- 15T15: 00: 00 : = TI ME OF data
1990- 03- 15T15: 00: 00 : = TIME TI ME data
null := TIME (3,4)
Theinverse of the time operator (to set the primary time of avalue) can be achieved by using time on the
left side of an assignment statement. For example:
TIME [OF] <n:any-type> := <n:tinme>;
TIME datal := tinme data2;

10 LOGIC SLOT

10.1 Purpose
The logic dot uses data about the patient obtained from the data slot, manipulates the data, tests some
condition, and decides whether to execute the action slot. It isin this slot that most of the actual health
logic is abtained.

10.2 Logic Slot Statements
Thelogic dot is composed of a set of statements.

10.2.1 Assignment Statement
The assignment statement places the value of an expression into avariable. There are two equivalent
versions:

<identifier> := <expr> ;
LET <identifier> BE <expr> ;

<identifier> is an identifier; it represents the name of the variable. <expr> isavalid expression as defined
in Section 7.2.2.
Any reference to the identifier that occurs after the assignment statement will return the value that was
assigned from the expression (even if it isin another structured slot; for example, the action dat). A
subsequent assignment to the same variable will overwrite the value. If avariable is referred to before its
first assignment, null is returned (it is poor programming practice to depend on this).
The following variables cannot be re-assigned in the logic slot after they have been assigned in the data
dot: event (Section 11.2.2), mim (Section 11.2.3), and interface (Section 11.2.12). Once defined in the
data dlot, they should not change.

Page 64 Health Level Seven © 1999. All rights reserved.

07/1999

Final Standard.

Arden Syntax for Medical Logic Systems

After executing these statements, the value of variable var2 is5:

varl := 1
varl := 3;
var2 :=varl + 2

10.2.2 If-Then Statement

The if-then statement permits conditional execution based upon the value of an expression. It tests whether
the expression (<expr>) is equal to asingle Boolean true. If it is, then ablock of statements (<block>) is
executed. (A block of statementsis simply a collection of valid statements possibly including other if-then
statements; thus the if-then statement is a nested structure.) If the expressionisalist, or if itisany single
item other than true, then the block of statementsis not executed. The flow of control then continues with
subsequent statements. The if-then statement has several forms:

10.2.2.1 Simple If-Then Statement

This form executes <block1> if <exprl> istrue:

| F <expr1> THEN
<bl ock1>
ENDI F;

10.2.2.2 If-Then-Else Statement

This form executes <block1> if <exprl> istrue; otherwise it executes <block2>:

| F <expr1> THEN
<bl ock1>
ELSE
<bl ock2>
ENDI F;

10.2.2.3 If-Then-Elseif Statement

This form sequentially tests each of the expressions <exprl> to <exprN> (there may be any number of
them). When it finds one that is true, its associated block is executed. Once one block is executed, no
other expressions are tested, and no other blocks are executed. If none of the expressionsistrue, then
<blockE> is executed. The else <blockE> portion isoptional. Itsformis:

| F <expr1> THEN
<bl ock1>

ELSEI F <expr 2> THEN
<bl ock2>

ELSEI F <expr 3> THEN
<bl ock3>

ELSEI F <expr N> THEN
<bl ockN>

ELSE
<bl ockE>

ENDI F;

Health Level Seven © 1999. All rights reserved. Page 65
Final Standard 07/1999

Arden Syntax for Medical Logic Systems

10.2.2.4 Treatment of Null

It isimportant to emphasize that non-true is different from false. That is, the else portion of the if-then-
else statement is executed whether the expression is false, or null, or anything other than true. Thusthese
two if-then statements, which appear to be the same, produce different results when varl isnull.

I'F varl THEN
var2 := 0;
ELSE
var2 := 45;
ENDI F;

I F not(varl) THEN

var2 := 45;
ELSE

var2 := 0;
ENDI F;

To avoid the null problem, it is safer to test for existence first, then test for true.

IF varl is Bool ean THEN
I'F varl THEN
var2 := "varl is true";
ELSE
var2 := "varl is fal se";
ENDI F;
ELSE
var2 := "varl is null or sone other type";
ENDI F;

10.2.2.5 Treatment of Lists

Lists are aways non-true; therefore using an expression that contains a list will always produce the same
negative result. Instead, one of the Boolean aggregation operators should be used: any, all, or no (see
Sections 9.12.13, 9.12.14, and 9.12.15). For example, to execute a statement if any of the elementsin
Bool_list istrue, use:

| F any(Bool _list) THEN
var2 := 0;
ENDI F;

10.2.3 Conclude Statement

The conclude statement ends execution in the logic dot. If the expression (<expr;>) in the conclude
statement is asingle true then the action slot is executed immediately. Otherwise the whole MLM
terminates immediately. No further execution in the logic slot occurs regardless of the expression. There
may be more than one conclude statement in the logic sot, but only one will be executed in asingle run of
the MLM. Itsformis:

CONCLUDE <expr >;

The cautions for the if-then statement about null and list (in Section 10.2.2) also hold for the conclude
Statement.

Page 66 Health Level Seven © 1999. All rights reserved.

07/1999 Final Standard.

Arden Syntax for Medical Logic Systems

If no conclude statement is executed, then the logic slot terminates after it executesits last statement, and
the action dot is not executed. In effect, the default is conclude false.
These are valid conclude statements:

CONCLUCE f al se;
CONCLUDE potas > 5.0;

10.2.4 Call Statement

The call statement permits nesting of MLMs. Given an MLM filename, the MLM can be called directly
with optional parameters and return zero or more results. Given an event definition, all the MLMsthat are
normally evoked by that event can be called; the called MLMSs can be given optiona parameters and
optionally return results. Given an interface definition, the foreign function can be called directly with
optional parameters and return zero or more results. There are two basic forms, CALL and CALL...WITH,
(the pairs represent equivalent versions):

<var> := CALL <nane>,

LET <var> BE CALL <nane>;

<var> := CALL <nane> W TH <expr >;
LET <var> BE CALL <nane> W TH <expr >;

(<var>, <var>, .) := CALL <name> W TH <expr >;

LET (<var>, <var>, .) BE CALL <nane> W TH <expr >;

<var> := CALL <name> W TH <expr>, .., <expr>;

LET <var> BE CALL <name> W TH <expr>, .., <expr>;

(<var>, <var>, .) := CALL <name> W TH <expr>, .., <expr>;

LET (<var>, <var>, .) BE CALL <nane> W TH <expr>, .., <expr>;
10.2.4.1 Commas

Because argumentsto acall are separated by commas (see argument, Section 11.2.4), and commais aso
an operator (list construction, see Section 9.2.1), there is an apparent ambiguity. This ambiguity is resolved
in favor of comma as a parameter separator. Any argument expression containing the comma operator or
another operator of the same or lower precedence must be enclosed in parentheses. For example,

This call passes three arguments:
X := CALL xxx with (a,b), (c nerge d), e+f;
This call passes two arguments:
y := CALL yyy W TH exprl, expr2;
This call appears similar to the one above, but it only passes one argument :
z := CALL zzz WTH (expr3, exprd4);
10.2.4.2 <name>

<name> isan identifier that must represent either avalid MLM variable as defined by the MLM statement
in the data slot (see Section 11.2.3), avalid event variable as defined by the event statement in the data slot
(see Section 11.2.2), or avalid interface variable as defined by the interface statement in the data slot (see
Section 11.2.12).

Health Level Seven © 1999. All rights reserved. Page 67
Final Standard 07/1999

Arden Syntax for Medical Logic Systems

10.2.4.3 <expr>

<expr>s are optional parameters, which may be of any type, including list and null. Primary times
associated with the parameter are maintained.

10.2.4.4 <var>

<var> isan identifier that represents the local variable that will be assigned the result.

10.2.45 MLM Call

If <name>isan MLM variable, then when the call statement is executed, the main MLM (that is, the one
issuing the call) isinterrupted, and the named MLM iscaled. If the called MLM has argument
statement(s) in its data slot (see Section 11.2.4), then the values of the <expr>sare assigned. If acalled
MLM's argument statement has more variables (parameters) than sent by the call statement, then null is
assigned to the extra variable(s). If the call statement passes more variables (parameters) than the called
MLM is expecting, the additional parameters are silently dropped. The called MLM is executed, and when
it terminates, execution of the main MLM resumes. If the called MLM concludes true and thereis areturn
statement in the called MLM's action slot (see Section 12.2.2), then the value of its expression is assigned
to <var>. If the return statement has more values than the calling MLM can accept, then the extrareturn
values are silently dropped. If the return statement has fewer values than the calling MLM is expecting,
then the extrareturn values are null. If there is no return statement, or if the called MLM concludes false,
then null is assigned to <var>. Examples:

varl := CALL ny_m ml WTH paraml, parang;

(var2, var3, var4) := CALL ny_nl n2 WTH paranil, paran?;
10.2.4.6 Event Call

If <name> isan event variable, then execution issimilar. The main MLM isinterrupted, and all the MLMs
whose evoke dots refer to the named event are executed (see Section 13). They each receive the
parameters if there are any viatheir argument statement(s). The results of all called MLM's return
statements are concatenated together into alist; called MLMs with no return statement and called MLMs
that return asingle null are not included in the result. The order of the returned values is implementation
dependent. The result is assigned to <var>, and execution continues. <var> will alwaysbe alist, even if it
has oneitem. Example:

varl := CALL ny_event WTH paranil, parang;
10.2.4.7 Interface Call

If <name> isan INTERFACE variable, then when the call statement is executed, the MLM (that is, the one
issuing the call) is interrupted, and the named INTERFACE is called. If the called INTERFACE functions
accept variables (parameters), then the values of the <expr>sare assigned. If acalled INTERFACE's
function expects more variables (parameters) than sent by the call statement, then null is assigned to the
extravariable(s). The called function is executed, and when it finishes, execution of the MLM resumes. If
the called function returns one or more values, then the values are assigned to the <var>s. If the function
returns more values than the calling MLM can accept, then the extra return values are silently dropped. If
the INTERFACE function returns fewer values than the calling MLM is expecting, then the extravalues are
null. If the function does not return any values, then null is assigned to <var>. Examples:

varl := CALL ny_interface_functionl WTH paranil, paran?;

(varl, var2, var3) := CALL ny_interface_function2 WTH paraml, parang;
10.2.4.8 Example: Valid MLM Statement and Call Statement

Hereisavalid call statement:
Page 68 Health Level Seven © 1999. All rights reserved.

07/1999 Final Standard.

Arden Syntax for Medical Logic Systems

/* Define find_allergies MM */
find_allergies := MM 'find_allergies' frominstitution "ABC Hospital";
/* Lists two nedications and their allergens */
med_orders: = ("PEN-G', "aspirin");
med_al l ergens: = ("penicillin", "aspirin");
/* Lists three patient allergies and their reactions */
patient_allergies:= ("m k", "codeine", "penicillin");
patient_reactions:= ("hives", NULL, "anaphyl axis");
/* Passes 4 argunents and receives 3 lists as values */
(meds, allergens, reactions):= call find_allergies with ned_orders,
med_al | er gens,
patient_allergies,

pati ent_reactions;
10.2.4.9 Example: Valid Interface Statement and Call Statement
Hereisavalid interface statement:

/* Define find_allergies external function*/

find_all ergies := | NTERFACE
{\\VRul eServer\ Al l ergyRul es\nmy_institution\find_allergies.exe};

/* Lists two nedications and their allergens */
med_orders: = ("PEN-G', "aspirin");
med_al l ergens: = ("penicillin", "aspirin");
/* Lists three patient allergies and their reactions */
patient_allergies:= ("m k", "codeine", "penicillin");
patient_reactions:= ("hives", NULL, "anaphyl axis");
/* Passes 4 argunents and receives 3 lists as values */
(meds, allergens, reactions):= call find_allergies with ned_orders,
med_al | er gens,
patient_allergies,

pati ent _reactions;

10.2.5 While Loop

A simple form of looping is provided by the while loop. Itsformis:

WHI LE <expr> DO
<bl ock>
ENDDO,

The while loop tests whether an expression (<expr>) is equal to asingle Boolean true (similar to the
conditional execution introduced in the if ... then syntax - see Section 10.2.2). If itis, the block of
statements (<block>) is executed repeatedly until <expr>isnot true. If <expr>isnot true, the block is
not executed.

Authors should take care when using while loopsin MLMs, sinceit is possible to create infinite loops. It is
the author's responsibility, not the compiler, to avoid infinite looping.

Here is an example:

/* Initialize variables */

a_list:=();

Health Level Seven © 1999. All rights reserved. Page 69
Final Standard 07/1999

Arden Syntax for Medical Logic Systems

10.2.6 For Loop

()
r_list:=();

mlist:

num = 1;

/* Checks each allergen in the medications to determine if the patient is
allergic to it */

whi | e num <= (count ned_al | ergen) do

allergen: = last(first numfrom ned_al |l ergens);

al lergy_found: = (patient_allergies = allergen);

reaction: = patient_reactions where allergy_found;

medi cation: = med_orders where (ned_all ergens = allergen);

/* Adds the allergen, nmedication, and reaction to variables that will */
/* be returned to the calling MM */

If any allergy_found then

a_list:=a_list, allergen;

mlist:= mlist, nedication;

r_list:=r_list, reaction;

endi f;

/* Increnents the counter that is used to stop the while-loop */
num= num+ 1 ;

enddo;

Another form of looping is provided by the for loop. Itsformis:

FOR <identifier> in <expr> DO
<bl ock>
ENDDO,

The <expr> will usually be alist generator. If <expr> isempty or null, the block is not executed.
Otherwise, the block is executed with the <identifier> taking on consecutive elementsin <expr>. The
<identifier> cannot be assigned to inside the <block> (the compiler must produce a compilation error if
thisis attempted). After the enddo, the <identifier> becomes undefined and its value should not be used.
A compiler may flag this as an error.

