
Health Level Seven © 1999. All rights reserved. Page 1

Final Standard 07/1999

The first version of this standard was developed under the auspices of the American Society for Testing and
Materials (ASTM) and published in April 1992 as ASTM E1460-92. This new and revised version, developed and
published under Health Level Seven, Inc (HL7), is in most cases backward compatible and is based on the previous
ASTM version. The authors of the standard, and the members of the HL7 committee administering the standard,
wish to acknowledge and thank ASTM for their contributions to the Arden Syntax standard.

Arden Syntax for Medical
Logic Systems

TABLE OF CONTENTS

TABLE OF CONTENTS ... 1

1 SCOPE ... 7

2 REFERENCED DOCUMENTS .. 7
2.1 ASTM Standards: ... 7
2.2 ISO Standards: ... 7
2.3 ANSI Standards:... 7
2.4 Health Level Seven Standards:.. 8

3 TERMINOLOGY.. 8
3.1 Definitions: .. 8

3.1.1 Medical Logic Module (MLM), n .. 8
3.2 Descriptions of Terms Specific to This Standard: .. 8

3.2.1 time, n... 8
3.2.2 time-of-day, n.. 8
3.2.3 date, n ... 8
3.2.4 duration, n... 8
3.2.5 institution, n .. 8
3.2.6 event, n ... 8

3.3 Notation Used in This Standard .. 8

4 SIGNIFICANCE AND USE.. 9

5 MLM FORMAT.. 9
5.1 File Format... 9
5.2 Character Set .. 9
5.3 Line Break ... 9
5.4 White Space ... 10
5.5 General Layout... 10
5.6 Categories .. 10
5.7 Slots... 10
5.8 Slot Body Types ... 10

5.8.1 Textual Slots ... 10
5.8.2 Textual List Slots .. 11
5.8.3 Coded Slots ... 11
5.8.4 Structured Slots ... 11

5.9 MLM Termination.. 11
5.10 Case Insensitivity.. 11

Arden Syntax for Medical Logic Systems

Page 2 Health Level Seven © 1999. All rights reserved.

07/1999 Final Standard.

6 SLOT DESCRIPTIONS .. 11
6.1 Maintenance Category .. 11

6.1.1 Title (textual, required).. 11
6.1.2 Mlmname (coded, required)... 11
6.1.3 Arden Syntax version (coded, required) ... 12
6.1.4 Version (textual, required) ... 12
6.1.5 Institution (textual, required) ... 12
6.1.6 Author (textual list, required):.. 12
6.1.7 Specialist (textual, required) .. 12
6.1.8 Date (coded, required) ... 13
6.1.9 Validation (coded, required): ... 13

6.2 Library Category .. 13
6.2.1 Purpose (textual, required)... 13
6.2.2 Explanation (textual, required)... 13
6.2.3 Keywords (textual list, required).. 13
6.2.4 Citations (structured / textual, optional) ... 14
6.2.5 Links (structured / textual, optional) .. 14

6.3 Knowledge Category .. 15
6.3.1 Type (coded, required) .. 15
6.3.2 Data (structured, required) ... 15
6.3.3 Priority (coded, optional) ... 15
6.3.4 Evoke (structured, required) .. 15
6.3.5 Logic (structured, required) ... 15
6.3.6 Action (structured, required).. 15
6.3.7 This slot contains the action produced when the logic slot concludes true. The details of this slot are
explained in Section 12. Urgency (coded, optional) ... 15

7 STRUCTURED SLOT SYNTAX.. 16
7.1 Tokens ... 16

7.1.1 Reserved Words .. 16
7.1.2 Identifiers.. 16
7.1.3 Special Symbols .. 16
7.1.4 Number Constants ... 16
7.1.5 Time Constants ... 17
7.1.6 String Constants .. 17
7.1.7 Term Constants ... 18
7.1.8 Mapping Clauses... 18
7.1.9 Comments... 18
7.1.10 White Space.. 18

7.2 Organization... 19
7.2.1 Statements... 19
7.2.2 Expressions ... 19
7.2.3 Variables... 20

8 DATA TYPES .. 20
8.1 Null.. 21
8.2 Boolean.. 21
8.3 Number .. 21
8.4 Time .. 21

8.4.1 Granularity .. 21
8.4.2 Midnight ... 21
8.4.3 Now .. 22
8.4.4 Eventtime.. 22
8.4.5 Triggertime ... 22

8.5 Duration... 22
8.5.1 Sub-types .. 22

Arden Syntax for Medical Logic Systems

Health Level Seven © 1999. All rights reserved. Page 3

Final Standard 07/1999

8.5.2 Time and Duration Arithmetic ... 22
8.6 String ... 24
8.7 Term .. 24
8.8 List... 24
8.9 Query Results... 24

8.9.1 Primary Time .. 24
8.9.2 Retrieval Order.. 25
8.9.3 Data Value .. 25
8.9.4 Time Function Operator .. 25

9 OPERATOR DESCRIPTIONS.. 25
9.1 General Properties .. 25

9.1.1 Number of Arguments ... 25
9.1.2 Data Type Constraints ... 25
9.1.3 List Handling .. 26
9.1.4 Primary Time Handling ... 32
9.1.5 Operator Precedence.. 32
9.1.6 Associativity ... 32
9.1.7 Parentheses.. 33

9.2 List Operators... 33
9.2.1 , (binary, left associative)... 33
9.2.2 , (unary, non-associative)... 33
9.2.3 Merge (binary, left-associative).. 33
9.2.4 Sort Operators (unary, non-associative).. 34

9.3 Where Operator.. 34
9.3.1 Where (binary, non-associative)... 34

9.4 Logical Operators: .. 35
9.4.1 Or (binary, left associative).. 35
9.4.2 And (binary, left associative) ... 36
9.4.3 Not (unary, non-associative) .. 36

9.5 Simple Comparison Operators: ... 36
9.5.1 = (binary, non-associative)... 36
9.5.2 <> (binary, non-associative)... 37
9.5.3 < (binary, non-associative)... 37
9.5.4 <= (binary, non-associative)... 37
9.5.5 > (binary, non-associative)... 37
9.5.6 >= (binary, non-associative) .. 38

9.6 Is Comparison Operators .. 38
9.6.1 Is [not] Equal (binary, non-associative) .. 38
9.6.2 Is [not] Less Than (binary, non-associative) ... 38
9.6.3 Is [not] Greater Than (binary, non-associative)... 38
9.6.4 Is [not] Less Than or Equal (binary, non-associative) ... 38
9.6.5 Is [not] Greater Than or Equal (binary, non-associative)... 38
9.6.6 Is [not] Within ... To (ternary, non-associative) .. 38
9.6.7 Is [not] Within ... Preceding (ternary, non-associative) ... 39
9.6.8 Is [not] Within ... Following (ternary, non-associative)... 39
9.6.9 Is [not] Within ... Surrounding (ternary, non-associative).. 39
9.6.10 Is [not] Within Past (binary, non-associative) .. 39
9.6.11 Is [not] Within Same Day As (binary, non-associative) .. 39
9.6.12 Is [not] Before (binary, non-associative).. 39
9.6.13 Is [not] After (binary, non-associative) .. 39
9.6.14 Is [not] In (binary, non-associative) ... 40
9.6.15 Is [not] Present (unary, non-associative) .. 40
9.6.16 Is [not] Null (unary, non-associative)... 40
9.6.17 Is [not] Boolean (unary, non-associative)... 40
9.6.18 Is [not] Number (unary, non-associative)... 40
9.6.19 Is [not] String (unary, non-associative) .. 41

Arden Syntax for Medical Logic Systems

Page 4 Health Level Seven © 1999. All rights reserved.

07/1999 Final Standard.

9.6.20 Is [not] Time (unary, non-associative) ... 41
9.6.21 Is [not] Duration (unary, non-associative).. 41
9.6.22 Is [not] List (unary, non-associative) ... 41

9.7 Occur Comparison Operators:... 41
9.7.1 General Properties: .. 41
9.7.2 Occur [not] Equal (binary, non-associative): .. 42
9.7.3 Occur [not] Within ... To (ternary, non-associative):... 42
9.7.4 Occur [not] Within ... Preceding (ternary, non-associative):.. 42
9.7.5 Occur [not] Within ... Following (ternary, non-associative): ... 42
9.7.6 Occur [not] Within . . . Surrounding (ternary, non-associative): .. 42
9.7.7 Occur [not] Within Past (binary, non-associative): ... 42
9.7.8 Occur [not] Within Same Day As (binary, non-associative): ... 42
9.7.9 Occur [not] Before (binary, non-associative): ... 42
9.7.10 Occur [not] After (binary, non-associative):... 42

9.8 String Operators ... 43
9.8.1 || (binary, left associative) .. 43
9.8.2 Formatted with (binary, left-associative) .. 43
9.8.3 String ... (unary, right associative).. 44
9.8.4 Matches pattern (binary, non-associative) .. 44

9.9 Arithmetic Operators .. 45
9.9.1 + (binary, left associative).. 45
9.9.2 + (unary, non-associative).. 45
9.9.3 - (binary, left associative) .. 46
9.9.4 - (unary, non-associative)... 46
9.9.5 * (binary, left associative).. 46
9.9.6 / (binary, left associative)... 46
9.9.7 ** (binary, non-associative) ... 47

9.10 Temporal Operators .. 47
9.10.1 After (binary, non-associative) .. 47
9.10.2 Before (binary, non-associative).. 47
9.10.3 Ago (unary, non-associative)... 47

9.11 Duration Operators ... 47
9.11.1 Year (unary, non-associative).. 47
9.11.2 Extract year (unary, right-associative) ... 47
9.11.3 Month (unary, non-associative) ... 48
9.11.4 Extract month (unary, right-associative) .. 48
9.11.5 Week (unary, non-associative) .. 48
9.11.6 Day (unary, non-associative) ... 48
9.11.7 Extract day (unary, right-associative) .. 48
9.11.8 Hour (unary, non-associative).. 48
9.11.9 Extract hour (unary, right-associative) ... 48
9.11.10 Minute (unary, non-associative) .. 48
9.11.11 Extract minute (unary, right-associative) ... 49
9.11.12 Second (unary, non-associative) .. 49
9.11.13 Extract second (unary, right-associative) ... 49

9.12 Aggregation Operators: ... 49
9.12.1 General Properties: ... 49
9.12.2 Count (unary, right associative)... 49
9.12.3 Exist (unary, right associative) .. 50
9.12.4 Average (unary, right associative) ... 50
9.12.5 Median (unary, right associative)... 50
9.12.6 Sum (unary, right associative) ... 50
9.12.7 stddev (unary, right associative) .. 51
9.12.8 Variance (unary, right associative) .. 51
9.12.9 Minimum (unary, right associative) ... 51
9.12.10 Maximum (unary, right associative) .. 51

Arden Syntax for Medical Logic Systems

Health Level Seven © 1999. All rights reserved. Page 5

Final Standard 07/1999

9.12.11 Last (unary, right associative).. 52
9.12.12 First (unary, right associative) ... 52
9.12.13 Any (unary, right associative).. 52
9.12.14 All (unary, right associative) ... 52
9.12.15 No (unary, right associative).. 53
9.12.16 Latest (unary, right associative)... 53
9.12.17 Earliest (unary, right associative)... 53
9.12.18 Element (binary) ... 53
9.12.19 Extract characters ... (unary, right associative) ... 54
9.12.20 Seqto (binary, non-associative).. 54
9.12.21 Reverse (unary, right-associative).. 54
9.12.22 Index Extraction Aggregation operators .. 54

9.13 Query Aggregation Operators:... 55
9.13.1 General Properties: ... 55
9.13.2 Nearest ... From (binary, right associative)... 56
9.13.3 Index Nearest ... From (binary, right associative) ... 56
9.13.4 Slope (unary, right associative).. 56

9.14 Transformation Operators: .. 56
9.14.1 General Properties: ... 56
9.14.2 Minimum ... From (binary, right associative) ... 57
9.14.3 Maximum ... From (binary, right associative) .. 57
9.14.4 First ... From (binary, right associative) ... 57
9.14.5 Last ... From (binary, right associative).. 57
9.14.6 Increase (unary, right associative).. 58
9.14.7 Decrease (unary, right associative) .. 58
9.14.8 % Increase (unary, right associative) ... 58
9.14.9 % Decrease (unary, right associative) .. 59
9.14.10 Earliest ... From (binary, right associative)... 59
9.14.11 Latest ... From (binary, right associative)... 59
9.14.12 Index Extraction Transformation Operators ... 59

9.15 Query Transformation Operator: ... 60
9.15.1 General Properties: ... 60
9.15.2 Interval (unary, right associative) .. 60

9.16 Numeric Function Operators ... 61
9.16.1 Arccos (unary, right associative) ... 61
9.16.2 Arcsin (unary, right associative) .. 61
9.16.3 Arctan (unary, right associative).. 61
9.16.4 Cosine (unary, right associative).. 61
9.16.5 Sine (unary, right associative) ... 61
9.16.6 Tangent (unary, right associative).. 61
9.16.7 Exp (unary, right associative) .. 61
9.16.8 Log (unary, right associative) .. 62
9.16.9 Log10 (unary, right associative) .. 62
9.16.10 Int (unary, right associative).. 62
9.16.11 Floor (unary, right associative).. 62
9.16.12 Ceiling (unary, right associative) ... 62
9.16.13 Truncate (unary, right associative)... 62
9.16.14 Round (binary, right associative) ... 62
9.16.15 Abs (unary, right associative) .. 63
9.16.16 sqrt (unary, right associative) .. 63
9.16.17 As number (unary, non-associative)... 63

9.17 Time Function Operator .. 64
9.17.1 Time (unary, right associative) .. 64

10 LOGIC SLOT ... 64
10.1 Purpose... 64
10.2 Logic Slot Statements ... 64

Arden Syntax for Medical Logic Systems

Page 6 Health Level Seven © 1999. All rights reserved.

07/1999 Final Standard.