Hereis an example:

/* Initialize variables */

OF

mlist:= ();

a_list:

r_list:=();

/* Checks each allergen in the medications to determine if the patient is
allergic to it */

for allergen in nmed_all ergens do
al lergy_found: = (patient_allergies = allergen);
reaction: = patient_reactions where allergy_found;
medi cation: = med_orders where (ned_all ergens = allergen);
/* Adds the allergen, nmedication, and reaction to variables that will */
/* be returned to the calling MM */
If any allergy_found then

a_list:=a_list, allergen;

Page 70
07/1999

Health Level Seven © 1999. All rights reserved.

Final Standard.

Arden Syntax for Medical Logic Systems

10.3

mlist:= mlist, nedication;
r_list:=r_list, reaction;
endi f;

enddo;
Here is an example using a set number of iterations:

for i in (1 seqto 10) do
enddo;

Logic Slot Usage

The general approach in the logic dot is to use the operators and expressions to manipulate the patient data
obtained in the data slot in order to test for some condition in the patient. Once sufficient data, positive or
negative, has been amassed the conclude statement is executed. If thereis no conclude statement in the
logic dat, then it will never conclude true, and the action slot will never be executed. Some logic slots are
simple (for example, test whether the serum potassium is greater than 5.0), and some are complex (for
example, calculate a diagnosis score).

11 DATA SLOT

111

11.2

11.21

Purpose

The purpose of the data dlot is to define local variables used in the rest of the MLM. The goal isto isolate
institution-specific portions to one slot. Within the data slot, the institution-specific portions are placed in
mapping clauses (see Section 7.1.8) so that the institution-specific part does not interfere with the MLM
syntax.

Data Slot Statements:

The following variables cannot be re-assigned in the logic slot after they have been assigned in the data
dot: event (Section 11.2.2), mim (Section 11.2.3), and interface (Section 11.2.12). Once defined in the
data dlot, they should not change.

Read Statement

The main source of dataisthe patient database. Each institution will need to do its own queries; databases
may be hierarchical, relational, object oriented, etc. The vocabulary used to represent entitiesin the
database will vary from institution to institution. (No attempt was made to select a standard vocabulary in
this version of this specification.) The read statement is designed to isolate those parts of a database query
that are specific to an ingtitution from those parts that are universal.

Thereis no restriction that a read statement must derive itsinput from the patient database. A read
statement might access amedical dictionary, for example; or it might interactively request information from
somebody (and, if the compiler does on-demand optimization, the interaction might happen only if needed).
How thisis doneisimplementation defined.

11211

The database query itself is divided into three parts: the aggregation or transformation operator, the time
constraint, and the rest of the query. For backward compatibility, parentheses may be placed around the
<mapping> WHERE <constraint> part. The general form of the read statement is (there are two
equivalent versions):

Health Level Seven © 1999. All rights reserved. Page 71
Final Standard 07/1999

Arden Syntax for Medical Logic Systems

11.2.1.2

11.2.1.3

<var> isavariablethat is assigned that result of the query.

<var>

READ <aggr egati on> <mappi ng> WHERE <constrai nt >;

LET <var> BE READ <aggregati on> <mappi ng> WHERE <constrai nt >;

Definitions

<aggregation> is an aggregation operator (see Section 9.12) or a transformation operator (see Section
9.14), which is applied after the query constraints. If <aggregation> isomitted, then all the data that
satisfy the constraints are returned. Only the following aggregation and transformation operators are

permitted:

In the default sort ordering, first and last are equivalent to earliest and latest.

exi st

sum

aver age

avg

m ni mum

mn

maxi mum

max

| ast

first
earliest
| at est

mni mum ...

mn ...

max ...

maxi mum . . .
last ...
first ...
earliest ...

latest ...

<constraint> is any occur comparison operator (see Section 9.7) with it (or they) asthe left argument. In
this case it refers to the body of the query. The comparison operator specifies the time constraints for the
guery. If <constraint> is omitted, then there are no constraints on time. Examples of valid constraints are:

they occurred within the past 3 days

it occurred before the tine of surgery

<mapping> is avalid mapping clause (see Section 7.1.8), which contains the institution-specific part of the
query enclosed in curly brackets. It contains any vocabulary terms and any query syntax that is necessary
in the institution to perform a query, except that the aggregation and time constraints are missing.

<mapping> is required.

Examples

These are valid read statements (the portions within curly brackets are arbitrary):

varl :

varl :

READ {sel ect potassiumfromresults where speci nen

READ | at est {sel ect potassiumfromresults};

“serum };

Page 72

07/1999

Health Level Seven © 1999. All rights reserved.

Final Standard.

Arden Syntax for Medical Logic Systems

LET var1l BE READ {sel ect potassiumfromresults} WHERE it occurred within the
past 1 week;

varl := READ earliest 3 from{select potassiumfromresults} WHERE it
occurred within the past 1 week;

11.2.1.4 Effect

The effect of the read statement is to execute a query, mapping the data in the patient database to a variable
that can be used elsewherein the MLM. The execution of the read statement will be institution-specific.
The time constraints must be added to whatever other constraints are within the mapping clause, and the
aggregation or transformation operator must also be added to compl ete the query.

11.2.1.5 Result Type

The result of a query includes the primary time for each item that is returned (see Section 8.9). If
<aggregation> is an aggregation operator, then the query returns asingle item. If <aggregation>isa
transformation operator or it is absent, then the query returnsalist. Thus even if the query requests an
entity that is usually singular, such as the birthdate of the patient, alist is assumed unless an aggregation
operator is applied (but the list might contain only asingle value, in which case it would be
indistinguishable from a scalar). The reason for thisisthat a patient database may have multiple values for
abirthdate; it may be that the latest one is assumed to be correct. For example,

birthdate : = READ | atest {select birthdate from denpgraphics};

11.2.1.6 Multiple Variables

A query may return more than oneresult at atime. Thisisuseful for batteries of testsin order to keep the
corresponding tests within one blood sample coordinated. The two versions are equivalent (the parentheses
around the where are optional):

(<var>, <var>, ...) := READ <aggregation> <mappi ng> WHERE <constraint> ;

LET (<var>, <var>, ...) BE READ <aggregation> (<mappi ng> WHERE <constrai nt >);

Thisisthe only situation where a"list of lists" isallowed. The where constraint (if any) is applied

separately to each of the resulting lists. Queries must always return the same number of elements, with the
same primary times.

11.2.1.7

There may be one or more <var> within the parentheses. <aggregation>, <constraint>, and <mapping>
are defined as above. The fact that multiple entities are being queried at once is represented in the
institution-specific part, <mapping>. The <aggregation> and <constraint> are performed separately on
theindividual variables; it isinstitution-defined whether the <mapping> returns all the values with
matching primary times. For example,

/* in this exanple three anion gaps are cal cul ated */

(Na,d,HC®3) :=read last 3 from{select sodium chloride, bicarb from
el ectro};

anion_gap := Na - (A + HCX) ;

11.2.1.8

11.2.2

The order in which read mappings are evaluated is undefined, except that an implementation must
guarantee that a read mapping is evaluated before the first time that its value is needed. An implementation
may optimize code to avoid executing a read mapping, even if the read mapping has side effects.

Event Statement

The event statement assigns an institution-specific event definition to avariable. An event can be an
insertion or update in the patient database, or any other medically relevant occurrence. The variableis

Health Level Seven © 1999. All rights reserved. Page 73

Final Standard 07/1999

Arden Syntax for Medical Logic Systems

11221

11.2.2.2

11.2.3

11.231

currently used in the evoke slot (see Section 13), as part of the call statement to call other MLMs (see
Section 10.2.4), and as aBoolean value in alogic or action slot. There are two equivalent versions:
<var> := EVENT <mappi ng>;
LET <var> BE EVENT <nmappi ng>;

Definitions

<var> isavariable that represents the event to be defined. 1t can only be used in the evoke Slot or as part
of acall statement.

<mapping> is avalid mapping clause (see Section 7.1.8) which contains the institution-specific event
definition. How the event is defined and used is up to the institution.

The variable that represents the event can be treated like a Boolean in the logic or action dots.

The time operator (see Section 9.17) can be applied to an event variable. It yieldsthe clinically relevant
time of the event. This may be different from the eventtime variable, which refers to the time that the
event was recorded in the database (see Section 8.4.4).

The order in which event mappings are evaluated is undefined, except that an implementation must
guarantee that an event mapping is evaluated before the first time that its value is needed.

Example:

eventl := EVENT {storage of serum potassiuni;

MLM statement

The MLM statement assigns avalid mimnameto avariable. That variableis currently used only as part of
the call statement to call another MLM, as defined in Section 10.2.4. There are two basic forms (the pairs
represent equivalent versions):

<var> := MM <ternp,

LET <var> BE MM <ter np;

<var> := MM <ternr FROM | NSTI TUTI ON <stri ng>;

LET <var> BE MLM <ternm> FROM | NSTI TUTI ON <stri ng>;

Definitions

<var> isavariable that represents the MLM to be called. It can only be used as part of a call statement.

<term> isavalid constant term as defined in Section 7.1.7. It is the mlmname of the MLM to be called.
mim_self (case insensitive) is a special constant that represents the name of the current MLM.

<string> isavalid constant string as defined in Section 7.1.6. If specified, it is the institution name found
in the institution slot of the MLM to be called.

If the ingtitution is specified, then a uniqgue MLM isfound using the ingtitution name, the mimname, and
the latest version number. If the institution is not specified, then a unique MLM isfound using the same
institution as the main (calling) MLM, the mimname, the MLM's validation, and the latest version number.
Although the exact form of the version isinstitution-specific, within an institution it is possible to
determine the latest version of an MLM (see Section 6.1.4).

11.2.3.2 Examples:

mm := MM'nmmto_be_called;
mn2 := MM ' di agnosi s_score' FROM | NSTI TUTI ON "LDS Hospital";

Page 74

07/1999

Health Level Seven © 1999. All rights reserved.

Final Standard.

Arden Syntax for Medical Logic Systems

11.2.4 Argument Statement

The argument statement is used by an MLM that is called by another MLM, as defined in Section 10.2.4. If
the main MLM passes parameters to the called MLM, then the called MLM retrieves the parameters via the
argument statement. The argument statements access the corresponding passed arguments. Thus, the first
variable refers to the first passed argument, the second variable to the second argument, etc. If the number
of variablesis greater than the number of arguments passed from the CALL, null is assigned to the extra
left-hand-side variable(s). If the MLM is evoked instead of called, al the arguments are treated as null
(just like any other uninitialized variable). There are two basic forms (the pairs represent equivalent
version). Onereceives a single parameter, and the other receives multiple parameters:

<var> : = ARGUMENT;
LET <var> BE ARGUMENT;

(<var 1>, <var 2>, ..) := ARGUMENT;
LET (<var1>, <var2>,.) BE ARGUVMENT;

<var> isavariable that is assigned whatever expression followed with in the main MLM's call statement.
If there was no such expression, or if the MLM was not called by another MLM, then null is assigned.

11.2.4.1 Example:
In the calling MLM:
varl := CALL ny_nm m WTH paraml, (iteml, itenR);
In the called MLM, named "my_mIm":

(argl, listl) := ARGUMENT,;

11.2.5 Message Statement

The message statement assigns an institution-specific message (for example, an alert) to avariable. It
allows an ingtitution to write coded messages in the patient database (see Section 12.2.1). There are two
equivalent versions:

<var> := MESSAGE <nmappi hg>;
LET <var> BE MESSAGE <mappi ng>;

<var> isavariable that represents the message to be defined. It can only be used in awrite statement.

<mapping> is avalid mapping clause (see Section 7.1.8), which contains the message definition. How the
message is defined and used is up to the ingtitution.

11.2.5.1 Example:
messagel : = MESSAGE {pneunpni a~23 45 65};

11.2.6 Destination Statement

The destination statement assigns an institution-specific destination to avariable. It allows one to write a
message to an institution-specific destination (see Section 12.2.1). There are two equivalent versions:

<var> : = DESTI NATI ON <mappi ng>;
LET <var> BE DESTI NATI ON <nmappi hg>;

<var> isavariable that represents the destination to be defined. It can only be used in awrite statement.

<mapping> is avalid mapping clause (see Section 7.1.8) that represents an institution-specific destination.
How the destination is defined and used is up to the institution.

Health Level Seven © 1999. All rights reserved. Page 75
Final Standard 07/1999

Arden Syntax for Medical Logic Systems

11.2.6.1 Example

In this example, the destination is an electronic mail address:
destinationl := DESTI NATION {enmil: user @uasdf.bitnet};
destination2 := DESTINATI ON { attendi ng_physician(Pt_id) };
destination3 := DESTINATION { "primary physician email" };

11.2.7 Assignment Statement

The assignment statement, defined in Section 10.2.1, is also permitted in the data slot.

11.2.8 If-Then Statement
The if-then statement, defined in Section 10.2.2, is aso permitted in the data slot.

11.2.9 Call Statement

The call statement, defined in Section 10.2.4, is aso permitted in the data slot.

11.2.10 While Loop

The while loop, defined in Section 10.2.5, is also permitted in the data slot.

11.2.11 For Loop
The for loop, defined in Section 10.2.6, is also permitted in the data slot.

11.2.12 Interface Statement

The interface statement assigns an ingtitution-specific foreign function interface definition to a variable.
The interface statement permits specification of aforeign function, i.e., afunction written in another
programming language. Sometimes medical logic requires information not directly available from the
database (via read statements). It may be desirable to call operating system functions or libraries obtained
from other vendors. A foreign function, when specified, can then be called with the call statement (see
Section 10.2.4). Curly braces ({}) are used to specify the foreign function. The specification within the
curly bracesis implementation specific. There are two equivaent versions:

<var> : = | NTERFACE <mappi ng>;
LET <var> BE | NTERFACE <mappi ng>;

<var> isavariable that represents the interface to be defined. It can only be used as part of a call
Statement.

<mapping> is avalid mapping clause (see Section 7.1.8) which contains the institution-specific event
definition. How the function interface is defined and used is up to the institution.

11.2.12.1 Example:

The implementation within the {} -braces shows that a string (char*) will be returned when the third-party
API (ThirdPartyAPI) is used to call the drug-drug interaction function (DrugDruglnteraction). The
function expects that two medication strings (char*,char*) will be passed.

dat a:

/* Declares the third-party drug-drug interaction function */

Page 76 Health Level Seven © 1999. All rights reserved.

07/1999 Final Standard.

Arden Syntax for Medical Logic Systems

11.3

func_drugint := | NTERFACE {char* ThirdPartyAPI
DrugDrugl nteraction (char*, char*)};

| ogi c:
/* Calls the drug-drug interaction function */

alert_text := call func_drugint with "terfenadi ne", "erythromycin";

Data Slot Usage:

The data slot is used to map institution-specific entities to variables used locally in the MLM. Keeping the
mappings in one slot facilitates modifying an MLM for use in another institution.

Although the data slot can perform assignment statements and if-then statements like the logic dat, it is
recommended that most of the logic be left in the logic dot. For example, it would be possible to write an
MLM with al its mappings and health logic in the data dlot, leaving only a simple conclude statement in
the logic slot; but this defeats the purpose of separating the data ot and the logic slot. Assignment
statements and if-then statements should be used in the data slot only where necessary to support database
queries (for example, to calculate atime constraint or to handle details of database semantics, such as
handling missing data).

12 ACTION SLOT

12.1

12.2

12.21

Purpose

Once the MLM has concluded that the condition specified in the logic ot holds true, the action dot is
executed, performing whatever actions are appropriate to the condition. Typical actions include sending a
message to a health care provider, adding an interpretation to the patient record, returning aresult to a
caling MLM, and evoking other MLMs. Good programming practice is for an MLM's action slot to
contain only return statements, or to contain only call and write statements. If an MLM is called from an
action dot (see Section 12.2.4) or evoked by an external event (see Section 13), the only effect of areturn
statement is to terminate execution of the action slot.

Action Slot Statements:

Write Statement

The write statement is the main statement in the action dot. It sends atext or coded message (for example,
an adert) to adestination. It has several forms:

VRI TE <expr >;
WRI TE <expr> AT <destinati on>;
WRI TE <nessage>;

WRI TE <nessage> AT <desti nati on>;

<expr> isany valid expression, which usually contains text to be read by the health care provider or
variables defined in the logic slot.

<destination> is a destination variable as defined in Section 11.2.6. The format and implementation of the
destination is ingtitution-specific. Typical destinations include the patient record, a printer, databases, and
electronic mail addresses. When the destination is omitted, the message is sent to the default destination.
Thisis generally the health care provider or the patient record, but the implementation is institution-
specific.

Health Level Seven © 1999. All rights reserved. Page 77
Final Standard 07/1999

Arden Syntax for Medical Logic Systems

<message> is amessage variable as defined in Section 11.2.5. The message variable permits institutions to
write ingtitution-specific coded MLM messages to databases that will not accommodate the <expr> form.

The effect of the write statement is to send the specified message either to the default destination (which is
usually a health care provider or the patient record) or the destination that is specified.

Within asingle MLM, the effect of grouping write statements is unspecified, and depends on the
implementation of the syntax.

If an MLM iscalled by another MLM's action block (see Section 12.2.4), its write statements are output as
a separate group from the calling MLM's. However, the order of the groupings is unspecified and depends
on the implementation of the syntax.

12.2.1.1 Examples<expr>

In these examples, serum_pot is avariable assigned in the logic dlot, email_dest is a destination variable
defined in the data dot, and a_message is a message variable defined in the data dlot.

WRI TE "the patient's potassiumis " || serumpot;
WRI TE "this is an enmil alert" AT emmil _dest;

WRI TE a_nessage;
12.2.1.2 Examples<message>

An ingtitution can store coded messages without using the message variable. For example, the following
message could be stored not as a free text string but as a unique code that symbolizes the message along
with asingle field that holds the serum potassium value, which is variable:

WRI TE "the patient's potassiumis " || serumpot;

WRI TE CK0023 || serum pot;

CK0023 would be the ingtitution-specific code representing "the patient's potassium is".

The message must be explicitly assigned to the institution-specific code before the code is used in awrite
statement. Generally, this assignment should take place in the data slot.

12.2.2 Return Statement

The return statement is used in MLMs that are called by other MLMs. It returns aresult back to the calling
MLM; the result is assigned to the variable in the call statement (see Section 10.2.4). One or more results
can be returned by the MLM. Itsformis:

RETURN <expr >;
RETURN <expr>, ... , <expr>;

<expr> isany valid expression, which may be asingle item or alist. Primary times are maintained.
When areturn statement is executed, no further statementsin the MLM are executed.

12.2.2.1 Examples:
RETURN (di agnosi s_scor e, di agnosi s_nane) ;

RETURN di agnosi s_score, diagnosi s_nane;

The first example returns one expression, which isalist. The second example returns two expressions.

Page 78 Health Level Seven © 1999. All rights reserved.

07/1999 Final Standard.

Arden Syntax for Medical Logic Systems

12.2.3 If-then Statement

The if-then statement, defined in Section 10.2.2, is also permitted in the action slot.

12.2.4 Call Statement

The call statement in the action slot permitsan MLM to call other MLMs conditionally based upon the
conclusioninthelogic dot. Itissimilar to the call statement in the logic slot defined in Section 10.2.4; the
arguments can be accessed with the argument statement in Section 11.2.4. Given an mlmname, the MLM
can be called directly with an optional delay. Given an event definition, all the MLMs that are normally
evoked by that event can be called with an optional delay. If the call statement is used to evoke an event,
any arguments are ignored. Itsforms are:

CALL <nane>;

CALL <name> DELAY <duration>;

CALL <nane> W TH <expr >;

CALL <name> W TH <expr> DELAY <duration>;

CALL <nane> W TH <expr>, ..., <expr>;

CALL <name> W TH <expr>, ..., <expr> DELAY <duration>;

<name> is an identifier that must represent either avalid MLM variable as defined by an MLM statement
in the data slot (see Section 11.2.3), or avalid event variable as defined by an event statement in the data
dot (see Section 11.2.2).

<duration> is avalid expression whose value is a duration.

12.2.4.1 Operation

If <name> isan MLM variable, then when the main MLM terminates, the named MLM iscalled. If
<name> is an event variable, then all the MLMs whose evoke dots refer to the named event are executed
(see Section 13). If adelay is present, then the execution of the called MLMs is delayed by the specified
duration. Whereas the call statement in the logic slot is synchronous, the call statement in the action dot is
asynchronous. The order of execution of called MLMs is implementation dependent.

12.2.4.2 Example

(where mimx has been assigned a suitable value in the data dlot, say by mimx := MLM 'my_mlIm’):
CALL m mx DELAY 3 days ;

12.2.5 WHILE Loop
The while loop, defined in Section 10.2.5, is also permitted in the action slot

12.2.6 FOR Loop
The for loop, defined in Section 10.2.6, is also permitted in the action dlot.

12.3 Action Slot Usage

The action slot is usually simple, containing a single message to be written or a single value to be returned

toacaling MLM. Multiple actions can be performed by listing several action statements. The slot can be
made more complex by using its if-then statement to select among alternative actions. While thisis useful,
it is recommended that the amount of health logic in the action slot be kept to a minimum.

Health Level Seven © 1999. All rights reserved. Page 79
Final Standard 07/1999

Arden Syntax for Medical Logic Systems

13 EVOKE SLOT

13.1 Purpose
The evoke dot defines how an MLM may be triggered. An MLM may be triggered by any of the
following:

13.1.1 Occurrence of Some Event
For example, on the storage of a serum potassium value in the patient database, in order to check for values
that are far out of range.

13.1.2 A Time Delay After an Event
For example, five days after ordering gentamicin for a patient, in order to check renal function.

13.1.3 Periodically After an Event
For example, every five days after ordering gentamicin for a patient, in order to check renal function over a
period of time.

13.2 Events
Events are distinct from data. An event may be an update or insertion in the patient database, a medically
relevant occurrence, or an institution-defined occurrence. Examples include the storage of a serum
potassium level, the ordering of a medication, the transferring of a patient to a new bed, and the recording
of anew address for a patient.

13.2.1 Event Properties
The main attribute of an event is the time that it occurred, which must be an instant in time. Events have no
values. Note the distinction between events and data. Data have values and have primary times, which are
the times that are medically most relevant. For example, a serum potassium result may have avalue of 5.0
and a primary time that is the time that it was drawn from the patient. But the storage of serum potassium
event has no value, and itstime is the time that the potassium was stored in the patient database.

13.2.2 Time of Events
The time operator (see Section 9.17) applied to an event resultsin the time that the event occurred. For
example, time of storage_of potassium returns the time that the potassium was stored. This value might
be different from the time of the corresponding data value that is retrieved by a read mapping (the data
value typically uses a clinically relevant time, which would often be different from the time of storing the
data). Eventtime (see Section 8.4.4) isthe time of the event that evoked the MLM.

13.2.3 Declaration of Events
Events are declared in the data slot as defined in Section 11.2.2.

Page 80 Health Level Seven © 1999. All rights reserved.

07/1999 Final Standard.

Arden Syntax for Medical Logic Systems

13.3

13.3.1

Evoke Slot Statements:

Simple Trigger Statement

A simple trigger statement specifies an event or a set of events. When any of the events occurs, the MLM
istriggered. Itsformis:

<event - expr >

<event-expr> is an expression that contains only event variables as defined in Section 11.2.2, the or
operator (see Section 9.4.1), the any operator (see Section 9.12.13), and parentheses. The keyword cal 1
may also be present, to indicate that the MLM may be called by another MLM.

13.3.1.1 Operation

Although events do not have values, they are used in this statement asif they were syntactically Boolean.
Thus one ends up with a statement like this: eventl OR event2 OR event3. The MLM istriggered
whenever an event occurs and any of the evoke statements evaluate to true. If more than one event occurs,
the MLM may be triggered. No additional trigger criteria must be satisfied for the MLM to be evoked.

13.3.1.2 Examples

In the following examples, al the variables are event variables defined in the data dlot.

penicillin_storage
penicillin_storage OR cephal osporin_storage
ANY OF (penicillin_storage, cephal osporin_storage, am nogl ycosi de_st or age)
dat a:
penicillin_storage := event {store penicillin order}
cephal osporin_storage := event {store cephal osporin order}
evoke:
penicillin_storage OR

cephal ospori n_stor age; ;

13.3.2 Delayed Trigger Statement

A delayed trigger statement permits the MLM to be triggered some time after an event occurs. Its basic formis
shown first, followed by a more specific example of the basic form:

<ti me-expr>

<dur ati on- expr> AFTER TI ME <event >

<time-expr> is an expression that contains only times expressed as time constants (see Section 7.1.5) or as
the time operator (see Section 9.17) applied to event variables (see Section 11.2.2); durations expressed as
duration operators (see Section 9.11) applied to number constants (see Section 7.1.4); and the after
operator (see Section 9.10.1).

<duration-expr> is a duration constant formed by using a number constant with a duration operator.

<event> isan event variable.

Health Level Seven © 1999. All rights reserved. Page 81
Final Standard 07/1999

Arden Syntax for Medical Logic Systems

13.3.2.1 Operation

The MLM istriggered at the time specified in the delayed trigger statement. Thisis usually some specified
duration after the occurrence of an event. This statement can aso be used to trigger an MLM once on a
particular date using a time constant.

13.3.2.2 Examples

In the following examples, all variables are event variables:

3 days after tine of penicillin_storage
1992- 01- 01T00: 00: 00

13.3.3 Periodic Trigger Statement

A periodic trigger statement permits the MLM to be triggered at specified time intervals after an event
occurs. The cycles may continue for a specified duration, and they may be terminated by a Boolean
condition. It hastwo forms:

EVERY <dur ati on-expr> FOR <durati on-expr> STARTI NG <ti ne- expr >
EVERY <dur ati on-expr> FOR <durati on-expr> STARTI NG <ti me-expr> UNTI L
<Bool ean- expr >

<duration-expr> is a duration constant formed by using a number constant (see Section 7.1.4) with a
duration operator (see Section 9.11).