10.2.1 Assignment Statement... 64
10.2.2 If-Then Statement ... 65
10.2.3 Conclude Statement .. 66
10.2.4 Call Statement .. 67
10.2.5 While Loop... 69
10.2.6 For Loop... 70

10.3 Logic Slot Usage... 71

11 DATA SLOT .. 71
11.1 Purpose... 71
11.2 Data Slot Statements: .. 71

11.2.1 Read Statement... 71
11.2.2 Event Statement.. 73
11.2.3 MLM statement .. 74
11.2.4 Argument Statement ... 75
11.2.5 Message Statement ... 75
11.2.6 Destination Statement ... 75
11.2.7 Assignment Statement... 76
11.2.8 If-Then Statement ... 76
11.2.9 Call Statement .. 76
11.2.10 While Loop... 76
11.2.11 For Loop... 76
11.2.12 Interface Statement ... 76

11.3 Data Slot Usage: ... 77

12 ACTION SLOT .. 77
12.1 Purpose... 77
12.2 Action Slot Statements:... 77

12.2.1 Write Statement .. 77
12.2.2 Return Statement .. 78
12.2.3 If-then Statement .. 79
12.2.4 Call Statement .. 79
12.2.5 WHILE Loop.. 79
12.2.6 FOR Loop... 79

12.3 Action Slot Usage ... 79

13 EVOKE SLOT.. 80
13.1 Purpose... 80

13.1.1 Occurrence of Some Event.. 80
13.1.2 A Time Delay After an Event.. 80
13.1.3 Periodically After an Event ... 80

13.2 Events... 80
13.2.1 Event Properties.. 80
13.2.2 Time of Events ... 80
13.2.3 Declaration of Events.. 80

13.3 Evoke Slot Statements: ... 81
13.3.1 Simple Trigger Statement.. 81
13.3.2 Delayed Trigger Statement.. 81
13.3.3 Periodic Trigger Statement.. 82
13.3.4 Where Trigger Statement .. 83

13.4 Evoke Slot Usage.. 84
X1.2 Research Study Screening MLM:...106

ANNEXES (Mandatory Information)
A1 Backus-Naur Form... 85
A2 Reserved Words... 96

Arden Syntax for Medical Logic Systems

Health Level Seven © 1999. All rights reserved. Page 7

Final Standard 07/1999

A3 Special Symbols. ... 98
A4 Operator Precedence and Associativity... 99
A5 Format Specifications (Formatted With, Section 9.8.2), . ..102

APPENDICES (Non-Mandatory Information)
X1 Sample MLMs..105
X2X2Summary of Changes. ...115

1 SCOPE
This specification covers the sharing of computerized health knowledge bases among personnel, information
systems, and institutions. The scope has been limited to those knowledge bases that can be represented as a set of
discrete modules. Each module, referred to as a Medical Logic Module (MLM), contains sufficient knowledge to
make a single decision. Contraindication alerts, management suggestions, data interpretations, treatment protocols,
and diagnosis scores are examples of the health knowledge that can be represented using MLMs. Each MLM also
contains management information to help maintain a knowledge base of MLMs and links to other sources of
knowledge. Health personnel can create MLMs directly using this format, and the resulting MLMs can be used
directly by an information system that conforms to this specification.

2 REFERENCED DOCUMENTS

2.1 ASTM Standards1:

E 1238 Specification for Transferring Clinical Laboratory Data Messages Between Independent Computer
Systems

E 1384 Guide for Content and Structure of an Automated Primary Record of Care

2.2 ISO Standards2:

ISO 8601 - 1988 Data Elements and Interchange Formats-Information Interchange (representation of dates
and times)

ISO 8979 - 1986 Latin-1 Coded Character Set

2.3 ANSI Standards3:

ANSI X3.4 - 1986 Coded Character Sets-American National Standard Code for Information Interchange
(7-bit ASCII)

ANSI/ISO 9899 Programming Language C

ANSI/ISO/IEC 9075 Information technology -- Database languages -- SQL

1 Annual Book of ASTM Standards, Vol 14.01.

2 Available from ISO, 1 Rue de Varembe, Case Postale 56, CH 1211, Geneve, Switzerland.

3 Available from American National Standards Institute, 1430 Broadway, New York, NY 10018.

Arden Syntax for Medical Logic Systems

Page 8 Health Level Seven © 1999. All rights reserved.

07/1999 Final Standard.

2.4 Health Level Seven Standards4:

HL7 Version 2.3

3 TERMINOLOGY

3.1 Definitions:

3.1.1 Medical Logic Module (MLM), n

an independent unit in a health knowledge base. Each MLM contains maintenance information, links to
other sources of knowledge, and enough logic to make a single health decision.

3.2 Descriptions of Terms Specific to This Standard:

3.2.1 time, n

a point in absolute time. Also known as a timestamp, it includes both a date and a time-of-day.

3.2.2 time-of-day, n

hours, minutes, seconds, and possibly, fractions of seconds past midnight.

3.2.3 date, n

Gregorian year, month, and day.

3.2.4 duration, n

a period of time (for example, 3 days) that has no particular start or end point.

3.2.5 institution, n

a health facility of any size that will provide automated decision support or quality assurance.

3.2.6 event, n

a clinically meaningful change in state. This is often, but not always, reflected by a change in the clinical
database. For example, ordering a medication is an event that could update the clinical database; when the
stop time of the medication order is passed, the stopping of the medication would be an event, even though
there might not be any change to the database.

3.3 Notation Used in This Standard

Throughout this standard, the location for optional elements is noted by placing the optional elements
inside square brackets ([]). This is not to be confused with the element operator [] (see Section 9.12.18).
Thus, Is [Not] Equal means that Is Equal and Is Not Equal are both valid constructs. The two most
common optional elements are not and of

4 Available from Health Level Seven, Inc., 3300 Washtenaw Ave, Suite 227, Ann Arbor, MI 48104.

Arden Syntax for Medical Logic Systems

Health Level Seven © 1999. All rights reserved. Page 9

Final Standard 07/1999

4 SIGNIFICANCE AND USE

Decision support systems have been used for health care successfully for many years, and several institutions have
already assembled large knowledge bases. There are many conceptual similarities among these knowledge bases.
Unfortunately, the syntax of each knowledge base is different. Since no one institution will ever define a complete
health knowledge base, it will be necessary to share knowledge bases among institutions.

Many obstacles to sharing have been identified: disparate vocabularies, maintenance issues, regional differences,
liability, royalties, syntactic differences, etc. This standard addresses one obstacle by defining a syntax for creating
and sharing knowledge bases. In addition, the syntax facilitates addressing other obstacles by providing specific
fields to enter maintenance information, assignment of clinical responsibility, links to the literature, and mappings
between local vocabulary terms and terms in the knowledge base.

The range of health knowledge bases is large. This specification focuses on those knowledge bases that can be
represented as a set of Medical Logic Modules (MLMs). Each MLM contains maintenance information, links to
other sources of knowledge, and enough logic to make a single health decision. Knowledge bases that are composed
of independent rules, formulae, or protocols are most amenable to being represented using MLMs.

This specification, which is an outcome of the Columbia-Presbyterian Medical Center 1989 Arden Homestead
retreat on sharing health knowledge bases, was derived largely from HELP of LDS Hospital, Salt Lake City, UT
(1)5, and CARE, the language of the Regenstrief Medical Record System of the Regenstrief Institute for Health Care,
Indianapolis, IN (2).

5 MLM FORMAT

5.1 File Format

An MLM is a stream of text stored in an ASCII file (ANSI X3.4 - 1986) [international users may extend
this by using ISO 8859/1 ("Latin-1"), but a conforming implementation need only implement X3.4]. One or
more MLMs may be placed in the same file. Within a file, an MLM begins with the marker maintenance:
and ends with the marker end:. MLMs may be separated by white space, as defined in Section 7.1.10
and/or comments as defined in Section 7.1.9.

5.2 Character Set

Within an MLM only the printable ASCII characters (ASCII 33 through and including 126), space (ASCII
32), carriage return (ASCII 13), line feed (ASCII 10), horizontal tab (ASCII 9), vertical tab (ASCII 11), and
form feed (ASCII 12) may be used. The use of horizontal tab is discouraged because there is no agreement
on how many spaces it represents. Other characters, such as the bell and backspace, are not allowed within
the MLM. Inside a string constant (Section 7.1.6) or comment (Section 7.1.9), these character set
restrictions are lifted.

5.3 Line Break

Lines are delimited by line breaks, which are any one of the following: a single carriage return, a single line
feed, or a carriage return-line feed pair.

5 The boldface numbers in parentheses refer to the list of references at the end of this standard.

Arden Syntax for Medical Logic Systems

Page 10 Health Level Seven © 1999. All rights reserved.

07/1999 Final Standard.

5.4 White Space

The space, carriage return, line feed, horizontal tab, vertical tab, and form feed are collectively referred to
as white space. See also Section 7.1.10.

5.5 General Layout

Annex A1 contains a context-free grammar (formal description) of Arden Syntax MLMs expressed in
Backus-Naur Form (3). See Appendix X1 for MLM examples. A typical MLM is arranged like this.

maintenance:

slotname: slot-body;;

slotname: slot-body;;

...

library:

slotname: slot-body;;

...

knowledge:

slotname: slot-body;;

...

end:

5.6 Categories

An MLM is composed of slots grouped into three categories: maintenance, library, and knowledge. A
category is indicated by a category name followed immediately by a colon (that is, maintenance:, library:,
and knowledge:).White space may precede the category name and follow the colon, but no white space is
allowed between the category name and the colon. Categories must appear in the order they appear in this
standard.

5.7 Slots

Within each category is a set of slots.

Each slot consists of a slot name, followed immediately by a colon (for example, title:), then followed by
the slot body, and terminated with two adjacent semicolons (;;) which is referred to as double semicolon.
White space may precede the slot name and follow the colon, but no white space is allowed between the
slot name and the colon. The content of the slot body depends upon the slot, but it must not contain a
double semicolon, except inside comments (Section 7.1.9), string constants (Section 7.1.6), and mapping
clauses (Section 7.1.8).

Each slot must be unique in the MLM, and categories and slots must follow the order in which they are
listed in this standard. Some slots are required and others are optional.

5.8 Slot Body Types

These are the basic types of slot bodies:

5.8.1 Textual Slots

A textual slot contains arbitrary text (except for double semicolon, which ends the slot). As the MLM
standard is augmented, slots that are currently considered to be textual may become coded or structured. An

Arden Syntax for Medical Logic Systems

Health Level Seven © 1999. All rights reserved. Page 11

Final Standard 07/1999

example of a textual slot is the title slot, which can contain arbitrary text. For required textual slots, the text
may be empty.

5.8.2 Textual List Slots

Some slots contain textual lists. These are lists of arbitrary textual phrases, optionally separated by single
semicolons (;). An example of a textual list slot is the keywords slot. The list may be empty. It may not
contain a double semicolon (which ends the slot).

5.8.3 Coded Slots

Coded slots contain a simple coded entry like a number, a date, or a term from a predefined list. For
example, the priority slot can only contain a number, and the validation slot can contain only the terms
production, research, etc.

5.8.4 Structured Slots

Structured slots contain syntactically defined slot bodies. They are more complex than coded slots, and are
further defined in Section 7. An example of this kind of slot is the logic slot.

5.9 MLM Termination

The end of the MLM is marked by the word end followed immediately by a colon (that is, end:). White
space may precede the terminator and follow the colon but no white space is allowed between the
terminator and the colon.

5.10 Case Insensitivity

Category names, slot names, and the end terminator may be typed in uppercase (for example, END),
lowercase (for example, end), or mixed case (for example, eNd). See also Sections 7.1.1.2 and 7.1.2.1.

6 SLOT DESCRIPTIONS
Next to each slot name is an indication of whether the slot is textual, textual list, coded, or structured, and whether it
is required or optional. Slots must appear in the order they appear in this specification.

6.1 Maintenance Category

The maintenance category contains the slots that specify information unrelated to the health knowledge in
the MLM. These slots are used for MLM knowledge base maintenance and change control. The
maintenance category also contains information about the version of the Arden Syntax that is being used.

6.1.1 Title (textual, required)

The title serves as a comment that describes briefly what the MLM does. For example,

title: Hepatitis B Surface Antigen in Pregnant Women;;

6.1.2 Mlmname (coded, required)

The mlmname uniquely identifies an MLM within a single authoring institution. It is represented as a string
of characters beginning with a letter and followed by letters, digits, and underscores (_). An mlmname may
be 1 to 80 characters in length. Mlmnames are insensitive to case. The mlmname is distinct from the name
of the ASCII file, which happens to hold one or more MLMs. For example,

Arden Syntax for Medical Logic Systems

Page 12 Health Level Seven © 1999. All rights reserved.

07/1999 Final Standard.

mlmname: hepatitis_B_in_pregnancy;;

While mlmname is preferred as the name of this slot, filename is also permitted for backward compatibility.

6.1.3 Arden Syntax version (coded, required)

The Arden Syntax version informs the compiler which version of the standard has been used to write the
MLM. If this slot is missing, the MLM is assumed to be written with the ASTM E1460-1992 standard
(which didn't include this slot). Otherwise, the slot is of the following form (the string "Version 2"" may use
upper or lower case letters):

arden: Version 2;;

This slot is required for version 2 of the syntax, but is optional for backward compatibility. That is, if it is
missing, the assumed version is version 1.

6.1.4 Version (textual, required)

The current version of the MLM is arbitrary text, up to 80 characters in length, as is convenient for the
institution's version control system (such as SCCS or RCS). It is suggested that versions start at 1.00 and
advance by .01 for small revisions and by 1 for large revisions. The exact form of the version information is
institution-specific, but must allow determining which MLM is the most recent (see Section 11.2.3). For
example,

version: 1.00;;

6.1.5 Institution (textual, required)

The institution slot contains the name of the authoring institution, up to 80 characters in length. For
example,

institution: Columbia University;;

6.1.6 Author (textual list, required):

The author slot is free-form text. It should contain a list of the authors of the MLM, delimited by
semicolons. The following format should be used: first name, middle name or initial, last name, comma,
suffixes, comma, and degrees.

An electronic mail address enclosed in parentheses may optionally follow each author's name. Internet
addresses are assumed. For example,

author: John M. Smith, Jr., M.D. (jms@camis.columbia.edu);;

6.1.7 Specialist (textual, required)

The domain specialist is the person in the institution responsible for validating and installing the MLM.
This slot should always be present but blank when transferring MLMs from one institution to another. It is
the borrowing institution's responsibility to fill this slot and accept responsibility for the use of the MLM.
The format is the same as for the author slot. For example,

specialist: Jane Doe, Ph.D.;;

 or

specialist: ;;

Arden Syntax for Medical Logic Systems

Health Level Seven © 1999. All rights reserved. Page 13

Final Standard 07/1999

6.1.8 Date (coded, required)

The date of last revision of the MLM must be placed in this slot. Either a date or a date-time (that is, a
point in absolute time composed of a date plus a time-of-day) can be used. The format for dates and for
date-time combinations is ISO extended format (with the T or t separator) with optional time zones (ISO
8601:1988 (E)). Dates are yyyy-mm-dd so that January 2, 1989 would be represented as 1989-01-02. The
earliest date-time Arden has to support is January 1, 1800 (1800-01-01T00:00:00Z). Times are yyyy-mm-
ddThh:mm:ss with optional fractional seconds and optional time zones. Thus, 1:30 p.m. on January 2,
1989 UTC would be represented as 1989-01-02T13:30:00Z. For example,

date: 1989-01-02;;

6.1.9 Validation (coded, required):

The validation slot specifies the validation status of the MLM. Use one of the following terms:

a) production—approved for use in the clinical system,

b) research—approved for use in a research study,

c) testing—for debugging (when an MLM is written, this should be the initial value), or

d) expired—out of date, no longer in clinical use.

An example is:

validation: testing;;

MLMs should never be shared with a validation status of production, since the domain specialist for the
borrowing institution must set that validation status.

6.2 Library Category

The library category contains the slots pertinent to knowledge base maintenance that are related to the
MLM's knowledge. These slots provide health personnel with predefined explanatory information and links
to the health literature. They also facilitate searching through a knowledge base of MLMs.

6.2.1 Purpose (textual, required)

The purpose slot describes briefly why the MLM is being used. For example,

purpose: Screen for newborns who are at risk for developing hepatitis B;;

6.2.2 Explanation (textual, required)

The slot explains briefly in plain English how the MLM works. The explanation can be shown to the health
care provider when he or she asks why an MLM came to its decision. For example,

explanation: This woman has a positive hepatitis B surface antigen titer
within the past year. Therefore her newborn is at risk for developing
hepatitis B.;;

6.2.3 Keywords (textual list, required)

Keywords are descriptive words used for searching through modules. UMLS terms (4) are preferred but not
mandatory. Terms are delimited by semicolons (commas are allowed within a keyword). For example,

keywords: hepatitis B; pregnancy;;

Arden Syntax for Medical Logic Systems

Page 14 Health Level Seven © 1999. All rights reserved.

07/1999 Final Standard.

6.2.4 Citations (structured / textual, optional)

There are two supported formats for the citations slot. The first is a textual format with no implied
structure. The textual format is provided for backward compatibility and is a deprecated form. The second
is a structured format described later in this section. Citations to the literature should be entered in
Vancouver style (5). Citations must be numbered, serving as specific references. The individual citations
may also be assigned a type. The type should follow the number and specify the function of the citation for
the particular MLM. Citation types are:

a) Support -- citations which support, verify, or validate the algorithm in the logic slot;

b) Refute -- citations which refute or offer alternatives to the algorithm in the logic slot;

For example,

 citations:

 1. SUPPORT Steiner RW. Interpreting the fractional excretion of sodium. Am
J Med 1984;77:699-702.

 2. Goldman L, Cook EF, Brand DA, Lee TH, Rouan GW, Weisberg MC, et al. A
computer protocol to predict myocardial infarction in emergency department
patients with chest pain. N Engl J Med 1988;318(13):797-803.

 ;;

6.2.5 Links (structured / textual, optional)

There are two supported formats for the links slot. The first is a textual format with no implied structure.
The textual format is provided for backward compatibility and is a deprecated form. The second is a
structured format described later in this section. The links slot allows an institution to define links to other
sources of information, such as an electronic textbook, teaching cases, or educational modules. The
individual links are delimited by semicolons. The contents of the links are institution-specific. Links to
sites on intranets or the internet should be prefixed by the term "URL"" (Uniform Resource Locator) and
the title of the document and link text should follow the defined standards for representing protocols and
data sources (e.g. "Document Title", 'FILE://link.html'; "Second Document", 'http://www.nlm.nih.gov/').
Electronic material can also be entered in the citations slot above. The preferred form for structured links
is:

link type, space (ASCII 32), link description (Arden Syntax string), comma, link text (Arden Syntax
term). The only required element is the link text.

For example:

links:

OTHER_LINK 'CTIM .34.56.78';

MESH 'agranulocytosis/ci and sulfamethoxazole/ae';

URL "NLM Web Page", 'http://www.nlm.nih.gov/';

URL "Visible Human Project",

'http://www.nlm.nih.gov/research/visible/visible_human.html';

URL "DOS HTML File", 'file://doslinx.htm';

URL "UNIX HTML File", 'file://UnixLinx.html/';

;;

Each institution should test for expired links when receiving shared MLMs.

Arden Syntax for Medical Logic Systems

Health Level Seven © 1999. All rights reserved. Page 15

Final Standard 07/1999

6.3 Knowledge Category

The knowledge category contains the slots that actually specify what the MLM does. These slots define the
terms used in the MLM (data slot), the context in which the MLM should be evoked (evoke slot), the
condition to be tested (logic slot), and the action to take should the condition be true (action slot).

6.3.1 Type (coded, required)

The type slot specifies what slots are contained in the knowledge category. The only type that has been
defined so far is data_driven, which implies that there are the following slots: data, priority, evoke, logic,
action, and urgency. For backward compatibility with the 1992 standard, the type data-driven (with a dash
"-" separating the words) is also permitted. That is,

type: data_driven;;

or

type: data-driven;;

6.3.2 Data (structured, required)

In the data slot, terms used locally in the MLM are mapped to entities within an institution. The actual
phrasing of the mapping will depend upon the institution. The details of this slot are explained in Section
11.

6.3.3 Priority (coded, optional)

The priority is a number from 1 (low) to 99 (high) that specifies the relative order in which MLMs should
be evoked should several of them satisfy their evoke criteria simultaneously. An institution may choose
whether or not to use a priority. The institution is responsible for maintaining these numbers to avoid
conflicts. A borrowing institution will need to adjust these numbers to suit its collection of MLMs. If the
priority slot is omitted, a default value of 50 is used. For example,

priority: 90;;

6.3.4 Evoke (structured, required)

The evoke slot contains the conditions under which the MLM becomes active. The details of this slot are
explained in Section 13.

6.3.5 Logic (structured, required)

This slot contains the actual logic of the MLM. It generally tests some condition and then concludes true or
false. The details of this slot are explained in Section 10.

6.3.6 Action (structured, required)

6.3.7 This slot contains the action produced when the logic slot concludes true. The details of this slot
are explained in Section 12. Urgency (coded, optional)

The urgency of the action or message is represented as a number from 1 (low) to 99 (high), or by a variable
representing a number from 1 to 99. Whereas the priority determines the order of execution of MLMs as
they are evoked, the urgency determines the importance of the action of the MLM only if the MLM
concludes true (that is, only if the MLM decides to carry out its action). If the urgency slot is omitted, or the
variable representing urgency is null or outside the range 1 to 99, a default urgency of 50 is used. For
example,

Arden Syntax for Medical Logic Systems

Page 16 Health Level Seven © 1999. All rights reserved.

07/1999 Final Standard.

 urgency: 90;;

 urgency: urg_var;;

7 STRUCTURED SLOT SYNTAX

7.1 Tokens

The structured slots consist of a stream of character strings known as lexical elements or tokens. These
tokens can be classified as follows:

7.1.1 Reserved Words

Reserved words are predefined tokens made of letters and digits. They are used to construct statements, to
represent operators, and to represent data constants. Some are not currently used, but are reserved for future
use. The predefined synonyms of operators as well as the operators themselves are considered synonyms.

The existing reserved words are listed in Annex A2.

7.1.1.1 The

The is a special reserved word which is ignored wherever it is found in a structured slot (that is, it is treated
exactly the same as white space). Its purpose is to improve the readability of the structured slots by
permitting statements to be more like English.

7.1.1.2 Case Insensitivity

With the exception of the format with … format specification, the syntax is insensitive to the case of
reserved words. That is, reserved words may be typed in uppercase, lowercase, and mixed case. For
example, then and THEN are the same word. See Sections 5.10 and 9.8.2 and Annex A5.

7.1.2 Identifiers

Identifiers are alphanumeric tokens. The first character of an identifier must be a letter, and the rest must be
letters, digits, and underscores (_). Identifiers must be 1 to 80 characters in length. It is an error for an
identifier to be longer than 80 characters. Reserved words are not considered identifiers; for example, then
is a reserved word, not an identifier. Identifiers are used to represent variables, which hold data.

7.1.2.1 Case Insensitivity

The syntax is insensitive to the case of identifiers. See Sections 5.10 and 7.1.1.2.

7.1.3 Special Symbols

The special symbols are predefined non-alphanumeric tokens. Special symbols are used for punctuation
and to represent operators. They are listed in Annex A3.

7.1.4 Number Constants

Constant numbers contain one or more digits (0 to 9) and an optional decimal point (.). (As in Specification
E 1238 and HL7 2.3, .1 and 345. are valid numbers.) A number constant may end with an exponent,
represented by an E or e, followed by an optional sign and one or more digits. These are valid numbers:

0

345

Arden Syntax for Medical Logic Systems

Health Level Seven © 1999. All rights reserved. Page 17

Final Standard 07/1999

0.1

34.5E34

0.1e-4

.3

3.

3e10

7.1.4.1 Negative Numbers

Negative numbers are created using the unary minus operator (-, see Section 9.9.4). The minus sign is not
strictly a part of the number constant.

7.1.5 Time Constants

Time constants use the ISO extended format (with the T or t separator) for date-time combinations with
optional fractional seconds (using . format) and with optional time zones (see Section 6.1.8).

7.1.5.1 Fractional Seconds

Fractional seconds are represented by appending a decimal point (.) and one or more digits (for example,
1989-01-01T13:30:00.123).

7.1.5.2 Time Zones

The local time zone is the default. ISO Coordinated Universal Time (UTC) is represented by appending a z
to the end (for example, 1989-01-01T13:30:00.123Z). The local time zone can be explicitly stated by
appending + or - hh:mm to indicate how many hours and minutes the local time is ahead or behind UTC.
Thus the EST (Eastern Standard Time, North America) time zone would use 1989-01-01T13:30:00-05:00,
which would be equivalent to 1989-01-01T18:30:00Z.

7.1.5.3 Constructing times

The + operator can be used to construct a time from durations. Here is an example of constructing a time:
1800-01-01 + (1993-1800)years + (5-1)months + (17-1)days produces the value 1993-05-17.

7.1.6 String Constants

String constants begin and end with the quotation mark (", which is ASCII 34). For example,

 "this is a string".

 There is no limit on the length of strings.

7.1.6.1 Internal Quotation Marks

A quotation mark within a string is represented by using two adjacent quotation marks. For example,

 "this string has one quotation mark: "" ".

7.1.6.2 Single Line Break

Within a string, white space containing a single line break (see Section 5.3) is converted to a single space.
For example,

"this is a string with

one space between 'with' and 'one'"

Arden Syntax for Medical Logic Systems

Page 18 Health Level Seven © 1999. All rights reserved.

07/1999 Final Standard.

7.1.6.3 Multiple Line Breaks

Within a string, white space containing more than one line break is converted to a single line break.

 "this is a string with

one line break between 'with' and 'one'"

7.1.7 Term Constants

Term constants begin and end with an apostrophe (' which is ASCII 39), and they contain a valid mlmname.
For example,

 'mlm_name'

7.1.8 Mapping Clauses

A mapping clause is a string of characters that begins with { and ends with } (ASCII 123 and 125,
respectively). Mapping clauses are used in the data slot to signify institution-specific definitions such as
database queries. The only requirement imposed on what is within the curly brackets is that curly brackets
are not allowed within mapping clauses. The definition of comments and quotes inside mapping clauses is
not specified by this standard; it is recommended that they be the same as those given in this standard. The
Arden Syntax conventions for variable names, such as case insensitivity or the treatment of the as white
space, need not be observed in a mapping clause. A <mapping> may (in an implementation-defined
manner), within the curly brackets, use Arden variables; but it cannot set any Arden variables (Arden
variables can only set by the <var>(s) on the left side of the assignment operator). Because of this, an
MLM may require some modification before it can be processed at another institution, even if the other
institution's compiler is set to skip over read mappings.

It is strongly recommended that MLM authors include comments to all the mapping clauses used in an
MLM, so MLM recipients understand the intention of the mapping clause definition when sharing MLMs.
Identifiers from the UMLS Metathesaurus could aid in identifying and describing the concepts in the
comments. Authors should also put all literals and constants in the data slot, with explanation, to allow
MLM recipients to more easily customize MLMs.

7.1.9 Comments

A comment is a string of characters that begins with /* and ends with */. Comments are used to document
how the slot works, but they are ignored logically (like the and other white space). Comments do not nest
(e.g., /* A comment /* */ is a single comment). A comment need not be preceded or followed by white
space. Thus, x/**/y is the same as x y.

A comment may also be specified by the characters // through line break (see Section 5.3). When // is
encountered, everything else on the line is ignored, including */.

7.1.10 White Space

Any string of spaces, carriage returns, line feeds, horizontal tabs, vertical tabs, form feeds, and comments is
known as white space. White space is used to separate other syntactic elements and to format the slot for
easier reading. White space is required between any two tokens that may begin or end with letters, digits,
or underscores (for example, if done). They are also required between two string constants. They are
optional between other tokens (for example, 3+4 versus 3 + 4). See also Sections 5.4 and 7.1.1.1.

Arden Syntax for Medical Logic Systems

Health Level Seven © 1999. All rights reserved. Page 19

Final Standard 07/1999

7.2 Organization

The tokens are organized into the following constructs:

7.2.1 Statements

A structured slot is composed of a set of statements. Each statement specifies a logical constraint or an
action to be performed. In general, statements are carried out sequentially in the order that they appear.
These are examples of statements (each is preceded by a comment that tells what it does):

/* this assigns 0 to variable "var1" */

let var1 be 0;

/* this causes the MLM named "hyperkalemia" to be executed */

call `hyperkalemia`;

/* this concludes "true" if the potassium is greater than 5 */

if potassium > 5.0 then

conclude true;

endif;

7.2.1.1 Statement Termination

All statements except for the last statement in a slot must end with a semicolon (;). Thus, the semicolon
acts as a statement separator. If the last statement of a slot has a terminating semicolon, there must be at
least one white space between it and the double semicolon that terminates the slot (;;; is illegal but ;/**/;;
is legal). For example, the logic slot could contain:

logic:

last_potas := last potas_list;

if last_potas > 5.0 then

conclude true;

endif;

The syntax of the statements depends upon the individual slot. For a detailed description of the allowable
statement types in each structured slot, see Sections 10, 11 12, and 13.

7.2.2 Expressions

Statements are composed of reserved words, special symbols, and expressions. An expression represents a
data value, which may belong to any one of the types defined in Section 8. Expressions may contain any of
the following:

7.2.2.1 Constant

The data value may be represented explicitly using a constant like the number 3, the time 1991-03-
23T00:00:00, etc. These are valid expressions:

null

true

345.4

"this is a string"

1991-05-01T23:12:23

7.2.2.2 Variable

An identifier (see Section 7.1.2) within an expression signifies a variable (see Section 7.2.3). These are
valid variables:

Arden Syntax for Medical Logic Systems

Page 20 Health Level Seven © 1999. All rights reserved.

07/1999 Final Standard.

var1

this_is_a_variable

a

7.2.2.3 Operator and Arguments

An expression may contain an operator and one or more sub-expressions known as arguments. For
example, in 3+4, + is an operator and 3 and 4 are arguments. The result of such an expression is a new data
value, which is 7 in this example. Expressions may be nested so that an expression may be an argument in
another expression. These are valid expressions:

4 * cosine 5

var1 = 7 and var2 = 15

(4+3) * 7

For details on operators, precedence, associativity, and parentheses, see Section 9.1.

7.2.3 Variables

A variable is a temporary holding area for a data value. Variables are not declared explicitly, but are
declared implicitly when they are first used. A variable is assigned a data value using an assignment
statement (see Section 10.2.1). When it is later used in an expression, it represents the value that was
assigned to it. For example, var1 is a valid variable name. If the variable is used before it is assigned a
value, then its value is null.

7.2.3.1 Scope

The scope of a variable is the entire MLM, not an individual slot. MLMs cannot read variables from other
MLMs directly; thus, variables used in an MLM are not available to MLMs that are called (see Section
10.2.4). Non-Arden variables may be referenced and set within mapping statements, as restricted by the
special rules for the individual mapping statements (for example, Section 11.2.3); in mapping statements,
Arden variables may be referenced but not set. It is institution-defined how conflicts between Arden and
non-Arden variable names are resolved.