<time-expr> is atime expressed as a time constant (see Section 7.1.5) or as the time operator (see Section
9.17) applied to an event variable (see Section 11.2.2).

<Boolean-expr> isany valid expression. It isusually a Boolean expression that becomes true when the
MLM triggering should stop.

13.3.3.1 Operation

The MLM isfirst triggered at the time specified after the starting word. 1t isthen triggered repeatedly in
cycles of length equal to the duration specified after the every word. These cycles continue for the duration
specified after the for word. The for duration isinclusive, so every 1 day for 1 day starting 3 days after
time of eventl would trigger the MLM twice: at three days and at four days after the event.

13.3.3.2 Until

If thereis an until clause, then it is evaluated as soon as the MLM is triggered; the clause may contain
references to the patient database unrelated to the event. If it istrue then the MLM exitsimmediately, and
no further triggering occurs. Otherwise, the MLM is executed, and it is triggered again after the every
duration (assuming the for duration has not run out).

13.3.3.3 Examples

In the following examples, variables beginning with event are event variables:

every 1 day for 14 days starting 1992-01-01T00: 00: 00
every 1 day for 14 days starting tine of eventl
every 2 hours for 1 day starting 5 hours after the tine of event2

every 1 week for 1 nonth starting 3 days after the time of event3 until
| ast (serum potassiun) > 5.0

Page 82 Health Level Seven © 1999. All rights reserved.

07/1999 Final Standard.

Arden Syntax for Medical Logic Systems

13.3.4 Where Trigger Statement

A where trigger statement contains a simple trigger statement along with awhere phrase that provides
additional criteriathat must be satisfied for the MLM to be evoked. Itsform isthe same as the smple
trigger statement except that the event variables in <event-expr> may be replaced with:

<event > WHERE <Bool ean- expr >

<event> is an event variable as defined in 11.2.2.

<Boolean-expr> is an expression whose result is a Boolean value and whose variables are the result of
read statements. This construct usually contains a Boolean restriction on data that are stored as part of a

data storage event.

Or and any are permitted as in the simple trigger statement.

13.3.4.1 Operation

The MLM istriggered whenever an event occurs and its corresponding where clause resultsin true. If the

where clause resul

13.3.4.2 Example

tsin anything else, the MLM is not triggered.

In this example, the data and evoke dots are both shown.

dat a:

penicillin_storage := event {store penicillin order};
penicillin_dose := read | ast {dose of stored penicillin order};
cephal osporin_storage := event {store cephal osporin order};

cephal osporin_dose : = read | ast {dose of stored cephal osporin order};

evoke:

(penicillin_storage WHERE penicillin_dose > 500)
oR
(cephal ospori n_storage WHERE cephal ospori n_dose > 500); ;

13.3.4.3
The where trigger statement is provided only for systems that must use it for execution efficiency. It is
recommended that it not be used, if possible. Instead, put all logical constraintsin the logic slot. The
above example would become (assuming that a query for the dosage of a medication that was not stored is
null):
dat a:
penicillin_storage := event {store penicillin order};
penicillin_dose := read | ast {dose of stored penicillin order};
cephal osporin_storage := event {store cephal osporin order};
cephal osporin_dose : = read | ast {dose of stored cephal osporin order};
evoke:
penicillin_storage OR cephal ospori n_storage;;
| ogi c:
I F penicillin_dose > 500 OR cephal osporin_dose > 500 THEN ...
ENDI F; ;
Health Level Seven © 1999. All rights reserved. Page 83

Final Standard

07/1999

Arden Syntax for Medical Logic Systems

13.4 Evoke Slot Usage

The evoke dot usually contains a single statement that specifies when an MLM istriggered. If the evoke slot has
more than one statement, then the MLM is evoked whenever any of the criteriain any of the statements occurs.

Page 84 Health Level Seven © 1999. All rights reserved.

07/1999 Final Standard.

Arden Syntax for Medical Logic Systems

Annexes
(Mandatory Information)

Al BACKUS-NAUR FORM

The MLM syntax is defined using Backus-Naur Form (BNF) (3). Inthe interest of readability and computability,
the context free grammar is expressed in Backus-Naur Form rather than in the more compact Extended Backus-Naur
Form (EBNF) (3). The following definitions hold:

<expression> - represents the non-terminal expression

"IF" - represents the terminal if, iF, If, or IF

=" - represents the terminal :=

= - isdefined as

[*..*] - acomment about the grammar
|- or

Terminals are listed in uppercase, but the language is case insensitive outside of character strings. In structured
dots, space, carriage return, line feed, horizontal tab, vertical tab, and form feed are considered white space and are
ignored. in addition, the terminal the is treated as white space (that is, the word the isignored).
With minor modifications, the following grammar can be processed by an LALR(1) parser generator, except where
noted by comments against individual rules

[****xx physical file containing one or nbre MLMs *****%/

[**xxxx file of individual MM ******/

<m me> ::=
<m >
| <m m> <m s>

/****** CategOrleS ******/

<mme =
<mei nt enance_cat egory>
<library_category>
<knowl edge_cat egory>
"END: "

<mmi nt enance_cat egory> ::=
" MAI NTENANCE: " <nmi nt enance_body>

<mai nt enance_body> :: =
<title_slot>
<m mane_sl ot >
<arden_version_sl ot >
<version_sl ot >
<institution_slot>
<aut hor _sl ot >
<speci al i st _sl ot>
<dat e_sl ot >
<val i dati on_sl ot >

<library_category> ::=
"LI BRARY: " <library_body>

<library_body> ::=
<pur pose_sl ot >
<expl anati on_sl ot >
<keywor ds_sl ot >
<ci tations_sl ot>
<links_sl ot>

<knowl edge_category> ::=
" KNOALEDGE: " <knowl edge_body>

Health Level Seven © 1999. All rights reserved. Page 85
Final Standard 07/1999

Arden Syntax for Medical Logic Systems

<knowl edge_body> :: =
<type_sl ot >
<dat a_sl ot >
<priority_slot>
<evoke_sl ot >
<l ogi c_sl ot >
<action_sl ot >
<urgency_sl ot >

/****** gots******/

[X***** maintenance slots ******/

<title_slot> ::=
"TITLE: " <text>";;"

<m mane_slot> ::=
"M.MNAME: " <identifier> ";;"
| "FILENAMVE: " <identifier> ";;"
/* the "FILENAME:" formis only valid */
/* conmbination with the enpty version */
/* of <arden_version_slot> */

<arden_version_slot> ::=
" ARDEN: " <arden_version> ";;"

| /*enpty*/
/* the enpty version is only valid */
/* conbination with the "FI LENAME" */
/* formof < nl mane_slot > */
<arden_version> ::=
"VERSI ON' " 2"
<version_slot> ::=
"VERSI ON: " <m m version> ";;"
<m m versi on>
<t ext>
<institution_slot> ::=
"INSTI TUTION: " <text> ";;" /* text limted to 80 characters */
<author_slot> ::=
"AUTHOR: " <text> ";;" /* see 6.1.6 for details */
<specialist_slot> ::=
"SPECI ALI ST: " <text> ";;" /* see 6.1.7 for details */

<date_slot> ::=
"DATE: " <ml mdate> ";;"

<ml mdate> ::=
<i so_dat e>
| <iso_date_time>

<validation_slot> ::=
"VALI DATI ON: " <val i dati on_code> "; ;"

<val i dati on_code> ::=
" PRODUCT| ON"
| " RESEARCH"
| "TESTI NG'
| " EXPI RED"

/****** |Ibral’y gots******/

<purpose_slot> ::=
"PURPCSE: " <text> ";;"

<expl anation_slot> ::=
"EXPLANATION: " <text> ";;"

<keywords_slot> ::=
"KEYWORDS: " <text> ";;"

/* May require special processing to handle both list and text versions */
<citations_slot> ::=

/* enmpty */
| "CITATIONS:" <citations_list>";;"
| "CITATIONS: " <text> ";;"/* deprecated -- supported for backward

conpatibility */

<citations_list> ::=

/[* empty */
<single_citation>
<single_citation> ";" <citations_list>
Page 86 Health Level Seven © 1999. All rights reserved.

07/1999 Final Standard.

Arden Syntax for Medical Logic Systems

<single_citation> ::

<di gi ts>

<citation_type> <citation_text>

<citation_text>

[* Thisis a separate definition to alow for future expansion */

<citation_text>
<string>

<citation_type> ::

/[* enmpty */
" SUPPORT"

" REFUTE"

/* May require special processing to handle both list and text versions */

<links_slot> ::
/* enmpty
"LI NKS: "
"LI NKS: "

<links_list> ::

/* enmpty
| <single |
I

<links_li
<single_link> ::=

*/

<links_list>";;"

<text>";;" /* deprecated - supported for backward*
/* conpatibility */

*/

i nk>

st> ";" <single link>

<link_type> <link_name> <link_text>

<link_type> :
/* e

<link_name> ::

mty */
"URL_LI NK"
"MESH LI NK"
" OTHER LI NK"
"EXE_LTNK"

[* enmpty */

<string>

[* Thisis a separate definition to alow for future expansion */

<link_text> ::
<terme

[x***%% knowledge slots ******/

<type_slot> :
"TYPE: "

<type_code>

[* Thisis a separate definition to alow for future expansion */

<type_code> ::

" DATA_DRI VEN'

<data_slot> ::

" DATA- DRI VEN"

/* deprecated -- supported for backwards */

/* conmpatibility */

"DATA: " <data_bl ock> ";;"
<priority_slot> ::=
[* enmpty */
| "PRIORITY:" <nunber> ";;"

<evoke_slot> ::
"EVOKE: "

<logic_slot> ::
"LOG C "

<action_slot> ::
"ACTI ON: '

<urgency_slot> ::
[* enpt
| " URGENCY:
<urgency_val > ::=
<nunber >
I

<identifi
/****** Ioglc bIOCk ******/

<l ogi c_bl ock> ::
<l ogi c_bl
I

<evoke_bl ock>

<l ogi c_bl ock> "; ;"

<action_bl ock>

*/

" <urgency_val > ";;"

er>

ock> ';' <l ogic_statenment>

<l ogi c_st at ement >

/

Health Level Seven © 1999. All rights reserved.
Final Standard

Page 87
07/1999

Arden Syntax for Medical

Logic Systems

<l ogic_statenent> ::=
/[* enmpty */
| <l ogic_assignment>
| "IF" <logic_if_then_el se2>
| "FOR' <identifier> "IN <expr> "DO' <logic_block>";"
| "WHILE" <epxr> "DO' <l ogic_block> ";" "ENDDO'
| " CONCLUDE" <expr>

<logic_if_then_else2> ::=

<expr> "THEN' <l ogi c_block> ";" <logic_elseif>";"
<logic_elseif> ::=
" ENDI F"

"ELSE" <l ogi c_bl ock> ";" "ENDI F"
| "ELSEIF" <logic_if_then_el se2>

<l ogi c_assi gnnment> :: =
<identifier_beconmes> <expr>
| <time_beconmes> <expr>
| <identifier_becomes> <call _phrase>

<identifier_becones> ::=

<identifier> ":=
"LET" <identifier> "BE"
"Now o=t

<time_becones> ::=
"TIME" "OF" <identifier> :=
| "TIME" <identifier> :=
| "LET" "TIME" "OF" <identifier> "BE"
| "LET" "TIME" <identifier> "BE"
|

<cal | _phrase> ::=
"CALL" <identifier>
| "CALL" <identifier>"WTH" <expr>

/****** exprons******/

<expr> ::=
<expr_sort>
| <expr>"," <expr_sort>

<expr_sort> ::=
<expr _wher e>
| <expr_where> "MERGE" <expr_sort>
"SORT" "DATA" <expr_sort>
| "SORT" "TIME" <expr_sort>

<expr_where> ::=
<expr_range>
| <expr_range> "WHERE" <expr_range>

<expr_range> ::=
<expr_or>
| <expr_or> "SEQTO' <expr_or>

<expr_or> ::=
expr_or OR expr_and
| expr_and

<expr_and> ::=
expr _and AND expr _not
| expr_not

<expr_not> ::=
NOT expr_conpari son
| expr_conparison

<expr_conparison> ::=
<expr_string>
| <expr_string> <sinple_conp_op> <expr_string>
| <expr_string> <i s> <mai n_conp_op>
| <expr_string> <is> "NOI" <mai n_conp_op>
| <expr_string> <occur> <tenporal _conp_op>
| <expr_string> <occur> "NOT" <tenporal _conp_op>
| <expr_string> "MATCHES" "PATTERN' <expr_string>

<expr_string> ::=
<expr _pl us>
| <expr_string> "||" <expr_plus>
| <expr_plus> "FORMATTED" "W TH' <format_string>

" ENDDO'

Page 88 Health Level Seven © 1999

07/1999

. All rights reserved.

Final Standard.