7.2.3.2 Special Variables

Some variables, such as event variables, MLM variables, message variables, and destination variables, are
special. They can only be used in particular constructs, and not in general expressions. These variables use
special assignment statements in the data slot as defined in Section 11 (these special assignment statements
are equivalent to declarations for the special variables). Special variables can be converted to strings and
passed as arguments. The only valid operators on special variables are is [not] equal (Section 9.6.1), =
(Section 9.5.1), and <> (Section 9.5.2).

8 DATA TYPES

The basic function of an MLM is to retrieve patient data, manipulate the data, come to some decision, and possibly
perform an action. Data may come from various sources, such as a direct query to the patient database, a constant in
the MLM, or the result of an operation on other data.

Data items may be kept in an ordered collection, called a list (ordered by position in the list, not by primary time).
Lists are described further in Section 8.8.

The data are classified into several data types.

Arden Syntax for Medical Logic Systems

Health Level Seven © 1999. All rights reserved. Page 21

Final Standard 07/1999

8.1 Null

Null is a special data type that signifies uncertainty. Such uncertainty may be the result of a lack of
information in the patient database or an explicit null value in the database. Null results from an error in
execution, such as a type mismatch or division by zero. Null may be specified explicitly within a slot using
the word null (that is, the null constant). The following expressions result in null (each is preceded by a
comment):

/* explicit null */

null

/* division by zero */

3/0

/* addition of Boolean */

true + 3

8.2 Boolean

The Boolean data type includes the two truth values: true and false. The word true signifies Boolean true
and the word false signifies Boolean false.

The logical operators use tri-state logic by using null to signify the third state, uncertainty. For example,
true or null is true. Although null is uncertain, a disjunction that includes true is always true regardless of
the other arguments. However, false or null is null because false in a disjunction adds no information. See
Section 9.4 for full truth tables.

8.3 Number

There is a single number type, so there is no distinction between integer and floating point numbers.
Number constants (for example, 3.4E-12) are defined in Section 7.1.4. Internally, all arithmetic is done in
floating point. For example, 1/2 evaluates to 0.5.

8.4 Time

The time data type refers to points in absolute time; it is also referred to as timestamp in other systems.
Both date and time-of-day must be specified. Times back to the year 1800 must be supported and times
before 1800-01-01 are not valid. Time constants (for example, 1990-07-12T00:00:00) are defined in
Section 7.1.5.

8.4.1 Granularity

The granularity of time is always infinitesimal (not discrete seconds). Times stored in patient databases
will have varying granularities. When a time is read by the MLM, it is always truncated to the beginning of
he granule interval. For example, if the time-of-day is recorded only to the minute, then zero seconds are
assumed; if only the date is known, then the time-of-day is assumed to be midnight.

8.4.2 Midnight

Midnight (that is, T00:00:00 in the time-of-day fields) is the beginning of the day to come (not the end of
day that just ended).

Arden Syntax for Medical Logic Systems

Page 22 Health Level Seven © 1999. All rights reserved.

07/1999 Final Standard.

8.4.3 Now

The word now is a time constant that signifies the time when the MLM started execution. Now is constant
through the execution of the MLM; that is, if now is used more than once, it will have the same value
within the same MLM. Now inside a nested MLM may be different from the now of the calling MLM.

8.4.4 Eventtime

One way that MLMs are evoked is by a triggering event. For example, the storage of a serum potassium in
the patient database is an event that might evoke an MLM. The word eventtime is a time constant that
signifies the time that the evoking event occurred (for example, the time that the database was updated).
The eventtime is useful because MLMs may be evoked after a time delay; using eventtime, the MLM can
query for what has occurred since the evoking event.

8.4.5 Triggertime

If the MLM is triggered directly by an event or another MLM, the triggertime is the same as the
eventtime. If the MLM is triggered by a delayed trigger (see Section 13.3.2) or a delayed MLM call (see
Section 12.2.4), the triggertime is the eventtime plus the delay time. Using triggertime, an MLM can
trigger another MLM as if the second MLM were directly triggered by the event. The following inequality
is guaranteed within a single MLM: eventtime < triggertime < now.

8.5 Duration

The duration data type signifies an interval of time that is not anchored to any particular point in absolute
time. There are no duration constants. Instead one builds durations using the duration operators (see
Section 9.11). For example, 1 day, 45 seconds, and 3.2 months are durations.

8.5.1 Sub-types

The duration data type has two sub-types: months and seconds. The reason for the division is that the
number of seconds in a month or in a year depends on the starting date. Durations of months and years are
expressed as months. Durations of seconds, minutes, hours, days, and weeks are expressed as seconds.
There are no complex durations; the sub-type must be either months or seconds, but not both. For both
types of durations, the duration amount may be a floating point value.

The printing of a duration (that is, its string version) is independent of its internal representation. The
health care provider who reads the result of an MLM may not realize that there are two sub-types of
durations. How durations are printed is location-specific. For example, the string version of 6E+08
seconds might be 19.01 years. See Section 9.8.

8.5.2 Time and Duration Arithmetic

Operations among times and durations are carried out as follows:

8.5.2.1 Time - Time

The subtraction of two times always results in a seconds duration. For example, 1990-03-01T00:00:00 -
1990-02-01T00:00:00 results in 2419200 seconds.

8.5.2.2 Time and Seconds

The addition or subtraction of a time and a seconds duration results in a time. The arithmetic is
straightforward: the time is expressed as the number of seconds since some anchor point (for example,

Arden Syntax for Medical Logic Systems

Health Level Seven © 1999. All rights reserved. Page 23

Final Standard 07/1999

1800-01-01T00:00:00) and the number of seconds is added to or subtracted from the time. For example,
1990-02-01T00:00:00 + 2419201 seconds results in 1990-03-01T00:00:01.

8.5.2.3 Time and Months

The addition or subtraction of a time and a months duration results in a time. The time is expressed in date
and time-of-day format (for example, 1991-01-31T00:00:00). Months are then added to or subtracted from
the year and month components of the date (that is, 1991-01 in the example). If the resulting time is invalid
due to the number of days in the new month, then the days are truncated to the last valid day of the month.
For example, 1991-01-31T00:00:00 + 1 month results in 1991-02-28T00:00:00. If the month has a
fractional component (for example, 1.1 months) then integer months are used (that is, 1 month and 2
months in the example) and the result is computed through interpolation (the integer part of the months are
added; then the fractional part is used on the next month for addition and on the previous month for
subtraction). For example, 1991-01-31T00:00:00 + 1.1 months results in 1991-02-28T00:00:00 + (0.1 *
2629746 seconds) or 1991-03-03T01:02:54.6. Explanation:

1991-01-31T00:00:00 + 1 month = 1991-02-28T00:00:00

and

0.1 Months * 2629746 seconds / month [from 8.5.2.4] = 262974.6 seconds

262974.6 seconds / (60 seconds / minute) / (1440 minutes /day) = 3.0436875 days

0.0436875 days * 1440 minutes / day = 62.91 minutes

= 1 hour, 2 minutes, 54.6 seconds.

therefore

0.1 months = 3 days 1 hours 2 minutes 54.6 seconds

thus

1991-01-31T00:00:00 + 1.1 months = 1991-02-28T00:00:00 + 3 days 1 hour 2 minutes 54.6 seconds

= 1991-03-03T01:02:54.6

Contrary to addition and subtraction on numbers, addition and subtraction of durations is not invertible.
For example:

1993-01-31 + 1 month = 1993-02-28

1993-02-28 - 1 month = 1993-01-28 (3 days earlier)

The order of operations is important: (d+1 month)+1 day may have a different value than d+(1 month+1
day).

Other examples:

1991-01-31T00:00:00 - 2.1 months = 1990-11-27T00:00:00

1991-01-31T00:00:00 - 1.1 months = 1990-12-27T21:36:00

1991-04-30T00:00:00 - 0.1 months = 1991-04-27T00:00:00

8.5.2.4 Months and Seconds

Operations between months and seconds are done by first converting the months arguments to seconds
using this conversion constant: 2629746 seconds/month (the average number of seconds in a month in the
Gregorian calendar). For example, 1 month / 1 second results in 2629746.

Arden Syntax for Medical Logic Systems

Page 24 Health Level Seven © 1999. All rights reserved.

07/1999 Final Standard.

8.6 String

Strings are streams of characters of variable length. String constants are defined in Section 7.1.6. For
example,

"this is a string constant"

8.7 Term

Terms are currently used only to represent mlmnames within a structured slot and the link text portion of a
structured link record. Mlmnames are used only in a call statement (see Section 10.2.4). In the future they
will be used for controlled vocabulary terms. Term constants are defined in Section 7.1.7. For example,

'mlm_name2'

'http://www.nlm.nih.gov/'

8.8 List

A list is an ordered set of elements, each of which may be null, Boolean, event, destination, message, term,
number, time, duration, or string. There are no nested lists; that is, a list cannot be the element of another
list. Lists may be heterogeneous; that is, the elements in a list may be of different types. There is one list
constant, the empty list, which is signified by using a pair of empty parentheses: (). White space is allowed
within an empty list's parentheses. Other lists are created by using list operators like the comma (,) to build
lists from single items (see Section 9.2). For the output format of lists (including single element lists), see
Section 9.8. For example, these are valid lists:

4, 3, 5

3, true, 5, null

,1

()

8.9 Query Results

The result of a database query has a time value in addition to its data value.

Queries in the data slot retrieve data from the patient database or from other databases (for example, a
controlled vocabulary database or a financial database). The result of a query is assigned to a variable for
use in the other slots.

8.9.1 Primary Time

Every item in the patient database is assumed to have some primary time (also called time of occurrence)
the primary time might signify different times. The primary time of a blood test might be the time it was
drawn from the patient (or the closest to that time), whereas the primary time of a medication order might
be the time the order was placed. If there is no medically relevant time for a data item, its primary time
value should be equivalent to the eventtime (the time when the information was correct).

Implicit in every query to the patient database is a request for the primary time of the data. For example,
when one retrieves a list of serum potassiums, one actually retrieves a list of pairs. Each pair contains a
data value (the serum potassium numeric value) and a time value (for example, when the specimen was
drawn).

Arden Syntax for Medical Logic Systems

Health Level Seven © 1999. All rights reserved. Page 25

Final Standard 07/1999

8.9.2 Retrieval Order

The result of a query is by default sorted in chronological order by the primary time of the result. The
query may specify a different sort order.

8.9.3 Data Value

If a variable has been assigned the result of a query, then the use of the variable always refers to the data
value. For example, if potas is a variable that has been assigned a list of serum potassiums, then one could
use this statement to check the value of the most recent potassium measurement:

if latest potas > 5.0 then

conclude true;

endif;

8.9.4 Time Function Operator

By using the time operator (see Section 9.17), one can set or retrieve the primary time associated with a
variable or list element. The time retrieve function is describe in Section 9.17.1. Setting primary times is
discussed in the second paragraph of Section 9.17.1. For example, one could use this statement to check
the primary time of the most recent potassium measurement:

if time of latest potas is within the past 3 days then

conclude true;

endif ;

The eventtime is not necessarily the primary time of the evoking event. For example, if the storage of a
serum potassium evokes an MLM, then the eventtime is the time that the result was stored in the database,
but the primary time of the result is the time that it was drawn from the patient.

9 OPERATOR DESCRIPTIONS

9.1 General Properties

Operators are used in expressions to manipulate data. They accept one or more arguments (data values)
and they produce a result (a new data value). The following properties apply to the operator definitions in
this section.

9.1.1 Number of Arguments

Operators may have one, two, or three arguments. Some operators have two forms: one with one argument
and one with two arguments. Operators are described as follows:

unary operator: one argument

binary operator: two arguments

ternary operator: three arguments

9.1.2 Data Type Constraints

Most operators work on only a subset of all the data types. Every operator description includes a type
constraint that shows the position and allowable types of all of its arguments. Its general format is like this:

 <num:type> := <num:type> op <num:type>

In this constraint, op is the operator being described.

Arden Syntax for Medical Logic Systems

Page 26 Health Level Seven © 1999. All rights reserved.

07/1999 Final Standard.

9.1.2.1

Each num is one of the following:

1—the operator requires a single element

k, m, or n—the operator normally takes a single element but a list with 0, 1, or more elements may be used
as described below. If the same letter appears more than once in a data type constraint, then the arguments
so indicated must have the same number of elements; otherwise the operation results in null. Refer to
Section 9.1.3.4 regarding the replication of the single element n times.

9.1.2.2

Each type is one of the following:

null—null data type

Boolean—Boolean data type

number—number data type

time—time data type

duration—duration data type

string—string data type

item—not used in expressions, only in "call" statements (see 10.2.4)

any-type—null, Boolean, number, time, duration, or string

non-null—Boolean, number, time, duration, or string

ordered—number, time, duration, or string

9.1.2.3

<num:type>(s) to the right of the := indicates the data type(s) of the argument(s). If the operator is applied
to an argument with a type outside of its defined set, then null results. For example, ** is not defined for
the time data type so 3**1991-03-24T00:00:00 results in null. For most operators, null is not in the
defined set, so null is returned when null is an argument. For example, null is not defined for + so 3+null
results in null.

9.1.2.4

<num:type> to the left of the := indicates the data type of the result. Unless stated otherwise, the operators
can also return null regardless of the stated usual result.

9.1.3 List Handling

Except as otherwise stated, lists are treated as follows.

9.1.3.1

When an operator has a template of the form <n:type> := op <n:type> or <n:type> := <n:type> op, the
scalar operator is applied to each element of the list, producing a list with the same number of elements (if
the list is empty, the resulting list is also empty). For example, -(3,4,5) results in -3, -4, -5.

Unary operators that act this way are:

not …

… is present

Arden Syntax for Medical Logic Systems

Health Level Seven © 1999. All rights reserved. Page 27

Final Standard 07/1999

… is not present

… is null

… is not null

… is Boolean

… is not Boolean

… is number

… is not number

… is time

… is not time

… is duration

… is not duration

… is string

… is not string

+ …

- …

… ago

… year

… years

… month

… months

… day

… days

… hour

… hours

… minute

… minutes

… second

… seconds

time [of] …

arccos [of] …

arcsin [of] …

arctan [of] …

cos [of] …

cosine [of] …

sin [of] …

sine [of] …

tan [of] …

tangent [of] …

exp [of] …

truncate [of] …

floor [of] …

ceiling [of] …

log [of] …

log10 [of] …

abs [of] …

year [of] …

month [of] …

Arden Syntax for Medical Logic Systems

Page 28 Health Level Seven © 1999. All rights reserved.

07/1999 Final Standard.

day [of] …

hour [of] …

minute [of] …

second [of] …

sort data …

sort time …

reverse …

9.1.3.2

When an operator has a template of the form <1:type> := op <n:type> or <1:type> := <n:type> op, the
operator is applied to the entire list, producing a single element. For example, max(3,4,5) results in 5.

Unary operators that act this way are:

count [of] …

exist [of] …

avg [of] …

average [of] …

median [of] …

sum [of] …

stddev [of] …

variance [of] …

any [of] …

all [of] …

no [of] …

min [of] …

minimum [of] …

max [of] …

maximum [of] …

last [of] …

first [of] …

earliest [of] …

latest [of] …

string [of] …

… is list

… is not list

index min [of] …

index minimum [of] …

index max [of] …

index maximum [of] …

index earliest [of] …

index latest [of] …

9.1.3.3

When an operator has a template of the form <m:type> := op <n:type> or <m:type> := <n:type> op, the
operator is applied to the entire list, producing another list. For example, increase(11,15,13,12) results in
(4, -2, -1).

Unary operators that act this way are:

Arden Syntax for Medical Logic Systems

Health Level Seven © 1999. All rights reserved. Page 29

Final Standard 07/1999

slope [of] …

increase [of] …

decrease [of] …

percent increase [of] …

% increase [of] …

percent decrease [of] …

% decrease [of] …

interval [of] …

extract characters [of] …

9.1.3.4

When an operator has a template of the form <n:type> := <n:type> op <n:type>, the scalar operator is
applied pair-wise to the elements of the lists, producing a list with the same number of elements (if the list
is empty, the resulting list is also empty). For example, (1,2)+(3,4) results in (4,6) and ()+() results in ().

If one of the operands is a single element and the other operand has n elements, the single element is
replicated n times. For example, 1+(3,4) is equivalent to (1,1)+(3,4) and results in (4,5).

If the number of elements in the two arguments differ and one argument is not a single element, the result is
null.

Binary operators that act this way are:

… or …

… and …

… = …

… eq …

… is …

… <> …

… ne …

… is not equal …

… < …

… lt …

… is less than …

… is not greater than or equal …

… <= …

… le …

… is less than or equal …

… is not greater than …

… > …

… gt …

… is greater than …

… is not less than or equal …

… >= …

… ge …

… is greater than or equal …

… is not less than …

… is within past …

… is not within past …

… is within same day as …

Arden Syntax for Medical Logic Systems

Page 30 Health Level Seven © 1999. All rights reserved.

07/1999 Final Standard.

… is not within same day as …

… is before …

… is not before …

… is after …

… is not after …

… matches pattern …

… occur equal …

… occur within past …

… occur not within past …

… occur within same day as …

… occur not within same day as …

… occur before …

… occur not before …

… occur after …

… occur not after …

… + …

… - …

… * …

… / …

… ** …

… before …

… after …

… round …

The following operators are of the form <n:type> := <m:type> op <m:type>; they replicate the
arguments if necessary but may return a list with a different number of elements:

… where …

9.1.3.5

When an operator has a template of the form <n:type> := <n:type> op1 <n:type> op2 <n:type>, the scalar
operator is applied triple-wise to each element of the lists, producing a list with the same number of
elements (if the list is empty, the resulting list is also empty). For example, (1,2) is within (0,2) to (3,4)
results in (true,true).

If one of the operands is a single element and the other operands have n elements, the single element is
replicated n times. If two of the operands are a single element and the other operand has n elements, the
single elements are replicated n times. For example, (1,2) is within 2 to (3,4) is equivalent to (1,2) is
within (2,2) to (3,4) and results in (false,true).

If the number of elements in any pair of arguments differ and one argument is not a single element, the
result is null.

Ternary operators that act this way are:

… is within … to …

… is not within … to …

… is within … preceding …

… is not within … preceding …

… is within … following …

… is not within … following …

Arden Syntax for Medical Logic Systems

Health Level Seven © 1999. All rights reserved. Page 31

Final Standard 07/1999

… is within … surrounding …

… is not within … surrounding …

… occur within … to …

… occur not within … to …

… occur within … preceding …

… occur not within … preceding …

… occur within … following …

… occur not within … following …

… occur within … surrounding …

… occur not within … surrounding …

9.1.3.6

When an operator has a template of the form <n:type> := op1 <1:type> op2 <m:type>, the operator is
applied to the entire second argument, producing a new list. The first argument must be a single element (if
not, the result of the operator is null). For example, min 2 from (5,3,4) results in (3, 4).

Binary operators that act this way are:

min … from …

minimum … from …

max … from …

maximum … from …

last … from …

first … from …

latest … from …

earliest … from …

index min … from …

index minimum … from …

index max … from …

index maximum … from …

index latest … from …

index earliest … from …

9.1.3.7

When an operator has a template of the form <n:type> := op1 <n:type> op2 <m:type>, the operator is
applied to the entire second argument, producing a new list. The first argument is typically a single
element. For example, 1 is in (0,3) results in false and (1,2,3) is in (0,3) results in (false,false,true).

Binary operators that act this way are:

nearest … from …

… is in …

… is not in …

index nearest … from …

9.1.3.8

When an operator has a template of the form <n:type> := <k:type> op <m:type>, the operator is applied
to the entire two lists, producing a new list. For example, 1,(3,4) results in (1,3,4).

Binary operators that act this way are:

Arden Syntax for Medical Logic Systems

Page 32 Health Level Seven © 1999. All rights reserved.

07/1999 Final Standard.

… , …

… merge …

… || …

… seqto …

9.1.4 Primary Time Handling

Queries attach primary times to their results (see Sections 8.9.1). Some operators maintain those primary
times and others lose them. Except as otherwise stated, primary times are treated as follows.

9.1.4.1 Unary Operators

Unary operators maintain primary times. In this example, result1 still has primary times attached if data1
is the result of a query:

result1 := sin(data1);

9.1.4.2 Binary and Ternary Operators

Binary and ternary operators maintain primary times if all operands have primary times and all of the
primary times are equal. If any operand is missing a primary time or if the primary times are not all equal,
the primary time is lost.

Example (primary times are the same, the primary time is kept):

Data Values: 6 := 2 * 3;

Time Values: (Jan 1) (Jan 1) (Jan 1);

Example (primary times are different, then primary time is lost):

Data Values: 42 := 6 * 7;

Time Values: (null) (Feb 1) (Jan 1);

9.1.5 Operator Precedence

Expressions are nested structures, which may contain more than one operator and several arguments. The
order in which operators are executed is decided by using an operator property called precedence.
Operators groups into several precedence groups. Operators of higher precedence are performed before
operators of lower precedence. For example, the expression 3+4*5 (three plus four times five) is executed
as follows: since * has higher precedence than +, it is performed first so that 4*5 results in 20; then + is
performed so that 3+20 results in 23. Parentheses can always be used to override operator precedence.

9.1.5.1 Precedence Table

The operators are shown grouped by precedence in Annex A4.

9.1.6 Associativity

When an expression contains more than one operator within the same precedence group, the operators'
associativity property decides the order of execution. The associativity of each operator is shown in Annex
A4. There are three types of associativity:

Arden Syntax for Medical Logic Systems

Health Level Seven © 1999. All rights reserved. Page 33

Final Standard 07/1999

9.1.6.1 Left

Left associative operators are executed from left to right. For example, 3-4-5 has two subtractions (-).
Since they are the same operator, they must be in the same precedence group. Since - is left associative, 3-
4 is performed first resulting in (-1); then (-1)-5 is performed, resulting in (-6).

9.1.6.2 Right

Right associative operators are executed from right to left. For example, average sum 3 has two operators
in the same precedence group. Since they are right associative, sum 3 is performed first resulting in 3; then
average 3 is performed, resulting in 3.

9.1.6.3 Non-Associative

Non-associative operators cannot have more than one operator from the same precedence group in the same
expression unless parentheses are used. Thus the expression 2**3**4 is illegal since ** (the
exponentiation operator) is non-associative (however, (2**3)**4 and 2**(3**4) are both legal).

9.1.7 Parentheses

One can use parentheses to force a different order of execution. Expressions within parentheses are always
performed before ones outside of parentheses. For example, the expression (3+4)*5 is executed as follows:
3+4 is within parentheses, so it is performed first regardless of precedence, resulting in 7; then * is
performed so that 7*5 results in 35. Similarly, (2**3)**4 is a legal expression which results in 4096.

9.2 List Operators

The list operators do not follow the default list handling. Primary times are maintained according to
Section 9.1.4.

9.2.1 , (binary, left associative)

Binary , (list concatenation) appends two lists. Primary times are maintained in 9.2.1. Its usage is:

<n:any-type> := <k:any-type> , <m:any-type>

(4,2) := 4, 2

(4,"a",null) := (4,"a") , null

9.2.2 , (unary, non-associative)

Unary , turns a single element into a list of length one. It does nothing if the argument is already a list. Its
usage is (where (3) means a list with 3 as its only element):

<1:any-type> := , <1:any-type>

(,3) := , 3

9.2.3 Merge (binary, left-associative)

The merge operator appends two lists, appends a single item to a list, or creates a list from two single
items. It then sorts the result in chronological order based on the primary times of the elements (as defined
in 9.2.4). All elements of both lists must have primary times; otherwise null is returned (the construct x
where time of it is present can be used to select only elements of x that have primary times).
The primary times are maintained. Merge is typically used to put together the results of two separate
queries. The expression x merge y is equivalent to sort time (x,y). Its usage is (assuming that data1 has a
data value of 2 and a time of 1991-01-02T00:00:00, and that data2 has data values 1,3 and time values
1991-01-01T00:00:00, 1991-01-03T00:00:00):

Arden Syntax for Medical Logic Systems

Page 34 Health Level Seven © 1999. All rights reserved.

07/1999 Final Standard.

<n:any-type> := <k:any-type> MERGE <m:any-type>

(1, 2, 3) := data1 MERGE data2

null := (4,3) MERGE (2,1)

9.2.4 Sort Operators (unary, non-associative)

The sort operators (sort data and sort time) reorder a list based on element keys, which are either the
element values (sort data) or the primary times (sort time). Direction of sorting is always ascending. For
a descending sort, reverse can be used.

When sorting by primary times, if any of the elements do not have primary times, the result is null. (The
sort argument can always be qualified by where time of it is present, if this is not desired behavior.)
Elements with the same key will be kept in the same order as they appear in the argument. If any pair of
element key cannot not be compared because of type clashes, sort returns null (that is, when sorting by
data, any null value (or non-comparable value) results in null; when sorting by time, any null primary time
results in null). Its usage is (assuming that data1 has a data value of 30,10,20 with time values 1991-01-
01T00:00:00, 1991-02-01T00:00:00, 1991-01-03T00:00:00):

<n:any-type> := SORT DATA <n:any-type>

<n:any-type> := SORT TIME <n:any-type>

 (10, 20, 30) := SORT DATA data1

(30, 20, 10) := REVERSE SORT DATA data1

null := SORT DATA (3,1,2,null)

null := SORT DATA (3,"abc")

() := SORT TIME ()

(1, 2, 3, 3) := SORT DATA (1,3,2,3)

(30, 20, 10) := SORT TIME data1

9.3 Where Operator

The where operator does not follow the default list handling or the default time handling.

9.3.1 Where (binary, non-associative)

The where operator performs the equivalent of a relational select ... where ... on its left argument. In
general, the left argument is a list, often the result of a query to the database. The right argument is usually
of type Boolean (although this is not required), and must be the same length as the left argument. The
result is a list that contains only those elements of the left argument where the corresponding element in the
right argument is Boolean true. If the right argument is anything else, including false, null, or any other
type, then the element in the left argument is dropped. The where operator maintains the primary time(s)
of the operand(s) to the left of WHERE. The primary time(s) of the operand(s) to the right of WHERE
are dropped. Its usage is:

<n:any-type> := <m:any-type> WHERE <m:any-type>

(10,30) := (10,20,30,40) WHERE (true,false,true,3)

Example

7.38 := (7.34, 7.38, 7.4) WHERE time of it is within 20 minutes after time of VentChange

(1/1 16:20) (1/1 18:01) (1/1 16:20) (Jan 1 02:06) (Jan 1 16:12)

Where handles mixed single items and lists in a manner analogous to the other binary operators. If the
right argument to where is a single item, then if it is true, the entire left argument is kept (whether or not it

Arden Syntax for Medical Logic Systems

Health Level Seven © 1999. All rights reserved. Page 35

Final Standard 07/1999

is a list); if it is not true, then the empty list is returned. If only the left argument is a single item, then the
result is a list with as many of the single items as there are elements equal to true in the right argument. If
the two arguments are lists of different length, then a single null results (the rules in Section 9.1.3.4 are
used to replicate a single-element argument if necessary). For example,

1 := 1 WHERE true

(1,2,3) := (1,2,3) WHERE true

(1,1) := 1 WHERE (true,false,true)

null := (1,2,3,4) WHERE (true,false,true)

Where is generally used to select certain items from a list. The list is used as the left argument, and some
comparison operator is applied to the list in the right argument. For example, potassium_list where
potassium_list > 5.0 would select from the list those values that are greater than 5.

Where can be used to filter out invalid data. For example, if a query returns either numeric values or text
comments, the following can be used to select elements from the query that have proper numeric values:

queryResult where they are number

Similarly, if a query returns some values without primary times, the following can be used to select
elements from the query that have proper primary times:

queryResult where time of it is present

In this example, the unary operator time is applied to the queryResult (which is what the value of "it" is),
resulting in a list of times (for those results that have a primary time) and nulls (for those results that do not
have a primary time). The unary operator is present is then applied to that list, give a list of Booleans: true
where there is a primary time and false where there is no primary time. Finally, the where operator is used
to remove those values that do not have primary times.

9.3.1.1 It

The word it and synonym they are used in conjunction with where. To simplify where expressions, it may
be used in the right argument to represent the entire left argument. For example, potassium_list where
they > 5.0 would select those values from the list that are greater than 5. It is most useful when the left
argument is a complex expression; for example, (potassium_list + sodium_list/3) where it > 5.0 would
assign the entire expression in parentheses to it. If there are nested where expressions, it refers to the left
argument of the innermost where. If it is used outside of a where expression, then it has a value of null.
An implementation of the Arden Syntax may choose to flag use of it outside a where expression as an error
at compile time.

9.4 Logical Operators:

9.4.1 Or (binary, left associative)

The or operator performs the logical disjunction of its two arguments. If either argument is true (even if
the other is not Boolean), the result is true. If both arguments are false, the result is false. Otherwise the
result is null. Its usage is:

<n:Boolean> := <n:any-type> OR <n:any-type>

true := true OR false

false := false OR false

true := true OR null

null := false OR null

null := false OR 3.4

(true, true) := (true, false) OR (false, true)

() := () OR ()

Arden Syntax for Medical Logic Systems

Page 36 Health Level Seven © 1999. All rights reserved.

07/1999 Final Standard.

Its truth table is given here. Other means any of these data types: null, number, time, duration, or string.

OR TRUE FALSE Other (Right
argument)

(Left TRUE TRUE TRUE TRUE
argument) FALSE TRUE FALSE NULL

other TRUE NULL NULL

9.4.2 And (binary, left associative)

The and operator performs the logical conjunction of its two arguments. If either argument is false (even if
the other is not Boolean), the result is false. If both arguments are true, the result is true. Otherwise the
result is null. Its usage is:

<n:Boolean> := <n:any-type> AND <n:any-type>

false := true AND false

null := true AND null

false := false AND null

Its truth table is given here. Other means any of these data types: null, number, time, duration, or string.