Arden Syntax for Medical Logic Systems

<format_string> ::=

""" <format_specification> """ [* The format string is a true */
/* Arden Syntax string, enclosed */
*/

| <string>
<format _specifiation> ::= /* See section 9.8.2 (p. 34) and */
/* Annex 5 for explanation of */

/* valid conbinations and neani ngs. */
<f ormat _speci fi caton> <format_speci fication_singl e>
| <format_specification_single>

<f ormat _speci ficati on_si ngl e>
"o <f or mat _opti ons><f or mat _f | ag><wi dt h_pr eci si on>
/* No spaces are pernitted between el enents in above form */
| <text>

<format _options> ::=
/[* enmpty */
wn
" gn
""" |* space */
" g

<format _flag> ::= /* Format flags are case sensitive */
on
"

" g

(o]

<wi dt h_precision> ::=
/* enmpty */
| <digits>
| <digits>"."<digits>

<expr_plus> ::=
<expr_times>
| <expr_plus> "+" <expr_tines>
| <expr_plus> "-" <expr_tines>
| "+" <expr_tines>
| "-" <expr_tines>

<expr_times> ::=
<expr_power >
| <expr_times> "*" <expr_power>
| <expr_times> "/" <expr_power>

<expr_power> ::=
<expr _bef or e>
| <expr_function> "**" <expr_function>

<expr_before> ::=
<expr_ago>
<expr_ago> "BEFORE" <expr_ago>
<expr_ago> "AFTER' <expr_ago>

<expr_ago> ::=
<expr _function>
| <expr_duration>

| <expr_duration> "AGO'

<expr_duration> ::=)
<expr _function> <duration_op>

Health Level Seven © 1999. All rights reserved. Page 89
Final Standard 07/1999

Arden Syntax for Medical Logic Systems

<expr _function> ::=
<expr _factor>
<of _func_op> <expr_function>
<of _func_op> "OF" <expr_function>
<from of _func_op> <expr_function>
<from of _func_op> "OF" <expr_function>
<from of _func_op> <expr_factor> "FROM' <expr_function>
<from func_op> <expr_factor> "FROM' <expr_function>
<i ndex_from of _func_op> <expr_function>
<i ndex_from of _func_op> "OF" <expr_function>
<i ndex_from of _func_op> <expr_factor> "FROM' <expr_function>
<index_from func_op> <expr_factor> "FROM' <expr_function>
<expr _factor> "AS" <as_func_op>
<expr_factor> ::=
<expr _factor_at o>
| <expr_factor_aton» "[" <expr> "]" /* number [<expr>] is not
/* a valid construct

<expr _factor_atonp ::=
<identifier>
| <number >
| <string>
| <time_val ue>
| <bool ean_val ue>
| " NuLL"
| <it> /* Value is NULL outside of a where
/* clause and may be flagged as an
/* error in sone inplenmentations
G
| (" <expr>)"
[x**%%% for readlability ****++*/
<it> = "IT | "THEY"
[¥***%% comparison Synonyms ******
<is>::="IS" | "ARE' | "WAS" | "VERE"
<occur> ::= "OCCUR' | "OCCURS" | "OCCURRED
/****** Operators******/

<si npl e_conp_op> ::=
w—n "EQ
wen "L

W
weon =

Jrp—"
"ot " NE"

<mai n_conp_op> ::=

<t enpor al _conp_op>
<range_conp_op>
<unary_conp_op>

<bi nary_conp_op> <expr_string>

/* the WITHIN TO operator will accept any ordered parameter, */
/* including numbers, strings (single characters), times, Boolean /*

<range_conp_op> ::=
"WTH N' <expr_string> "TO' <expr_string>

<t enpor al _conp_op> :: =

"W THI N' <expr_string> "PRECEDI NG' <expr_string>
"W THI N' <expr_string> "FOLLON NG' <expr_string>
"W THI N' <expr_string> "SURROUNDI NG' <expr_string>
"W THI N' "PAST" <expr_string>

"W TH N' "SAME" "DAY" "AS' <expr_string>

"BEFORE" <expr_string>

"AFTER' <expr_string>

"EQUAL" <expr_string>

<unary_conp_op> ::=
" PRESENT"

" NULL"

" BOOLEAN'

" NUVBER"
"TI ME"

" DURATI ON'
" STRI NG'
"Ll ST"

*/
*/

*/
*/
*/

Page 90 Health Level Seven © 1999. All rights reserved.

07/1999 Final Standard.

Arden Syntax for Medical Logic Systems

<bi nary_conp_op> ::=

"LESS" " THAN'

| "GREATER" " THAN'

| "GREATER" "THAN' "OR' "EQUAL"
HEI.SS "THAN' "OR' " EQUAL"

<of _func_op> ::=
<of _read_f unc_op>
| <of _noread_func_op>

<of _read_func_op> ::=
"AVERAGE" | "AVG'
| " COUNT"
| "BEXIST" |
" SUM'
" MEDI AN'

"EXI STS"

<of _noread_func_op> ::=
" ANY"

" SLOPE"

" STDDEV"

" VARl ANCE"
" | NCREASE"
" PERCENT"
" DECREASE"
"PERCENT" " DECREASE" |
" | NTERVAL"
"TI ME"

" ARCCOS"

" ARCSI N'

" ARCTAN'

" COSI NE"
"SI NE"

" TANGENT" |
" EXP

" FLOOR"

" NT

" ROUND"

" CEl LI NG'
" TRUNCATE"
" Lo

" LOGLO0"

" ABS"

" SORT"

" EXTRACT"
" EXTRACT"
" EXTRACT"
" EXTRACT"
" EXTRACT"
" EXTRACT"
"TI ME"

" STRI NG'

" EXTRACT"

"I NCREASE" | "% "I NCREASE"

"% " DECREASE"

"SI N
" TAN'

" VEAR"
" MONTH'
" DAY"

" HOUR'
"M NUTE"
" SECOND"

" CHARACTERS"

<fromfunc_op> ::=
" NEAREST"

<index_fromfunc_op> ::=
"1 NDEX" " NEAREST"

<fromof_func_op> ::=
<from of _read_func_op>
| <from of _noread_func_op>

<from of _read_func_op>

"MNMM| “"MN
| " MAXI MUM' | " MAX'
| "LAST"
| "FIRST"
| "EARLI EST"
| "LATEST"

<from of _noread_f unc_op>
" REVERSE" /*
/* not nake sense

nmust be careful

as reverse 5 fromx does */
*/

Health Level Seven © 1999. All rights reserved.
Final Standard

Page 91
07/1999

Arden Syntax for Medical Logic Systems

<index_fromof _func_op> ::=
"1 NDEX" "M NI MUM' | "1INDEX" "M N
| " 1NDEX" " MAXI MUM' | "1INDEX" "MAX"
| "1INDEX" "EARLIEST"
| "I NDEX" "LATEST"

<as_func_op> :: =

" NUMBER'
<duration_op> ::=

"YEAR' | " YEARS"

| "MONTH' | "MONTHS"

| " WEEK" | "VEEKS"

| " DAY" | " DAYS"

| "HOUR' | "HOURS"
"M NUTE" "M NUTES"
" SECOND" " SECONDS"

/****** factors******/

<bool ean_val ue> :: =
" TRUE"
| "FALSE"

<time_value> ::=
| <iso_date_time>
| <iso_date>
| "EVENTTI ME"
| " TRI GGERTI ME"

/****** data bIOCk ******/

<data_bl ock> :: =
<data_bl ock> ';' <data_statement>
| <data_statenent>

<data_statenent> ::=
/[* enmpty */
| <data_assi gnment >
| "I'F" <data_if_then_el se2>
I

"FOR' <identifier> "IN <expr> "DO' <data_bl ock> ";" "ENDDO'
| "WHI LE" <epxr> "DO' <data_bl ock> ";" "ENDDO'
<data_if_then_else2> ::=
<expr> "THEN' <data_bl ock> ";" <data_el seif>
<data_elseif> ::=
" ENDI F"
"ELSE" <data_bl ock> ";" "ENDI F"

| "ELSEIF" <data_if_then_el se2>

<dat a_assi gnnent> ::=
<identifier_becones> <data_assign_phrase>

| "(" <data_var_list> ")" ":=" "READ" <read_phrase>

| "LET" "(" <data_var_list> ")" "BE" "READ' <read_phrase>
| "(" <data_var_list> ")" ":=" "ARGUMENT"

I

“LET" " (" <data_var_list> ")" "BE" "ARGUVENT"

<data_var_list> ::=
<identifier>
| <identifier>

<data_var _list>

<dat a_assi gn_phrase> ::=

"READ" <read_phrase>

"M.M' <ternp

"MLM' <term> "FROM' "I NSTI TUTI ON' <string>
"M.M'" " M.M_SELF"

"| NTERFACE" <mappi ng_f act or>
"EVENT" <mappi ng_factor>

" MESSAGE" <mappi ng_f act or>

" DESTI NATI ON' <nappi ng_f act or >
" ARGUMENT"

<cal | _phrase>

<expr>

<read_phrase> ::=
<r ead_wher e>
| <of _read_func_op> <read_where>
| <of _read_func_op> "OF" <read_where>
| <from.of_read_func_op> <read_where>
| <fromof_read_func_op> "OF" <read_where>
| <from.of_read_func_op> <expr_factor> "FROM' <read_where>

Page 92 Health Level Seven © 1999. All rights reserved.

07/1999 Final Standard.

Arden Syntax for Medical Logic Systems

<read_where> ::=
<mappi ng_f act or >
| <mappi ng_factor> "WHERE" <it> <occur> <tenporal _conp_op>
| <mapping_factor> "WHERE" <it> <occur> "NOTI" <tenporal _conp_op>
| "(" <read_where> ")"

<mappi ng_factor> ::=
"{" <data_mapping> "}"

/****** G\/0ke bIOCk ******/

<evoke_bl ock> :: =
<evoke_st at ement >

| <evoke_bl ock> ";" <evoke_stat enent >

<evoke_statenent> ::=
[* empty */
| <event_or>
| <evoke_time>
| <qualified_evoke_cycl e>
| <event _where>
| "CALL" /* deprecated -- kept for backward compatibility */

<event _list> ::=
<event _or >
| <event_list>"," <event_or>

<event_or> ::=
<event _or> "OR' <event_any>
| <event_any>

<event_any> ::=
" (" <event_list>")"
"ANY" "OF" "(" <event list> ")"
| "ANY" <identifier>
| "ANY" "OF" <identifier>
| <event_factor>

<event _factor> ::=
(" <event_or> ")"
| <identifier>

<event _where> ::=
<event _or> "WHERE" <expr> his expression nust evaluate to a */

*
t
* bool ean val ue (see 13.3.4)

—~—

*/

<evoke_time> ::=
<evoke_duration> "AFTER' <evoke_time>
| "TIME" <event_any>
| "TIME" "OF" <event_any>
| <iso_date_time>
| <iso_date>
<qual i fi ed_evoke_cycle> ::=
<si npl e_evoke_cycl e>
| <sinple_evoke_cycle> "UNTIL" <expr>

<si npl e_evoke_cycle> ::=
"EVERY" <evoke_duration> "FOR' <evoke_duration> "STARTI NG'
<evoke_time>

<evoke_duration> ::=
<nunber > <dur ati on_op>

[x***** action block ******/

<action_bl ock> ::=
<action_st at ement >

| <action_block> ";" <action_statenment>
<action_statenment> ::=
/* empty */
"I F* <action_if_then_el se2>
"FOR' <identifier> "IN' <expr> "DO' <action_block> ";" "ENDDO'
"WHI LE" <epxr> "DO' <action_block> ";" "ENDDO'

I
I
| <cal |l _phrase>
| <cal |l _phrase> "DELAY" <expr>
| "VRITE" <expr>
| "WRITE" <expr> "AT" <identifier>
| "RETURN' <expr>
<action_if_then_else2> ::=
<expr> "THEN' <action_block> ";" <action_el seif>

Health Level Seven © 1999. All rights reserved. Page 93
Final Standard 07/1999

Arden Syntax for Medical Logic Systems

<action_elseif> ::=
" ENDI F"
"ELSE" <action_bl ock> ";" "ENDI F"
| "ELSEIF" <action_if_then_el se2>

[¥****% |exical constructs ******/
<string> ::=
/* any string of characters enclosed in double quotes (" ASCI| 22)
with nested "" but w thout ";;" */

<identifier> ::=
/* up to 80 characters total (no reserved words allowed) */
<letter> <identifier_rest>

<identifier_rest> ::= /* no spaces are pernitted between el ements */
/[* empty */
| <letter> <identifier_rest>
| <digit> <identifier_rest>
| "_" <identifier_rest>

<text> ::=
/* any string of characters w thout ";;" */
<nunber> ::= /* no spaces are pernitted between el ements */
<di gi t s> <exponent >
| <digits> "." <exponent>
| <digits> "." <digits> <exponent>
| "." <digits> <exponent>
<exponent> ::= /* no spaces are pernitted between el ements */
[* null */
| <e> <sign> <digits>
<e> .=
"
| e
<sign> ::=
* null */
| e
| no
<digits> ::= /* no spaces are pernitted between el ements */
<digit>
| <digit> <digits>
<digit> ::=
" g
e
" om
"
n g
g
g
g
ngn
ngn
<letter> ::=
"a" "b" "c" "d"
"e" " "g" "h"
it " "k" "
" "n" "o" "p"
"q" “rt "s" "t
"u" A "w' " X"
ot
"A "B" "C' "D
"E" "F" "G "H
" "J" " K" "Lt
"M "N "o " P!
"qQ "R 'S T
"y "V "W "X
oy "z
<iso_date> ::= /* no spaces are pernitted between el ements */
<digit> <digit> <digit> <digit> "-" <digit> <digit> "-" <digit> <digit>
<iso_date_time> ::= /* no spaces are pernmitted between el ements */
<digit> <digit> <digit> <digit> "-" <digit> <digit>"-" <digit> <digit>
<t>
<digit> <digit>":" <digit> <digit>":" <digit> <digit>
<fractional _seconds>
<ti me_zone>
Page 94 Health Level Seven © 1999. All rights reserved.

07/1999 Final Standard.

Arden Syntax for Medical Logic Systems

<t> ::=
w
|t
<fractional _seconds> ::=
el enents */
"t o<digits>
| /* enpty */
<time_zone> ::=
el enents */
[* null */

/* no spaces are pernitted between

/* no spaces are pernitted between

| <zul u>
| "+" <digit> <digit>":" <digit> <digit>
| "-" <digit> <digit>":" <digit> <digit>
<zulu> ::=
wn
| "z)
<termp ::=
/* any string of characters enclosed in single quotes (' , ASCII| 44)
wi thout ";;" */

<dat a_mappi ng> ::=

/* any bal anced string of characters enclosed in curly brackets { } */
/* (ASCI1 123 and 125, respectively) without ";;" the data mapping */
*/

/* does not include the curly bracket characters

Health Level Seven © 1999. All rights reserved.

Final Standard

Page 95
07/1999

Arden Syntax for Medical Logic Systems

A2

RESERVED WORDS

Listed here in alphabetic order are all the reserved words. None of these words may be used as variable names.

abs destination increase month
action do index months
after duration institution ne

ago earliest int nearest
alert else interface no

all elseif interval not

and enddo is now

any endif it null
arccos end keywords number
arcsin eq knowledge occur
arctan equal last occurred
arden event latest occurs
are eventtime le of
argument every less or

as evoke let past

at exist library pattern
author exists links percent
average exp list preceding
avg expired log present
be explanation log10 priority
before extract logic production
Boolean false It purpose
call filename maintenance read
ceiling first matches refute
characters floor max research
citations following maximum return
conclude for median reverse
cos formatted merge round
cosine from message same
count ge min second
data greater minimum seconds
date gt minute seqto
day hour minutes sin

days hours mim sine
decrease if mimname slope
delay in mim_self sort
Page 96 Health Level Seven © 1999. All rights reserved.

07/1999

Final Standard.

Arden Syntax for Medical Logic Systems

specialist testing truncate weeks
sqrt than type were
starting the unique where
stddev then until while
string they urgency with
sum time validation within
support title variance write
surrounding to version year
tan triggertime was year
tangent true week

The following identifiers are reserved for future use:

union intersect excluding citation select

Health Level Seven © 1999. All rights reserved.
Final Standard

Page 97
07/1999

A3 SPECIAL SYMBOLS

Listed here are al the special symbols.

Page 98

I
>
[

}
/

/*

<>

**

1

Arden Syntax for Medical Logic Systems

#® o+~

07/1999

Health Level Seven © 1999. All rights reserved.

Final Standard.

Arden Syntax for Medical Logic Systems

A4 OPERATOR PRECEDENCE AND ASSOCIATIVITY

A4l

The operators for the structured slots are shown here grouped by precedence. Groups are separated by horizontal
lines. Within groups, operators have equal precedence. Groups are arranged from lowest to highest precedence.

A4.2

Synonyms are listed on the same line, separated by °. The symbol [of] means that the word of is optional, and does
not affect the logic of the operator.

A4.3

The position of the arguments relative to the operator isindicated by the ellipsis ... The operator’s associativity is
shown in italics after each operator. Some operators have both a unary form (one argument) and a binary form (two
arguments); each form islisted separately.

ooy ... (Ieft @ssoCiative)

... merge ... (left associative)
sort data ... (non-associative)
sort time ... (non-associative)

.. where ... (non-associative)

.. or ... (left associative)

.. and ... (left associative) ... hot ... (non-associative)

.. =...°%...isequd ... (non-associative)
...<>..°%..isnotequa ... (non-associative)
...<..°%..islessthan ... ° ... isnot greater than or equal ... (non-associative)
...<=...°..islessthanorequal ... ° ... isnot greater than ... (non-associative)
...>...°% ... isgreater than ... ° ... isnot lessthan or equal ... (non-associative)
...>=..° ... isgreater thanor equal ... ° ... isnot less than (non-associative)
... iswithin ... to ... (non-associétive)
... isnot within ... to ... (non-associative)
... iswithin ... preceding ... (non-associative)
... iIsnot within ... preceding (non-associative)
... iswithin ... following ... (non-associative) isnot within ... following ... (non-associative)
... iswithin ... surrounding ... (non-associative)
... isnot within ... surrounding ... (hon-associative)
... iswithin past ... (non-associative)
... isnot within past ... (non-associative)
... iswithin same day as ... (non-associative)
... isnot within same day as (non-associative)
... isbefore ... (non-associative)
... isnot before ... (non-associative)
... isdfter ... (non-associative)
... isnot after ... (non-associative)
... occur equal ... (non-associétive)
... occur within ... to ... (non-associative)
... occur not within ... to ... (non-associative)
... occur within ... preceding ... (non-associative)
....occur not within ... preceding ... (hon-associative)
... occur within ... following ... (non-associative)
... occur not within ... following ... (non-associative)
... occur within ... surrounding ... (non-associative)
... occur not within ... surrounding ... (nNon-associative)
.. occur within past ... (non-associative)
... occur not within ... past ... (non-associative)
Health Level Seven © 1999. All rights reserved. Page 99

Final Standard 07/1999

Arden Syntax for Medical Logic Systems

... occur within same day as ... (non-associative)
... occur not within same day as ... (non-associative)
... occur before ... (non-associative)
... occur not before ... (hon-associative)
... occur after ... (hon-associative)
... occur not after ... (non-associative)
... Isin ... (non-associative)
...isnotin ... (non-associative)
... ispresent ° ... isnot null (non-associative)
... isnot present ° ... isnull (non-associative)
... is Boolean (non-associative)
... isnot Boolean (non-associative)
... iIsnumber (non-associative)
... iIsnot number (non-associative)
... istime (non-associative)
... isnot time (non-associative)
... isduration (non-associative)
... isnot duration (non-associative)
... isstring (hon-associtive)
... isnot string (non-associative)
... islist (non-associative)
.. isnot list (non-associative)

. ... (left associative)
.. formatted with ... (non-associative)

+ ... (non-associative)

... + ... (Ieft associative)
- ... (non-associative)
.. - ... (left associative)

... * ... (left associative)
.. | ... (Ieft associative)

.. ** .. (hon-associative)

.. round ... (non-associative)

... before ... (non-associative)
.. after ... (non-associative)

.. &0 ... (non-associative)

... year ° ... years (non-associative)

... month ° ... months (non-associative)

... week ° ... weeks (non-associative)

... day ° ... days (non-associétive)

... hour ° ... hours (non-associative)

... minute ° minutes (non-associative)

.. second ° ... seconds (hon-associative)
. matches pattern ... (non-associative)

count [of] ... (right associative)
exist [of] ... (right associative)
avg [of] ... ° average[of] ... (right associative)
median [of] ... (right associative)
sum [of] ... (right associative)
stddev [of] ... (right associative)
variance [of] ... (right associative)
any [of] ... (right associative)
all [of] ... (right associative)
no [of] ... (right associative)
dope[of] ... (right associative)
min ... from ... ° minimum ... from ... (right associative)
min[of] ... ° minimum [of] ... (right associative)
Page 100 Health Level Seven © 1999. All rights reserved.

07/1999 Final Standard.

Arden Syntax for Medical Logic Systems

max ... from ... © maximum ... from ... (right associative)
max [of] ... © maximum [of] ... (right associative)

index min ... from ... ° index minimum ... from ... (right associative)
index min [of] ... ° index minimum [of] ... (right associative)
index max ... from ... ° index maximum ... from ... (right associative)
index max [of] ... ° index maximum [of] ... (right associative)
last ... from ... (right associative)

last [of] ... (right associative)

first ... from ... (right associative)

first [of] ... (right associative)

latest ... from ... (right associative)

latest [of] ... (right associative)

earliest ... from ... (right associative)

earliest [of] ... (right associative)

nearest ... from ... (right associative)

index nearest ... from ... (right associative)

increase [of] ... (right associative)

decrease [of] ... (right associative)

percent increase [of] ... ° % increase [of] ... (right associative)
percent decrease [of] ... © % decrease[of] ... (right associative)
interval [of] ... (right associative)

time[of] ... (right associative)

arccos [of] ... (right associative)

arcsin [of] ... (right associative)

arctan [of] ... (right associative)

cos[of] ... ° cosine[of] ... (right associative)

sin[of] ... ° sine[of] ... (right associative)

tan [of] ... ° tangent [of] ... (right associative)

exp [of] ... (right associative)

floor [of] ... (right associative)

ceiling [of] ... (right associative)

truncate [of] ... (right associative)

log [of] ... (right associative)

log10 [of] ... (right associative)

abs[of] ... (right associative)

sgrt [of] ... (right associative)

extract year [of] ... (right associative)

extract month [of] ... (right associative)

extract hour [of] ... (right associative)

extract minute [of] ... (right associative)

extract second [of] ... (right associative)

reverse [of] ... (right associative)

extract characters[of] ... (right associative)

string [of] ... (right associative)

Health Level Seven © 1999. All rights reserved. Page 101
Final Standard 07/1999

Arden Syntax for Medical Logic Systems

A5 FORMAT SPECIFICATION (SEE 9.8.2)
A5.1 The following is a complete description of supported types within the format specification:
type Required character that deternmi nes whether the associated argunent is
interpreted as a character, a string, or a nunber.
Table A5-1
Character Type Output Format
c number The number is assumed to represent a character code to be output as a character.
C number The number is assumed to represent a character code to be output as a character.
d number Signed decimal integer.
i number Signed decimal integer.
o} number Unsigned octal integer.
u number Unsigned decimal integer.
X number Unsigned hexadecimal integer, using "abcdef."
X number Unsigned hexadecimal integer, using "ABCDEF."
e number Signed value having the form [—]d.dddd e [sign]ddd where d is a single decimal digit,
dddd is one or more decimal digits, ddd is exactly three decimd digits, and signis+ or —
E number Identical to the e format, except that E, rather than e, introduces the exponent.
double Signed value having the form [—]dddd.dddd, where dddd is one or more decimal digits.
The number of digits before the decimal point depends on the magnitude of the number,
and the number of digits after the decimal point depends on the requested precision.
g double Signed value printed in f or e format, whichever is more compact for the given value
and precision. The e format is used only when the exponent of the valueis|essthan 4
or greater than or equal to the precision argument. Trailing zeros are truncated, and the
decimal point appears only if one or more digits follow it.
G double Identical to the g format, except that E, rather than e, introduces the exponent (where
appropriate).
n Not supported. Not supported.
p Not supported. Not supported.
s string Specifies a character. Characters are printed until the precision value is reached.
t time A timeis printed based on the user's environment settings and the precision value.
A5.2 The optional fields, which appear before the type character, control other aspects of the
formatting, as follows:
flags Optiona character or charactersthat control justification of output and printing of signs, blanks, decimal
points, and octal and hexadecimal prefixes. More than one flag can appear in aformat specification.
Table A5-2
Flag Meaning Default
- Left aign the result within the given field width. Right align.
+ Prefix the output value with asign (+ or -) if the output value is of Sign appears only for
asigned type. negative signed values (-).
Page 102 Health Level Seven © 1999. All rights reserved.

07/1999

Final Standard.

Arden Syntax for Medical Logic Systems

Flag Meaning Default
0 If width is prefixed with 0, zeros are added until the minimum No padding.
width is reached. If 0 and — appear, the O isignored. If 0 is specified
with an integer format (1, u, x, X, o, d) the O isignored.
Space Prefix the output value with a space if the output value is signed No space appears.
and positive; the space isignored if both the space and + flags
appear.
When used with the o, X, or X format, the # flag prefixes any No blank appears.
nonzero output value with O, Ox, or OX, respectively.
When used with the e, E, or f format, the # flag forces the output Decimal point appears only

value to contain adecimal point in al cases.

When used with the g or G format, the # flag forces the output
value to contain adecimal point in al cases and prevents the
truncation of trailing zeros.

if digitsfollow it.

Decimal point appears only
if digitsfollow it. Trailing
zeros are truncated.

Ignored when used with ¢, d, i, u, or s.

The second optional field of the format specification is the width specification. The width argument isa
nonnegative decimal integer controlling the minimum number of characters printed. If the number of charactersin
the output value is less than the specified width, blanks are added to the left or the right of the values - depending on
whether the —flag (for left alignment) is specified - until the minimum width isreached. If width is prefixed with O,
zeros are added until the minimum width is reached (not useful for left-aligned numbers).