AND TRUE FALSE other (Right
argument)

(Left
argument)

TRUE TRUE FALSE NULL

FALSE FALSE FALSE FALSE
other NULL FALSE NULL

9.4.3 Not (unary, non-associative)

The not operator performs the logical negation of its argument. Thus true becomes false, false becomes
true, and anything else becomes null. Its usage is:

<n:Boolean> := NOT <n:any-type>

true := NOT false

null := NOT null

Its truth table is given here. Other means any of these data types: null, number, time, duration, or string.

NOT TRUE FALSE other
FALSE TRUE NULL

9.5 Simple Comparison Operators:

9.5.1 = (binary, non-associative)

The = operator has two synonyms: eq and is equal. It checks for equality, returning true or false. If the
arguments are of different types, false is returned. If an argument is null, then null is always returned.
Primary times are not used in determining equality; the primary time of the result is determined by the rules
in Section 9.1.4. Its usage is:

<n:Boolean> := <n:non-null> = <n:non-null>

false := 1 = 2

(null,true,false) := (1,2,"a") = (null,2,3)

null := (3/0) = (3/0)

null := 5 = ()

null := (1,2,3) = ()

Arden Syntax for Medical Logic Systems

Health Level Seven © 1999. All rights reserved. Page 37

Final Standard 07/1999

() := null = ()

() := () = ()

null := 5 = null

(null,null,null) := (1,2,3) = null

null := null = null

(true,true,false) := (1,2,3) = (1,2,4)

Use is present or exists instead of = to test whether an argument is equal to null. See Sections 9.6.15 and
9.12.3.

9.5.2 <> (binary, non-associative)

The <> operator has two synonyms: ne and is not equal. It checks for inequality, returning true or false.
If the arguments are of different types, true is returned. If an argument is null, then null is returned. Its
usage is:

<n:Boolean> := <n:non-null> <> <n:non-null>

true := 1 <> 2(null,false,true) := (1,2,"a") <> (null,2,3)

null := (3/0) <> (3/0)

9.5.3 < (binary, non-associative)

The < operator has three synonyms: It, is less than, and is not greater than or equal. It is used on
ordered types; if the types do not match, null is returned. Its usage is:

<n:Boolean> := <n:ordered> < <n:ordered>

true := 1 < 2

true := 1990-03-02T00:00:00 < 1990-03-10T00:00:00

true := 2 days < 1 year

true := "aaa" < "aab"

null := "aaa" < 1

9.5.4 <= (binary, non-associative)

The <= operator has three synonyms: le, is less than or equal, and is not greater than. It is used on
ordered types; if the types do not match, null is returned. Its usage is:

<n:Boolean> := <n:ordered> <= <n:ordered>

true := 1 <= 2

true := 1990-03-02T00:00:00 <= 1990-03-10T00:00:00

true := 2 days <= 1 year

true := "aaa" <= "aab"

null := "aaa" <= 1

9.5.5 > (binary, non-associative)

The > operator has three synonyms: gt, is greater than, and is not less than or equal. It is used on
ordered types; if the types do not match, null is returned. Its usage is:

<n:Boolean> := < n:ordered> > <n:ordered>

false := 1 > 2

false := 1990-03-02T00:00:00 > 1990-03-10T00:00:00

false := 2 days > 1 year

false := "aaa" > "aab"

Arden Syntax for Medical Logic Systems

Page 38 Health Level Seven © 1999. All rights reserved.

07/1999 Final Standard.

null := "aaa" > 1

9.5.6 >= (binary, non-associative)

The >= operator has three synonyms: ge, is greater than or equal, and is not less than. It is used on
ordered types; if the types do not match, null is returned. Its usage is:

<n:Boolean> := <n:ordered> >= <n:ordered>

false := 1 >= 2

false := 1990-03-02T00:00:00 >= 1990-03-10T00:00:00

false := 2 days >= 1 year

false := "aaa" >= "aab"

null := "aaa" >= 1

9.6 Is Comparison Operators

The following comparison operators include the word is, which can be replaced with are, was, or were.
An optional not may follow the is, negating the result (using the definition of not, see Section 9.4.3). For
example, these are valid:

surgery_time WAS BEFORE discharge_time

surgery_time IS NOT AFTER discharge_time

9.6.1 Is [not] Equal (binary, non-associative)

See Section 9.5.1.

9.6.2 Is [not] Less Than (binary, non-associative)

See Section 9.5.3.

9.6.3 Is [not] Greater Than (binary, non-associative)

See Section 9.5.5.

9.6.4 Is [not] Less Than or Equal (binary, non-associative)

See Section 9.5.4.

9.6.5 Is [not] Greater Than or Equal (binary, non-associative)

See Section 9.5.6.

9.6.6 Is [not] Within ... To (ternary, non-associative)

The is within ... to operator checks whether the first argument is within the range specified by the second
and third arguments; the range is inclusive. It is used on ordered types; if the types do not match, null is
returned. Its usage is:

<n:Boolean> := <n:ordered> IS WITHIN <n:ordered> TO <n:ordered>

true := 3 IS WITHIN 2 TO 5

true := 1990-03-10T00:00:00 IS WITHIN 1990-03-05T00:00:00 TO 1990-03-
15T00:00:00

true := 3 days IS WITHIN 2 days TO 5 months

Arden Syntax for Medical Logic Systems

Health Level Seven © 1999. All rights reserved. Page 39

Final Standard 07/1999

true := "ccc" IS WITHIN "a" TO "d"

9.6.7 Is [not] Within ... Preceding (ternary, non-associative)

The is within ... preceding operator checks whether the left argument is within the inclusive time period
defined by the second two arguments (from the third argument minus the second to the third). Its usage is:

<n:Boolean> := <n:time> IS WITHIN <n:duration> PRECEDING <n:time>

true := 1990-03-08T00:00:00 IS WITHIN 3 days PRECEDING 1990-03-10T00:00:00

9.6.8 Is [not] Within ... Following (ternary, non-associative)

The is within ... following operator checks whether the left argument is within the inclusive time period
defined by the second two arguments (from the third argument to the third plus the second). Its usage is:

<n:Boolean> := <n:time> IS WITHIN <n:duration> FOLLOWING <n:time>

false := 1990-03-08T00:00:00 IS WITHIN 3 days FOLLOWING 1990-03-10T00:00:00

9.6.9 Is [not] Within ... Surrounding (ternary, non-associative)

The is within ... surrounding operator checks whether the left argument is within the inclusive time period
defined by the second two arguments (from the third argument minus the second to the third plus the
second). Its usage is:

<n:Boolean> := <n:time> IS WITHIN <n:duration> SURROUNDING <n:time>

true := 1990-03-08T00:00:00 IS WITHIN 3 days SURROUNDING 1990-03-10T00:00:00

9.6.10 Is [not] Within Past (binary, non-associative)

The is within past checks whether the left argument is within the time period defined by the right argument
(now minus the right argument to now). Its usage is (assuming now is 1990-03-09T00:00:00):

<n:Boolean> := <n:time> IS WITHIN PAST <n:duration>

true := 1990-03-08T00:00:00 IS WITHIN PAST 3 days

9.6.11 Is [not] Within Same Day As (binary, non-associative)

The is within same day as operator checks whether the left argument is on the same day as the second
argument. Its usage is:

<n:Boolean> := <n:time> IS WITHIN SAME DAY AS <n:time>

true := 1990-03-08T11:11:11 IS WITHIN SAME DAY AS 1990-03-08T01:01:01

9.6.12 Is [not] Before (binary, non-associative)

The is before operator checks whether the left argument is before the second argument; it is not inclusive.
Its usage is:

<n:Boolean> := <n:time> IS BEFORE <n:time>

false := 1990-03-08T00:00:00 IS BEFORE 1990-03-07T00:00:00

false := 1990-03-08T00:00:00 IS BEFORE 1990-03-08T00:00:00

9.6.13 Is [not] After (binary, non-associative)

The is after operator checks whether the left argument is after the second argument; it is not inclusive. Its
usage is:

<n:Boolean> := <n:time> IS AFTER <n:time>

Arden Syntax for Medical Logic Systems

Page 40 Health Level Seven © 1999. All rights reserved.

07/1999 Final Standard.

true := 1990-03-08T00:00:00 IS AFTER 1990-03-07T00:00:00

9.6.14 Is [not] In (binary, non-associative)

The is in operator does not follow the default list handling. It checks for membership of the left argument
in the right argument, which is usually a list. If the left argument is a list, then a list results; if the left
argument is a single item, then a single item results. If the right argument is a single item, then it is treated
as a list of length one. Primary times are retained only if they match (that is, the = operator is used for
determining membership, except that null will match). Its usage is:

<n:Boolean> := <n:any-type> IS IN <m:any-type>

false := 2 IS IN (4,5,6)

(false,true) := (3,4) IS IN (4,5,6)

true := null is in (1/0,2)

9.6.15 Is [not] Present (unary, non-associative)

The is present operator has one synonym: is not null. (Similarly, is not present has one synonym: is
null.) It returns true if the argument is not null, and it returns false if the argument is null. Is present
never returns null. This operator is used to test whether an argument is null since arg=null always results
in null regardless of arg. Its usage is:

<n:Boolean> := <n:any-type> IS PRESENT

true := 3 IS PRESENT

false := null IS PRESENT

(true,false) := (3,null) IS PRESENT

(false,true) := (3,null) IS NULL

9.6.16 Is [not] Null (unary, non-associative)

See Section 9.6.15.

9.6.17 Is [not] Boolean (unary, non-associative)

The is Boolean operator returns true if the argument's data type is Boolean. Otherwise it returns false. Is
Boolean never returns null. Its usage is:

<n:Boolean> := <n:any-type> IS BOOLEAN

true := false IS BOOLEAN

true := 3 IS NOT BOOLEAN

(false,true,false) := (null,false,3) IS BOOLEAN

9.6.18 Is [not] Number (unary, non-associative)

The is number operator returns true if the argument's data type is number. Otherwise it returns false. Is
number never returns null. Its usage is:

<n:Boolean> := <n:any-type> IS NUMBER

true := 3 IS NUMBER

false := null IS NUMBER

The is number is useful for ensuring that a list is all numbers before an aggregation operator is applied.
This avoids returning null. For example,

sum(serum_K where it IS NUMBER)

Arden Syntax for Medical Logic Systems

Health Level Seven © 1999. All rights reserved. Page 41

Final Standard 07/1999

9.6.19 Is [not] String (unary, non-associative)

The is string operator returns true if the argument's data type is string. Otherwise it returns false. Is
string never returns null. Its usage is:

<n:Boolean> := <n:any-type> IS STRING

true := "asdf" IS STRING

false := null IS STRING

9.6.20 Is [not] Time (unary, non-associative)

The is time operator returns true if the argument's data type is time. Otherwise it returns false. Is time
never returns null. Its usage is:

<n:Boolean> := <n:any-type> IS TIME

true := 1991-03-12T00:00:00 IS TIME

false := null IS TIME

9.6.21 Is [not] Duration (unary, non-associative)

The is duration operator returns true if the argument's data type is duration. Otherwise it returns false. Is
duration never returns null. Its usage is:

<n:Boolean> := <n:any-type> IS DURATION

true := (3 days) IS DURATION

false := null IS DURATION

9.6.22 Is [not] List (unary, non-associative)

The is list operator returns true if the argument is a list. Otherwise it returns false. Is list never returns
null. Its usage is:

<1:Boolean> := <n:any-type> IS LIST

true := (3, 2, 1) IS LIST

False := 5 IS LIST

false := null IS LIST

The is list operator does not follow the default list handling because it does not operate on each item in the
argument, but rather operates on the argument as a whole. Thus it never returns a list. Notice the
difference:

true := (3, 2, "asdf") IS LIST

(true, true, false) := (3, 2, "asdf") IS NUMBER

9.7 Occur Comparison Operators:

9.7.1 General Properties:

The following comparison operators are analogous to the is comparison operators in Section 9.6. They use
the word occur instead of is. The word occur can be replaced with occurs or occurred. An optional not
may follow the occur, negating the result (using the definition of not, see Section 9.4.3).

The effect is that rather than using the left argument directly, the primary time of the left argument is used
instead (that is, the time of the left argument is used; see Section 9.17). The following pairs are equivalent
expressions:

time of var IS NOT BEFORE 1990-03-05T11:11:11

Arden Syntax for Medical Logic Systems

Page 42 Health Level Seven © 1999. All rights reserved.

07/1999 Final Standard.

var OCCURRED NOT BEFORE 1990-03-05T11:11:11

time of surgery IS WITHIN THE PAST 3 days

surgery OCCURRED WITHIN THE PAST 3 days

time(a) IS WITHIN 1990-03-05T11:11:11 TO time(b)

a OCCURRED WITHIN 1990-03-05T11:11:11 TO time(b)

In the following operator examples, data is the result of a query; its primary time is 1990-03-05T11:11:11;
and now is 1990-03-06T00:00:00.

9.7.2 Occur [not] Equal (binary, non-associative):

<n:Boolean> := <n:any-type> OCCUR EQUAL <n:time>

false := data OCCURED EQUAL 1990-03-01T00:00:00

9.7.3 Occur [not] Within ... To (ternary, non-associative):

<n:Boolean> := <n:any-type> OCCUR WITHIN <n:time> TO <n:time>

true := data OCCURED WITHIN 1990-03-01T00:00:00 TO 1990-03-11T00:00:00

9.7.4 Occur [not] Within ... Preceding (ternary, non-associative):

<n:Boolean> := <n:any-type> OCCUR WITHIN <n:duration> PRECEDING <n:time>

false := data OCCURRED WITHIN 3 days PRECEDING 1990-03-10T00:00:00

9.7.5 Occur [not] Within ... Following (ternary, non-associative):

<n:Boolean> := <n:any-type> OCCUR WITHIN <n:duration> FOLLOWING <n:time>

false := data OCCURRED WITHIN 3 days FOLLOWING 1990-03-10T00:00:00

9.7.6 Occur [not] Within . . . Surrounding (ternary, non-associative):

<n:Boolean> := <n:any-type> OCCUR WITHIN <n:duration> SURROUNDING <n:time>

false := data OCCURED WITHIN 3 days SURROUNDING 1990-03-10T00:00:00

9.7.7 Occur [not] Within Past (binary, non-associative):

<n:Boolean> := <n:any-type> OCCUR WITHIN PAST <n:duration>

true := data OCCURED WITHIN PAST 3 days

9.7.8 Occur [not] Within Same Day As (binary, non-associative):

<n:Boolean> := <n:any-type> OCCUR WITHIN SAME DAY AS <n:time>

false := data OCCURED WITHIN SAME DAY AS 1990-03-08T01:01:01

9.7.9 Occur [not] Before (binary, non-associative):

<n:Boolean> := <n:any-type> OCCUR BEFORE <n:time>

true := data OCCURRED BEFORE 1990-03-08T01:01:01

9.7.10 Occur [not] After (binary, non-associative):

<n:Boolean> := <n:any-type> OCCUR AFTER <n:time>

false := data OCCURED AFTER 1990-03-08T01:01:01

Arden Syntax for Medical Logic Systems

Health Level Seven © 1999. All rights reserved. Page 43

Final Standard 07/1999

9.8 String Operators

The string operators do not follow the default list handling or the default primary time handling.

9.8.1 || (binary, left associative)

The || operator (string concatenation) converts its arguments to strings and then concatenates those strings
together. The null data type is converted to the string null and then appended to the other argument. Thus
|| never returns null. Lists are converted to strings and then appended to the other argument; the list is
enclosed in parentheses and the elements are separated by , with no separating blanks. The string
representation of Booleans, numbers, times, and durations is location-specific to allow for the use of the
native language. The formatted with operators %z operator is used to convert values to strings (see
Section 9.8.2). The string operator is a generalization of the || operator (see Section 9.8.3), except that the
string operator does not do anything special for lists. The primary times of its arguments are lost. Its usage
is:

<1:string> := <m:any-type> || <n:any-type>

"null3" := null || 3

"45" := 4 || 5

"4.7four" := 4.7 || "four"

"true" := true || ""

"3 days left" := 3 days || " left"

"on 1990-03-15T13:45:01" := "on " || 1990-03-15T13:45:01

"list=(1,2,3)" := "list=" || (1,2,3)

9.8.2 Formatted with (binary, left-associative)

The formatted with operator allows a formatting string to be used for additional control over how data
items are output. The formatting string is similar to the ANSI C language printf control string, with
additional ability to format an Arden time. The primary times of its arguments are lost.

<string> := <data> formatted with <format_string>

"01::02::03" := (1,2,3) formatted with "%2.2d::%2.2d::%2.2d"

"The result was 10.61 mg"

:= 10.60528 formatted with "The result was %.2f mg"

"The date was Jan 10 1998"

:= 1998-01-10T17:25:00 formatted with "The date was %.2t"

"The year was 1998"

:= 1998-01-10T17:25:00 formatted with "The year was %.0t"

/* longer example */

a := "ten";

b := "twenty";

c := "thirty";

f := "%s, %s, %s or more";

"ten, twenty, thirty or more" := (a, b, c) formatted with f;

Arden Syntax for Medical Logic Systems

Page 44 Health Level Seven © 1999. All rights reserved.

07/1999 Final Standard.

If data is a single item, it serves as the single parameter for format string substitution. If data is a list, the
list is not formatted as a list. Instead, it is assumed to be a list of parameters for format string substitution.
Parameters are substituted into the format string as described below, which becomes the result of the
operation.

A format string consists of a literal string and typically contains 1 or more format specifications.

A format specification, which consists of optional and required fields, has the following form:

%[flags][width][.precision]type

Each field of the format specification is a single character or a number signifying a particular format
option. The simplest format specification contains only the percent sign and a type character (for example,
%s). If a percent sign is followed by a character that has no meaning as a format field, the character is not
revised. For example, to print a percent-sign character, use %%.

Note that to retain compatibility with C language functions, several formatting type specifiers have been
retained that will probably not be useful to the Arden MLM author. The most likely format specification
types an MLM author will use are:

%c (for outputting special characters)

%s (string width control)

%d (integer formatting)

%t (time formatting)

%e (floating point number formatting with exponent)

%f (floating point number formatting without exponent)

%g (floating point number formatting using %e or %f)

A complete description of supported types within the format specification can be found in Annex A5.

9.8.3 String ... (unary, right associative)

The string operator expects a string or list of strings as its argument. It returns a single string made by
concatenating all the elements, as the || operator (see Section 9.8.1). If the argument is an empty list, the
result is the empty string (""). The element operator (Section 9.12.18) can be used to select certain items
from the list. The primary times of its arguments are lost. Its usage is:

<1:string> := STRING <m:any-type>

"abc" := STRING ("a","b","c")

"abc" := STRING ("a","bc")

"" := STRING ()

"edcba" := STRING REVERSE EXTRACT CHARACTERS "abcde"

9.8.4 Matches pattern (binary, non-associative)

The effect of this operator is similar to the LIKE operator in SQL (ISO / IEC 9075). Matches pattern is
used to determine whether or not a particular string matches a pattern. This operator expects two string
arguments. The first argument is a string to be matched, and the second is the pattern used for matching.
Matches pattern returns a Boolean value: true if the pattern of the second argument matches the first
argument and false if it does not. The first argument also may be a list of strings, in which case the result is
a list of Boolean values, each corresponding to the match between one string and the pattern of the second
argument. If the arguments are not strings, null is returned. Matching is case-insensitive. The primary
time of the arguments are lost.

Arden Syntax for Medical Logic Systems

Health Level Seven © 1999. All rights reserved. Page 45

Final Standard 07/1999

The pattern of the second argument may be any legal string character. In addition, two wild-card characters
may be used. The underscore (_) will match exactly any one character. The percent sign (%) will match 0
to arbitrarily many characters. In order to match one of the literal wild-card character, precede it with an
escape (\) character.

<n : Boolean> := <k : string> MATCHES PATTERN <m : string>

<n : list of Boolean> := <k : list of strings> MATCHES PATTERN <m : string>

true := "fatal heart attack" MATCHES PATTERN "%heart%";

false := "fatal heart attack" MATCHES PATTERN "heart";

true := "abnormal values" MATCHES PATTERN "%value_";

false := "fatal pneumonia" MATCHES PATTERN "%pulmonary%";

(true, false) := ("stunned myocardium", "myocardial infarction") MATCHES
PATTERN

"%myocardium";

true := "5%" MATCHES PATTERN "_\%";

9.9 Arithmetic Operators

The behavior of time and duration data types is explained in Section 8.5.2.

9.9.1 + (binary, left associative)

Binary + (addition) adds the left and right arguments. It can perform simple addition, add two durations, or
increment a time by a duration. Underflow or overflow results in null. Its usage is:

<n:number> := <n:number> + <n:number>

6 := 4 + 2

() := 5 + ()

null := (1,2,3) + ()

() := null + ()

null := 5 + null

(null,null,null) := (1,2,3) + null

null := null + null

<n:duration> := <n:duration> + <n:duration>

3 days := 1 day + 2 days

<n:time> := <n:time> + <n:duration>

1990-03-15T00:00:00 := 1990-03-13T00:00:00 + 2 days

1993-05-17T00:00:00 := 0000-00-00 + 1993 years + 5 months + 17 days

<n:time> := <n:duration> + <n:time>

1990-03-15T00:00:00 := 2 days + 1990-03-13T00:00:00

9.9.2 + (unary, non-associative)

Unary + has no effect on its argument if it is of a valid type. Its usage is:

<n:number> := + <n:number>

2 := + 2

null := + "asdf"

<n:duration> := + <n:duration>

2 days := + 2 days

Arden Syntax for Medical Logic Systems

Page 46 Health Level Seven © 1999. All rights reserved.

07/1999 Final Standard.

9.9.3 - (binary, left associative)

Binary - (subtraction) subtracts the right argument from the left. It can perform numeric subtraction,
subtract two durations, decrement a time by a duration, or find the duration between two times. Underflow
or overflow results in null. In writing expressions, care must be taken that the subtraction operator is not
confused with the "-"" in time constant (Section 7.1.5). Any ambiguity is resolved in favor of time
constants. Its usage is:

<n:number> := <n:number> - <n:number>

4 := 6 - 2

<n:duration> := <n:duration> - <n:duration>

1 day := 3 days - 2 days

<n:time> := <n:time> - <n:duration>

1990-03-13T00:00:00 := 1990-03-15T00:00:00 - 2 days

<n:duration> := <n:time> - <n:time>

2 days := 1990-03-15T00:00:00 - 1990-03-13T00:00:00

9.9.4 - (unary, non-associative)

Unary - is used for arithmetic negation; this is how one makes negative number constants. Underflow or
overflow results in null. One cannot put two arithmetic operators together, so the following expression is
illegal: 3 + -4. Instead one must use one of these: 3 + (-4), 3 - 4, or -4 + 3. Its usage is:

<n:number> := - <n:number>

(-2) := - 2

<n:duration> := - <n:duration>

(-2) days := - (2 days)

9.9.5 * (binary, left associative)

The * operator (multiplication) multiplies the left and right arguments. Underflow or overflow results in
null. It can perform numeric multiplication or multiply a duration by a number. Its usage is:

<n:number> := <n:number> * <n:number>

8 := 4 * 2

<n:duration> := <n:number> * <n:duration>

6 days := 3 * 2 days

<n:duration> := <n:duration> * <n:number>

6 days := 2 days * 3

9.9.6 / (binary, left associative)

The / operator (division) divides the left argument by the right one. It can perform numeric division, divide
a duration by a number, or find the ratio between two durations. Null results from division by zero,
underflow, or overflow. Duration unit conversion can be done with the / operator (e.g., …… / 1 year turns
any duration into years). Its usage is:

<n:number> := <n:number> / <n:number>

4 := 8 / 2

<n:duration> := <n:duration> / <n:number>

2 days := 6 days / 3

<n:number> := <n:duration> / <n:duration>

120 := 2 minutes / 1 second

Arden Syntax for Medical Logic Systems

Health Level Seven © 1999. All rights reserved. Page 47

Final Standard 07/1999

36 := 3 years / 1 month

9.9.7 ** (binary, non-associative)

The ** operator (exponentiation) raises the left argument to the power of the right argument. Its usage is:

<n:number> := <n:number> ** <n:number>

9 := 3 ** 2

9.10 Temporal Operators

The behavior of time and duration data types is explained in Section 8.5.2.

9.10.1 After (binary, non-associative)
The after operator is equivalent to addition between a duration and a time. Its usage is:

<n:time> := <n:duration> AFTER <n:time>

1990-03-15T00:00:00 := 2 days AFTER 1990-03-13T00:00:00

9.10.2 Before (binary, non-associative)

The before operator is equivalent to the subtraction of a duration from a time. Its usage is:

<n:time> := <n:duration> BEFORE <n:time>

1990-03-11T00:00:00 := 2 days BEFORE 1990-03-13T00:00:00

9.10.3 Ago (unary, non-associative)

The ago operator subtracts a duration from now, resulting in a time. Its usage is (assuming that now is
1990-04-19T00:03:15):

<n:time> := <n:duration> AGO

1990-04-17T00:03:15 := 2 days AGO

9.11 Duration Operators

The behavior of the duration data type is explained in Section 8.5.2. Because the precedence of the
temporal operators is lower than that of the duration operators, 3 hours before 3 days ago is parsed as (3
hours) before ((3 days) ago), and it would return what time it was three days and three hours before the
current time.

9.11.1 Year (unary, non-associative)

The year operator has one synonym: years. It creates a months duration from a number: one year is 12
months. Its usage is:

<n:duration> := <n:number> YEAR

24 months := 2 YEAR

9.11.2 Extract year (unary, right-associative)

The extract year operator extracts the year from a time. Its usage is:

<n:number> := EXTRACT YEAR <n:time>

1990 := EXTRACT YEAR 1990-01-03T14:23:17.3

null := EXTRACT YEAR (1 YEAR)

Arden Syntax for Medical Logic Systems

Page 48 Health Level Seven © 1999. All rights reserved.

07/1999 Final Standard.

9.11.3 Month (unary, non-associative)

The month operator has one synonym: months. It creates a months duration from a number. Its usage is:

<n:duration> := <n:number> MONTH

9.11.4 Extract month (unary, right-associative)

The extract month operator extracts the month from a time. Its usage is:

<n:number> := EXTRACT MONTH <n:time>

1 := EXTRACT MONTH 1990-01-03T14:23:17.3

null := EXTRACT MONTH 1

9.11.5 Week (unary, non-associative)

The week operator has one synonym: weeks. It creates a seconds duration from a number: one week is
604800 seconds. Its usage is:

<n:duration> := <n:number> WEEK

9.11.6 Day (unary, non-associative)

The day operator has one synonym: days. It creates a seconds duration from a number: one day is 86400
seconds. Its usage is:

<n:duration> := <n:number> DAY

9.11.7 Extract day (unary, right-associative)

The extract day operator extracts the day from a time. Its usage is:

<n:number> := EXTRACT DAY <n:time>

3 := EXTRACT DAY 1990-01-03T14:23:17.3

null := EXTRACT DAY "this is not a time"

9.11.8 Hour (unary, non-associative)

The hour operator has one synonym: hours. It creates a seconds duration from a number: one hour is 3600
seconds. Its usage is:

<n:duration> := <n:number> HOUR

9.11.9 Extract hour (unary, right-associative)

The extract hour operator extracts the hour from a time. Its usage is:

<n:number> := EXTRACT HOUR <n:time>

14 := EXTRACT HOUR 1990-01-03T14:23:17.3

null := EXTRACT HOUR (1 HOUR)

9.11.10 Minute (unary, non-associative)

The minute operator has one synonym: minutes. It creates a seconds duration from a number: one minute
is 60 seconds. Its usage is:

<n:duration> := <n:number> MINUTE

Arden Syntax for Medical Logic Systems

Health Level Seven © 1999. All rights reserved. Page 49

Final Standard 07/1999

9.11.11 Extract minute (unary, right-associative)

The extract minute operator extracts the minute from a time. Its usage is:

<n:number> := EXTRACT MINUTE <n:time>

23 := EXTRACT MINUTE 1990-01-03T14:23:17.3

0 := EXTRACT MINUTE 1990-01-03

null := EXTRACT MINUTE 0000-00-00

9.11.12 Second (unary, non-associative)

The second operator has one synonym: seconds. It creates a seconds duration from a number. Its usage is:

<n:duration> := <n:number> SECOND

9.11.13 Extract second (unary, right-associative)

The extract second operator extracts the second from a time. Its usage is:

<n:number> := EXTRACT SECOND <n:time>

17.3 := EXTRACT SECOND 1990-01-03T14:23:17.3

null := EXTRACT SECOND (1 second)

9.12 Aggregation Operators:

9.12.1 General Properties:

The aggregation operators do not follow the default list handling, or the default primary time handling.
They perform aggregation on a list. That is, they take a list as an argument (they are all unary) and return a
single item as a result. Unless otherwise noted, if all the elements of the list have the same primary time,
the result maintains that primary time (otherwise the primary time is lost). An argument that is a single
item is treated as a list of length one.

Each of the operators may be followed by the word of. Parentheses are not required. For example, these
are all the same:

SUM a_list

SUM OF a_list

SUM(a_list)

SUM OF(a_list)

Multiple aggregation and transformation operators (for example, see Section 9.14) may be placed in an
expression without parentheses; for example:

AVERAGE OF LAST 3 FROM a_list

9.12.2 Count (unary, right associative)

The count operator returns the number of items (including null items) in a list. Count never returns null.
The result loses the primary time. Its usage is:

<1:number> := COUNT <n:any-type>

4 := COUNT (12,13,14,null)

1 := COUNT "asdf"

0 := COUNT ()

1 := COUNT null

Arden Syntax for Medical Logic Systems

Page 50 Health Level Seven © 1999. All rights reserved.

07/1999 Final Standard.