The width specification never causes avalue to be truncated. If the number of charactersin the output valueis
greater than the specified width, or if width is not given, all characters of the value are printed (subject to the
precision specification).

If the width specification is an asterisk (*), an integer argument from the argument list supplies the value. The width
argument must precede the value being formatted in the argument list. A nonexistent or small field width does not
cause the truncation of afield; if the result of a conversion is wider than the field width, the field expands to contain
the conversion result.

width Optional number that specifies the minimum number of characters output.

precision Optiona number that specifies the maximum number of characters printed for all or part of
the output field, or the minimum number of digits printed for integer values.

Table A5-3
Type Meaning Default
¢,C Theprecision has no effect. Character is printed.

d,i,u, The precision specifies the minimum number of digits Default precisionis 1.
0, X, X tobe printed. If the number of digitsin the argument is

less than precision, the output value is padded on the

left with zeros. The value is not truncated when the

number of digits exceeds precision.

e, E The precision specifies the number of digitsto be Default precision is 6; if precisionis0,
printed after the decimal point. The last printed digitis or the period (.) appears without a
rounded. number following it, no decimal point

is printed.

f The precision value specifies the number of digitsafter ~ Default precision is 6; if precisionisO,
the decima point. If adecimal point appears, at least or if the period (.) appears without a
one digit appears beforeit. The valueisrounded tothe number following it, no decimal point
appropriate number of digits. is printed.

g, G The precision specifies the maximum number of Six significant digits are printed, with
significant digits printed. Thelast printed digit is any trailing zeros truncated.
rounded.

Health Level Seven © 1999. All rights reserved. Page 103
Final Standard 07/1999

Arden Syntax for Medical Logic Systems

Type

Meaning Default
The precision specifies the maximum number of Characters are printed until anull
characters to be printed. Characters in excess of character is encountered.

precision are not printed.

The precision specifies how many of thedateandtime Al fields are printed.
fields are printed. Non-printed fields are truncated
(rounded down).

0: Year only

1: Year, Month

2: Date (Year, Month, Day)
3: Date, hour

4: Date, hour, minute

5: Date, hour, minute, second

Page 104

07/1999

Health Level Seven © 1999. All rights reserved.

Final Standard.

Arden Syntax for Medical Logic Systems

Appendices

(Nonmandatory Information)

X1 SAMPLE MLMS

The following are sample MLM S to be used only to demonstrate the syntax. They have not been tested, and they
have not been used in clinical care. More example MLMs, many of which arein current live use, are available at
Columbia s web site, www.cpmc.columbia.edu/resources/arden.

X1.1 Data Interpretation MLM:

mai nt enance:
title: Fractional excretion of sodium;
m mane: fractional _na;;
arden: Version 2;;
institution: Colunbia-Presbyterian Medical Center;;

aut hor: George Hripcsak, M D.
(hripcsak@uci s. cis. col unbi a. edu) ; ;

specialist: ;;

date: 1991-03-13;;

val i dation: testing;;
library:

pur pose:
Cal cul ate the fractional excretion of sodi um whenever urine:
electrolytes are stored. (This MM denpnstrates data
interpretation across independent |aboratory results.);;

expl anati on:
The fractional excretion of sodiumis calculated fromthe urine
sodi um and creatinine and the nost recent serum sodi um and
creatinine (where they occurred within the past 24 hours). A
value less than 1.0 %is considered low.;;

keywords: fractional excretion; serum sodium azotem a;;

citations:
1. Steiner RW Interpreting the fractional excretion of sodium
Am J Med 1984; 77: 699-702.;;

know edge:
type: data-drivein;;

dat a:

let (urine_ na, urine_creat) be read | ast

({urine electrol ytes where evoki ng}

where they occurred within the past 24 hours) ;
let (serumna, serumcreat) be read | ast

({serum el ectrol ytes where evoki ng}

where they occurred within the past 24 hours) ;
let urine_electrolyte_storage be event

{storage of urine electrolytes}

evoke:)
urine_el ectrol yte_storage;;

Health Level Seven © 1999. All rights reserved. Page 105
Final Standard 07/1999

Arden Syntax for Medical Logic Syste

ms

| ogi c:
/* calculate fractional excretion of sodium*/
let fractional _na be 100 * (urine_na / urine_creat)/
(serumna / serumcreat) ;
/* if the fractional Na is invalid (e.g., if the */
/* urine or serumsanple is QNS) then stop here */
if fractional _na is null then
concl ude fal se ;
endi f ;
/* check whether the fractional Na is |ow */
let low fractional _na be fractional _na < 1.0 ;
/* send the message */
concl ude true ;
action:
if low fractional _na then
wite "The calculated fractional excretion of sodiumis |ow (
|| fractional _na || "). If the patient is azotemc, "
"this nunber may indicate volume depletion, " ||
"hepatic failure, congestive heart failure, acute " ||
"gl omerul onephritis, oliguric nyoglobinuric or " ||
"henogl obi nuric renal failure, oliguric contrast " ||
"nephrotoxicity, polyuric renal failure with severe " |
"burns, renal transplant rejection, 10 % of cases " ||
"with non-oliguric acute tubular necrosis, and " ||
"several other fornms of renal injury."
el se:
wite "The cal culated fractional excretion of sodiumis " ||
"not low ("|]| fractional _na || "). |If the patient " ||
"is azotemic, this may indicate: acute renal " ||
"parenchymal injury, volunme depletion coexisting " ||
"with diuretic use or pre-existing chronic renal " ||
"di sease, and up to 10 % of cases of unconplicated " ||
"vol ume depletion."
endi f
end

X1.2 Research Study Screening MLM:

mai nt enance:
title: Screen for hypercalcenmia for Dr. B.'s study;;
m mMmane: hypercal cemia_for_b;;
arden: Version 2;;
version: 2.02;;
institution: Colunbia-Presbyterian Medical Center;;
aut hor: George Hripcsak, MD.;;
specialist: ;;
date: 1990-12-04;;
val i dation: research;;
library:

pur pose:

Screen for hypercalcenmia for Dr. B.'s study. (This MM denonstrates

screening patients for clinical trials.);;

expl anati on:
The storage of a serum cal cium val ue evokes this MM |f a serum
al bumin is available fromthe same bl ood sanple as the cal ci um

then the corrected calciumis cal culated, and patients with actual

or corrected calciumgreater than or equal 11.5 are accepted; if
such a serumal bunmin is not available, then patients with actual
calciumgreater than or equal 11.0 are accepted. Patients with
serum creatinine greater than 6.0 are excluded fromthe study.;;

keywor ds: hypercal cem a; ;
citations: ;;
knowl edge:

type: data-driven;;

Page 106

07/1999

Health Level Seven © 1999. All rights reserved.

Final Standard.

Arden Syntax for Medical Logic Systems

dat a:
/* the storage of a cal ciumvalue evokes this MM */
storage_of _calcium" = event {'06210519','06210669'}
/* total calciumin ng/dL */
calcium:=read |ast {'06210519',' 06210669 ,"' CALCl UM }
/* albumin in g/dL */
evoki ng_albumn := read last {'06210669';' ALBUM N where evoki ng}
/*albumin in g/dL; not necessary fromsane test as Ca */
last _al bumin :=read last ({'06210669';' ALBUM N }
where it occurred within the past 2 weeks)
/* creatinine in ng/dL; not necessarily fromsane test as Ca */
creatinine := read |ast ({'06210669','06210545',' 06000545' ,' CREAT }
where it occurred within the past 2 weeks

evoke
storage_of _cal ci um

| ogi c:
/* make sure the Ca is present (vs. henolyzed , .) */
IF calciumis not present THEN
concl ude fal se
ENDI F
/* if creatinine is present and greater than 6, then stop now */
IF creatinine is present THEN
IF creatinine is greater than 6.0 THEN
concl ude fal se
ENDI F
ENDI F
/* is an albunmin present for the same sanple as the cal cium*/
I F evoking_al bumin is present THEN
/* calculate the corrected cal ci um*/
| F evoking_al bumin is less than 4.0 THEN
corrected_cal cium: = cal cium + (4.0-evoking_al bunin)*0.8
ELSE
/* corrected is never |ess than actual */
corrected_cal cium: = cal cium
ENDI F
/* test for total or corrected cal cium>= 11.5 */
IF calcium>= 11.5 OR corrected_cal cium >= 11.5 THEN
message := "calcium=" || calcium]||
"“on" || time of calcium]||
" (corrected calcium= " ||
corrected calcium]|| ")"
message : = nessage||"; albumn =
IF creatinine is present THEN
message : = nessage|
"; last creatinine = ||creatinine
message : = nessage|
"; (total or corrected calcium" ||
"was at |east 11.5)"
concl ude true
ELSE
concl ude fal se
ENDI F
ENDI F
/* no evoking al bumi n was present */
ELSE
/* check for true calcium>= 11.0 */
IF calcium>= 11.0 THEN
message := "calcium= "||calciuni|" on "||tinme of calcium
IF last_albumin is present THEN
message : = nessage||"; last albumn "||
"(not from same bl ood sanple as calcium = "||
| ast _al bumi n
IF creatinine is present THEN
message : = nessage|| "; last creatinine =
| | creatinine
message : = nessage|
"; (total calciumwas at least 11.0; "|
"corrected cal ciumwas not cal cul ated)"”
concl ude true
ELSE
concl ude fal se
ENDI F

| | evoki ng_al bumi n

action: wite "hypercalcem a study: " || nessage;

urgency: 50;

Health Level Seven © 1999. All rights reserved. Page 107
Final Standard 07/1999

Arden Syntax for Medical Logic Systems

end:

X1.3 Contraindication Alert MLM:

mai nt enance:

title: Check for penicillin allergy;;

m mane: pen_al |l ergy; ;

arden: ASTM E1460-1995; ;

version: 1.00;

institution: Colunbia-Presbyterian Medical Center;;
aut hor: George Hripcsak, MD.;;

specialist: ;;

date: 1991-03-18;;

val i dation: testing;;

library:

pur pose:
when a penicillin is prescribed, check for an allergy. (This MM
denpnstrates checking for contraindications.);;

expl anati on:

This MLMis evoked when a penicillin nmedication is ordered. An
alert is generated because the patient has an allergy to penicillin
recorded. ;;
keywords: penicillin; allergy;;
citations: ;;
know edge:
type: data-driven;;
dat a:
/* an order for a penicillin evokes this MM */
penicillin_order := event {nedication order where
class = penicillin};
/* find allergies */
penicillin_allergy :=read last {allergy where
agent _class = penicillin};
evoke:
penicillin_order;;
l ogic
if exist (penicillin_allergy) then
concl ude true;
endi f;
action:
wite "Caution, the patient has the following allerge to penicillin
docunent ed: " || penicillin_allergy;;
urgency: 50;;

end:

X1.4 Management Suggestion MLM:

mai nt enance:

title: Dosing for gentamcin in renal failure;;

m mMmane: gent ami ci n_dosi ng; ;

arden: ASTM E1460-1995; ;

version: 1.00;;

institution: Colunbia-Presbyterian Medical Center;;
aut hor: George Hripcsak, MD.;;

Page 108

07/1999

Health Level Seven © 1999. All rights reserved.

Final Standard.

Arden Syntax for Medical Logic Systems

specialist: ;;

date: 1991-03-18;;

val i dation: testing;;
library:

pur pose:
Suggest an appropriate gentamcin dose in the setting of renal
insufficiency. (This M.M denonstrates a managenent suggestion.);;

expl anati on:
Patients with renal insufficiency require the sanme |oadi ng dose of
gentam cin as those with nornal renal function, but they require a
reduced daily dose. The creatinine clearance is calculated by serum
creatinine, age, and weight. If it is less than 30 m/mn, then an
appropriate dose is calcul ated based on the clearance. If the
ordered dose differs fromthe cal cul ated dose by nore than 20%
then an alert is generated.;;

keywor ds: gentami cin; dosing;;

citations: ;;

know edge:
type: data-driven;;

dat a:
/* an order for gentamicin evokes this MM */
gentam cin_order := event {nedication_order where
class = gentami ci n}
/* gentam cin doses */
(1 oadi ng_dose, peri odi c_dose, periodic_interval) :=
read | ast {nedication_order initial dose,
peri odi ¢ dose, interval}
/* serumcreatinine ng/dl */
serumcreatinine := read |last ({serumcreatinine}
where it occurred within the past 1 week)
/* birthdate */
birthdate := read | ast {birthdate}
/* wei ght kg */
wei ght := read last ({weight}
where it occurred within the past 3 nonths
evoke:
gent am ci n_order; ;

| ogi c:
age := (now — birthdate)/1 year
creatinine_clearance := 140 — age) * (weight)/
(72 * serumcreatinine)
/* the algorithmcan be adjusted to handl e hi gher clearances */
if creatinine_clearance < 30 then
cal c_l oading_dose := 1.7 * wei ght
calc_daily_dose := 3 * (0.05 + creatinine_clearance / 100)
ordered_dai l y_dose : = periodic_dose *
periodic_interval /(1 day)
/* check whether order is appropriate */
if abs (| oadi ng_dose-cal c_| oadi ng_dose/ cal c_I| oadi ng_dose > 0.2
or
abs(ordered_daily_dose — cal c_daily_dose)/
calc_daily_dose > 0.2 then
concl ude true
endi f
endi f
action:
wite "Due to renal insufficiency, the dose of gentamicin " ||
"shoul d be adjusted. The patient's calculated " ||
"creatinine clearance is " || creatinine_clearance |
" m/mn. A single |oading dose of " ||
cal c_l oadi ng_dose || "ng should be given, followed by " ||
calc_daily_dose || "nmg daily. Note that dialysis may " ||
"necessitate additional |oading doses."

urgency: 50;;

end:

Health Level Seven © 1999. All rights reserved. Page 109
Final Standard 07/1999

Arden Syntax for Medical Logic Systems

X1.5 Monitoring MLM:

mai nt enance:
title: Mnitor renal function while taking gentam cin;;
m mMmane: gentam ci n_nonitoring;;
arden: Version 2;;
version: 1.00;;
institution: Colunbia-Presbyterian Medical Center;;
aut hor: George Hripcsak, MD.;;
specialist: ;;
date: 1991-03-19;;
val i dation: testing;;
library:

pur pose:
Monitor the patient's renal function when the patient is taking
gentam cin. (This MM denpnstrates periodic nmonitoring.);;

expl anati on:
This MM runs every five days after the patient is placed on
gentam cin until the nedication is stopped. |If the serumcreatinine
has not been checked recently, then an alert is generated
requesting followup. If the serumcreatinine has been checked, is
greater than 2.0, and has risen by nore than 20 % then an alert is
generated warning that the patient nay be devel opi ng renal
i nsufficiency due to gentam cin.

keywords: gentam cin; renal function;;

citations:

know edge:
type: data-driven;;

dat a:
/* an order for gentamicin evokes this MM */
gentam cin_order := event {nedication_order where
class = gentamcin};
/* check whether gentam cin has been discontinued */
gent am ci n_di scontinued : =
read exi st ({medication_cancellation where class = gentanicin}
where it occurs after eventtine);
/* baseline serumcreatinine mg/dl */
baseline_creatinine := read |last ({serumcreatinine}
where it occurred before eventtine);
/* followup serumcreatinine mg/dl */
recent _creatinine := read |last ({serumcreatinine}
where it occurred within the past 3 days;
evoke:
every 5 days for 10 years starting 5 days after tinme of
gentam cin_order until gentam cin_discontinued;;

| ogi c:
if recent_creatinine is not present then
no_recent_creatinine := true;
concl ude true;
el se
no_recent_creatinine := fal se;
if %increase of (serumcreatinine,
recent _creatinine) > 20 /* %* /
and recent_creatinine > 2.0 then
concl ude true;
endi f;
endiif;

Page 110 Health Level Seven © 1999. All rights reserved.

07/1999 Final Standard.

Arden Syntax for Medical Logic Systems

action:
if no_recent_creatinine then
wite "Suggest obtaining a serumcreatinine to follow up " ||
"on renal function in the setting of gentamicin.";
el se
wite "Recent serumcreatinine ("|| recent_creatinine ||
"mg/dl) has increased, possibly due to renal " ||
"insufficiency related to gentamcin use.";
endi f;
urgency: 50;;
end:

X1.6 Management Suggestion MLM:

mai nt enance:

title: Granul ocytopenia and Trinmethopri m Sul f anet hoxazol e; ;
m mane: anct ns; ;

arden: Version 2;;

version: 2.00;;

institution: Colunbia-Presbyterian Medical Center;;
aut hor: George Hripcsak, MD.;;

speci al i st:

date: 1991-05-28;;
val i dation: testing;;
library:

pur pose:

Det ect granul ocytopeni a possibly due to
trimet hopri m sul f amet hoxazol e; ;

expl anati on:
This MM detects patients that are currently taking

trimethopri m sul famet hoxazol e whose absol ute neutrophile count is
| ess than 1000 and falling;

keywor ds:
granul ocyt openi a; agranul ocytosis; trinmethoprim sulfanethoxazole;;

citations:
Anti-infective drug use in relation to the risk of
agranul ocytosis and aplastic anem a. A report fromthe
International Agranulosis and Aplastic Anem a Study.
Archives of Internal Medicine, May 1989, 149(5):1036-40;;

i nks:

"CTIM . 34.56.78";
' MeSH agr anul ocytosi s/ ci and sul famet hoxazol e/ ae' ;;

know edge:
type: data-driven;;

dat a:
/*capitalized text within curly brackets would be replaced with */
/*an institution's own query*/
| et anc_storage be event {STORAGE OF ABSOLUTE_NEUTROPHI LE_COUNT};
let anc be read last 2 from ({ABSOLUTE_NEUTROPHI LE_COUNT}
where they occurred within the past 1 week);
let pt_is_taking_tns be read exist
{ TRl METHOPRI M_SULFAMETHOXAZOLE_ORDER} ;

evoke: anc_storage;;

Health Level Seven © 1999. All rights reserved.
Final Standard

Page 111
07/1999

Arden Syntax for Medical Logic Systems

| ogi c:
if pt_is_taking_tns
and the last anc is less than 1000
and the last anc is less than the first anc
/* is anc falling? */
t hen
concl ude true;
el se
concl ude fal se;
endi f;;
action:
wite "Caution: patient's relative granul ocytopenia nmay be " ||
"exacerbated by trimethoprimsulfanethoxazole.";
end:

X1.7 MLM Translated from CARE:

mai nt enance:
title: Cardiology MM from CARE, p. 85;;
m mMmane: care_cardiol ogy_m m;
arden: Version 2;;
version: 1.00;;
author: Cement J. McDonald, MD.; George Hripcsak, MD.;;
specialist: ;;
date: 1991-05-28;;
val i dation: testing;;
library:

pur pose:
Recomrend hi gher beta-bl ocker dosage if it is currently |ow and the
patient is having excessive angina or premature ventricul ar
beats; ;

expl anati on:
If the patient is not bradycardic and is taking | ess than 360 ng of
propol anol or less than 200 mg of metroprolol, then if the patient
is having nore than 4 episodes of angina per nonth or more than 5
premature ventricul ar beats per minute, recommend a hi gher dose.;;

keywor ds:
bet a- bl ocker; angina; premature ventricul ar beats; bradycardia;;

citations:

1. McDonald CJ. Action-oriented decisions in anbul atory nedi ci ne.
Chi cago: Year Book Medical Publishers, 1981, p. 85.

2. Prichard NC, GIlimPM Assessnent of propolanol in angina
el ectrocardi ogram at rest and on exercise. Br Heart J,
33:473-480 (1971)

3. Jackson G Atkinson L, Oram S. Reassessnent of failed beta-
bl ocker treatment in angina pectoris by peak exercise heart rate
measurenments. Br Med J, 3:616-619 (1975).

know edge:

type: data-driven;;

Page 112 Health Level Seven © 1999. All rights reserved.

07/1999 Final Standard.

Arden Syntax for Medical Logic Systems

dat a:

last _clinic_visit be read last {CLINIC VISIT};

(beta_neds, bet a_doses, bet a_st atuses) be read

{ MEDI CATI ON, DOSE, STATUS

where the beta_statuses are 'current'’

and beta_neds are a kind of 'beta_bl ocker'};

l et | ow dose_beta_use be fal se;

/* if patient is on one beta blocker, check if it is | ow dose */
if the count of beta_meds = 1 then

if (the last beta_neds = 'propanolol’
and
| ast beta_doses < 360)
or (the last_beta_meds = 'metroprolol’
and

the |l ast beta_doses <= 200 then
l et | ow dose_beta be true;
endi f;
endi f;
let cutoff_time be the naxi mum of
((1 nonth ago), (tine of last_clinic_visit),
(time of last_beta_meds));
/* a systemspecific query to angina frequency, PVC frequency, */
/* and pul se rate woul d replace capitalized terns */
| et angi na_frequency be read | ast ({ANG NA_FREQUENCY}
where it occurred after cutoff_tine);
| et premature_beat _frequency be read | ast
({ PREMATURE_BEAT_FREQUENCY}
where it occurred after cutoff_tine);
let last_pulse_rate be read | ast {PULSE_RATE};

evoke: /* this MLMis called directly */;;

| ogi c:
if last_pulse_rate is greater than 60 and
| ow_dose_beta_use then
if angina_frequency is greater than 4 then
| et nessage be
"I ncreased dose of beta blockers may be " |
"needed to control angina.";
el se
if premature_beat _frequency is greater than 5 then
| et nessage be
"I ncreased dose of beta blockers may be " |
"needed to control PVCs.";
concl ude true
endi f;
endi f;
endi f;
concl ude fal se
action:
wite nessage;
end

X1.8-MLM Using While Loop:

mai nt enance:
title: Allergy_test_w th_while_loop;;
filenane: test_for_allergies_while_loop;;
version: 0.00;;
institution: ;;
author: ;;
specialist: ;;
date: 1997-11-06;;

validation: testing;;

library:
pur pose:
Il'lustrates the use of a WHI LE-LOOP that processes an entire |ist
Health Level Seven © 1999. All rights reserved. Page 113

Final Standard 07/1999

Arden Syntax for Medical Logic Systems

expl anati on:

keywor ds:
know edge:
type: data-driven;;
dat a:
/* Receives four argunents fromthe calling MM */
(med_orders,
med_al | er gens,
patient_allergies,
pati ent_reactions) := ARGUVENT;
evoke:
| ogi c:
/* Initializes variables */
a_list:=();
mlist:= ();
r_list:=();
num = 1;
/* Checks each allergen in the nmedications to determ ne */
/* if the patient is allergic to it */
whi | e num <= (count ned_al | ergen) do
allergen: = last(first numfrom ned_al |l ergens);
al lergy_found: = (patient_allergies = allergen);
reaction: = patient_reactions where allergy_found;
medi cation: = med_orders where (ned_all ergens = allergen);
/* Adds the allergen, medication, and reaction to */
/* variables that will be returned to the calling MM */
If any allergy_found then
a_list:=a_list, allergen;
mlist:= mlist, nedication;
r_list:=r_list, reaction;
endi f;
/* Increnents the counter that is used to stop the while-loop */
num= num+ 1 ;
enddo;
/* Concludes true if the patient is allergic to one of */
/* the medications */
If exist mlist
then concl ude true;
endi f;
action:
/* Returns three lists to the calling MM */
return mlist, a_list, r_list;
end:
Page 114 Health Level Seven © 1999. All rights reserved.

07/1999 Final Standard.

Arden Syntax for Medical Logic Systems

X2

SUMMARY OF CHANGES

Summary of changes from the 1992 standard

Clarification of many details of operator definitions.

Arden syntax version slot required (6.1.3).

Citations must be numbered, and can be classified as supporting or refuting (6.2.4).
Specification of Links dot (6.2.5).

Times can be constructed from durations via + operator (7.1.5.3).
Triggertime is the time the MLM was triggered (8.4.5).

Query retrieval order is not necessarily by primary time (8.9.2).
Interface statement for using external functions (11.2.12).

Single-line comments may be introduced with "//" (7.1.9).

The filename slot has been renamed to mimname (6.1.2).

Some new operators have been introduced:

sort data (9.2.4)

sort time (9.2.4)

reverse (9.12.21)

format (9.8.2)

earliest, latest (9.12.17, 9.12.16)

floor, ceiling, truncate, round (9.16.11, 9.16.12, 9.16.13, 9.16.14)
index (...[...]) (9.12.18)

year, month, day, hour, minute, second field extraction (9.11.2, 9.11.4,9.11.7, 9.11.9, 9.11.11,
9.11.13)

» seqto (9.12.20)
» string, extract characters (9.8.3, 9.12.19)

V V V V V V VYV V

Operators which select from lists may be annotated to return indexes instead of the elements (9.12.18).
As number operator which converts strings and Booleans to numbers (9.16.17).
Some restrictions have been removed (e.g., double semi-colon inside strings).

The call expression and statement can now pass multiple arguments; arguments may also be passed from an
actiondot (10.2.4, 11.2.4,12.2.2, 12.2.4).

L ooping constructs have been added: for loop, while loop (10.2.5, 10.2.6).

The continue statement may have an unless added to it (thisis a readability aid).
A new form of conditional execution, by allowing unless in a conclude statement.
The"read... where... " no longer requires parentheses.

A read query may specify a sort order (different from the default of chronologica by primary time).

Health Level Seven © 1999. All rights reserved. Page 115
Final Standard 07/1999

Arden Syntax for Medical Logic Systems

REFERENCES

(1) HELP Frame Manual, 1991, LDS Hospital, 325 8" Ave,, Salt Lake City, UT 84143.

(2) McDonald, C.J., Action-Oriented Decisions in Ambulatory Medicine, Chicago: Y ear Book Medical
Publishers, 1981.

(3) Wirth, N., "What Can We Do About the Unnecessary Diversity of Notation for Syntactic Definitions?"
Communications of the ACM, Val. 20, 1977, pp. 822-823.

(4) UMLS Knowledge Sources, Experimental Edition, Bethesda, MD: National Library of Medicine, September
1990.

(5) International Committee of Medical Journal Editors, Special Report, "Uniform Requirements for
Manuscripts Submitted to Biomedical Journals,” The New England Journal of Medicine, Vol 324, No. 6, 1991, pp.
424-428.

Page 116 Health Level Seven © 1999. All rights reserved.

07/1999 Final Standard.