9.12.3 Exist (unary, right associative)

The exist operator has one synonym: exists. It returns true if there is at least one non-null item in a list of
any type. Exist never returns null. If all the elements of the list have the same primary time, the result
maintains that primary time (otherwise the primary time is lost). Its usage is:

<1:Boolean> := EXIST <n:any-type>

true := EXIST (12,13,14)

false := EXIST null

false := EXIST ()

true := EXIST ("plugh",null)

9.12.4 Average (unary, right associative)

The average operator has one synonym: avg. It calculates the average of a number, time, or duration list.
If all the elements of the list have the same primary time, the result maintains that primary time (otherwise
the primary time is lost). Its usage is:

<1:number> := AVERAGE <n:number>

14 := AVERAGE (12,13,17)

3 := AVERAGE 3

null := AVERAGE ()

<1:time> := AVERAGE <n:time>

1990-03-11T03:10:00 := AVERAGE (1990-03-10T03:10:00, 1990-03-12T03:10:00)

<1:duration> := AVERAGE <n:duration>

3 days := AVERAGE (2 days, 3 days, 4 days)

9.12.5 Median (unary, right associative)

The median operator calculates the median value of a number, time, or duration list. The list is first sorted.
If there is an odd number of items, it selects the middle value. If there is an even number of items, it
averages the middle two values. If there is a tie, then it selects the latest of those elements that have a
primary time. If a single element is selected or if the two selected elements of the list have the same
primary time, the result maintains that primary time (otherwise the primary time is lost). Its usage is:

<1:number> := MEDIAN <n:number>

13 := MEDIAN (12,17,13)

3 := MEDIAN 3

null := MEDIAN ()

<1:time> := MEDIAN <n:time>

1990-03-11T03:10:00 = MEDIAN (1990-03-10T03:10:00, 1990-03-11T03:10:00,
1990-03-28T03:10:00)

<1:duration> := MEDIAN <n:duration>

3 days := MEDIAN (1 hour, 3 days, 4 years)

9.12.6 Sum (unary, right associative)

The sum operator calculates the sum of a number or duration list. If all the elements of the list have the
same primary time, the result maintains that primary time (otherwise the primary time is lost). Its usage is:

<1:number> := SUM <n:number>

39 := SUM (12,13,14)

3 := SUM 3

0 := SUM ()

Arden Syntax for Medical Logic Systems

Health Level Seven © 1999. All rights reserved. Page 51

Final Standard 07/1999

<1:duration> := SUM <n:duration>

7 days := SUM (1 day, 6 days)

9.12.7 stddev (unary, right associative)

The stddev operator returns the sample standard deviation of a numeric list. If all the elements of the list
have the same primary time, the result maintains that primary time (otherwise the primary time is lost). Its
usage is:

<1:number> := STDDEV <n:number>

1.58113883 := STDDEV (12,13,14,15,16)

null := STDDEV 3

null := STDDEV ()

9.12.8 Variance (unary, right associative)

The variance operator returns the sample variance of a numeric list. If all the elements of the list have the
same primary time, the result maintains that primary time (otherwise the primary time is lost). Its usage is:

<1:number> := VARIANCE <n:number>

2.5 := VARIANCE (12,13,14,15,16)

null := VARIANCE 3

null := VARIANCE ()

9.12.9 Minimum (unary, right associative)

The minimum operator has one synonym: min. It returns the smallest value in a homogeneous list of an
ordered type (that is, all numbers, all times, all durations, or all strings), using the <= operator (see Section
9.5.4). If there is a tie, it selects the element with the latest primary time. The primary time of the selected
argument is maintained. Its usage is:

<1:ordered> := MINIMUM <n:ordered>

12 := MINIMUM (12,13,14)

3 := MIN 3

null := MINIMUM ()

null := MINIMUM (1,"abc")

9.12.10 Maximum (unary, right associative)

The maximum operator has one synonym: max. It returns the largest value in a homogeneous list of an
ordered type, using the >= operator (see Section 9.5.6). If there is a tie, it selects the element with the latest
primary time. The primary time of the selected argument is maintained. Its usage is:

<1:ordered> := MAXIMUM <n:ordered>

14 := MAXIMUM (12,13,14)

3 := MAXIMUM 3

null := MAXIMUM ()

null := MAXIMUM (1,"abc")

Arden Syntax for Medical Logic Systems

Page 52 Health Level Seven © 1999. All rights reserved.

07/1999 Final Standard.

9.12.11 Last (unary, right associative)

The last operator returns the value at the end of a list, regardless of type. If the list is empty, null is
returned. The expression last x is equivalent to x[count x]. Last on the result of a time-sorted query will
return the most recent value. The primary time of the selected argument is maintained. Note that last is
different than last specified in Arden Syntax version E 1460-92. That operator is now called latest (see
Section 9.12.16). Its usage is:

<1:any-type> := LAST <n:any-type>

14 := LAST (12,13,14)

3 := LAST 3

null := LAST ()

9.12.12 First (unary, right associative)

The first operator returns the value at the beginning of a list. If the list is empty, null is returned. The
expression first x is equivalent to x[1]. First on the result of a time-sorted query will return the
earliest value. The primary time of the selected argument is maintained. Note that first is different than
first specified in Arden Syntax version E 1460-92. That operator is now called earliest (see Section
9.12.17). Its usage is:

<1:any-type> := FIRST <n:any-type>

12 := FIRST (12,13,14)

3 := FIRST 3

null := FIRST ()

9.12.13 Any (unary, right associative)

The any operator returns true if any of the items in a list is true. It returns false if they are all false.
Otherwise it returns null. The special case of a list with zero members, results in false. If all the elements
of the list have the same primary time, the result maintains that primary time (otherwise the primary time is
lost). Its usage is:

<1:Boolean> := ANY <n:any-type>

true := ANY (true,false,false)

false := ANY false

false := ANY ()

null := ANY (3, 5, "red")

false := ANY (false, false)

null := ANY (false, null)

9.12.14 All (unary, right associative)

The all operator returns true if all of the items in a list are true. It returns false if any of the items is false.
Otherwise it returns null. The special case of a list with zero members, results in true. If all the elements
of the list have the same primary time, the result maintains that primary time (otherwise the primary time is
lost). Its usage is:

<1:Boolean> := ALL <n:any-type>

false := ALL (true,false,false)

false := ALL false

true := ALL ()

null := ALL (3, 5, "red")

null := ALL (true, null)

Arden Syntax for Medical Logic Systems

Health Level Seven © 1999. All rights reserved. Page 53

Final Standard 07/1999

9.12.15 No (unary, right associative)

The no operator returns true if all of the items in a list are false. It returns false if any of the items is true.
Otherwise it returns null. The special case of a list with zero members, results in true. If all the elements
of the list have the same primary time, the result maintains that primary time (otherwise the primary time is
lost). Its usage is:

<1:Boolean> := NO <n:any-type>

false := NO (true,false,false)

true := NO false

true := NO ()

null := NO (3, 5, "red")

null := NO (false, null)

9.12.16 Latest (unary, right associative)

The latest operator returns the value with the latest primary time in a list. If any of the elements do not
have primary times, the result is null (the argument can always be qualified by where time of it is present,
if this is not desired behavior). If the list is empty, null is returned. The primary time of the selected
argument is maintained. Its usage is:

<1:any-type> := LATEST <n:any-type>

null := LATEST ()

"penicillin" := LATEST ("penicillin", "ibuprofen", "pseudoephedrine HCL");

(T16:40) (T16:40) (T14:05) (T14:04)

9.12.17 Earliest (unary, right associative)

The earliest operator returns the value with the earliest primary time in a list. If any of the elements do not
have primary times, the result is null (the argument can always be qualified by where time of it is present,
if this is not desired behavior). If the list is empty, null is returned. The primary time of the argument is
maintained. Its usage is:

<1:any-type> := EARLIEST <n:any-type>

null := EARLIEST ()

"pseudoephedrine HCL" := EARLIEST ("penicillin", "ibuprofen", "pseudoephedrine HCL");

(T14:04) (T16:40) (T14:05) (T14:04)

9.12.18 Element (binary)

The element ([……]) operator is used to select one or more elements from a list, based on ordinal position
starting at 1 for the first element. The arguments to "index" are a list expression (to the left of the [……]) and
a list of integers (inside the [……]). The element operator maintains the primary times of the selected
arguments, even if the data have different primary times. The use of the element operator is as follows:

<n:any-type> := <k:any-type>[n:index]20 := (10,20,30,40)[2]

() := (10,20)[()]

(null,20) := (10,20)[1.5,2]

(10,30,50) := (10,20,30,40,50)[1,3,5]

(10,30,50) := (10,20,30,40,50)[1,(3,5)]

(10,20,30) := (10,20,30,40,50)[1 seqto 3]

Arden Syntax for Medical Logic Systems

Page 54 Health Level Seven © 1999. All rights reserved.

07/1999 Final Standard.

9.12.19 Extract characters ... (unary, right associative)

The extract characters operator expects a string as its argument. It returns a list of the single characters in
the string. If the argument has more than one element, the elements are first concatenated, as for the ||
operator (see Section 9.8.1). If the argument is an empty list, the result is the empty list (). The string
operator (Section 9.8.3) can be used to put the list back together; and the index operator (Section 9.12.18)
can be used to select certain items from the list. The primary times of its arguments are lost. Its usage is:

<n:string> := EXTRACT CHARACTERS <m:any-type>

("a","b","c") := EXTRACT CHARACTERS "abc"

("a","b","c") := EXTRACT CHARACTERS ("ab","c")

() := EXTRACT CHARACTERS ()

() := EXTRACT CHARACTERS ""

"edcba" := STRING REVERSE EXTRACT CHARACTERS "abcde"

9.12.20 Seqto (binary, non-associative)

The seqto operator generates a list of integers in ascending order. Both arguments must be single integers;
otherwise null is returned. If the first argument is greater than the second argument, the result is the empty
list. The primary times are lost. Its usage is:

<n:number> := <1:number> SEQTO <1:number>

(2,3,4) := 2 SEQTO 4

() := 4 SEQTO 2

null := 4.5 SEQTO 2

(2) := 2 SEQTO 2

(-3,-2,-1) := -3 SEQTO -1

(2,4,6,8) := 2 * (1 SEQTO 4)

null := (1.5 seqto 5)

9.12.21 Reverse (unary, right-associative)

The reverse operator generates a new list with the elements in the reverse order. The primary times of its
arguments are maintained. Its usage is:

<n:any-type> := REVERSE <n:any-type>

(3,2,1) := reverse (1,2,3)

(6,5,4,3,2,1) := reverse (1 seqto 6)

() := reverse ()

9.12.22 Index Extraction Aggregation operators

These operators behave similarly to their non-index extracting counterparts with the exception that they
return the value of the index of the element that matches the specified criteria rather than the value of the
element. These operators do not maintain primary times.

9.12.22.1 Index Latest (unary, right associative)
The index latest operator returns the index of the element with the latest primary time in a list. If any of the
elements do not have primary times, the result is null (the argument can always be qualified by where time of it is
present, if this is not desired behavior). If the list is empty, null is returned. Its usage is:

<1:any-type> := INDEX LATEST <n:any-type>

null := INDEX LATEST ()

Arden Syntax for Medical Logic Systems

Health Level Seven © 1999. All rights reserved. Page 55

Final Standard 07/1999

1 := INDEX LATEST ("penicillin", "ibuprofen", "psuedophedrine HCL");

 (T16:40) (T14:05) (T14:04)

9.12.22.2 Index Earliest (unary, right associative)

The index earliest operator returns the index of the element with the earliest primary time in a list. If any
of the elements do not have primary times, the result is null (the argument can always be qualified by
where time of it is present, if this is not desired behavior). If the list is empty, null is returned. Its usage
is:

<1:any-type> := EARLIEST <n:any-type>

null := EARLIEST ()

3 := INDEX LATEST ("penicillin", "ibuprofen", "psuedophedrine HCL");

 (T16:40) (T14:05) (T14:04)

9.12.22.3 Index Minimum (unary, right associative)

The index minimum operator has one synonym: index min. It returns the index of the element with the
smallest value in a homogeneous list of an ordered type (that is, all numbers, all times, all durations, or all
strings), using the <= operator (see Section 9.5.4). If there is a tie, it selects the element with the latest
primary time. Its usage is:

<1:ordered> := INDEX MINIMUM <n:ordered>

1 := INDEX MINIMUM (12,13,14)

3 := INDEX MIN 3

null := INDEX MINIMUM ()

null := INDEX MINIMUM (1,"abc")

9.12.22.4 Index Maximum (unary, right associative)

The maximum operator has one synonym: max. It returns the largest value in a homogeneous list of an
ordered type, using the >= operator (see Section 9.5.6). If there is a tie, it selects the element with the latest
primary time. Its usage is:

<1:ordered> := INDEX MAXIMUM <n:ordered>

3 := INDEX MAXIMUM (12,13,14)

3 := INDEX MAX 3

null := INDEX MAXIMUM ()

null := INDEX MAXIMUM (1,"abc")

9.12.22.5

There are no index extraction equivalents for last and first as INDEX FIRST would always return 1 and
INDEX LAST is equivalent to the COUNT operator.

9.13 Query Aggregation Operators:

9.13.1 General Properties:

The query aggregation operators do not follow the default list handling, or the default primary time
handling. They perform aggregation on a list. That is, they take a list as one argument and return a single
item as a result. If the list argument is a single item, then it is treated as a list of length one. Unless
otherwise specified, if all the elements of the list have the same primary time, the result maintains that
primary time (otherwise the primary time lost).

Arden Syntax for Medical Logic Systems

Page 56 Health Level Seven © 1999. All rights reserved.

07/1999 Final Standard.

The unary query aggregation operators (that is, those that do not include the from word) may optionally be
followed by of.

9.13.2 Nearest ... From (binary, right associative)

The nearest ... from operator expects a time as its first argument and a list as its second argument. It
selects the item from the list whose time of occurrence is nearest the specified time. If any of the elements
do not have primary times, the result is null (the argument can always be qualified by where time of it is
present, if this is not desired behavior). In the case of a tie, the element with the smallest index is used.
The primary times of the argument are maintained. Assume that data is a list that is the result of a query
with these values: 12, 13, 14; data has these primary times:1990-03-15T15:00:00, 1990-03-16T15:00:00,
1990-03-17T15:00:00; and now is 1990-03-18T16:00:00. The usage of the nearest ... from operator is:

<n:any-type> := NEAREST <n:time> FROM <m:any-type>

13 := NEAREST (2 days ago) FROM data

null := NEAREST (2 days ago) FROM (3,4)

null := NEAREST (2 days ago) FROM ()

9.13.3 Index Nearest ... From (binary, right associative)

The index nearest ... from operator functions exactly as the nearest … from operator (Section 9.13.2),
except that it returns the index of the element rather than the element itself. Index nearest … from does
not maintain primary time. Assume that data is a list that is the result of a query with these values: 12, 13,
14; data has these primary times:1990-03-15T15:00:00, 1990-03-16T15:00:00, 1990-03-17T15:00:00; and
now is 1990-03-18T16:00:00. The usage of the index nearest ... from operator is:

<n:number> := INDEX NEAREST <n:time> FROM <m:any-type>

2 := INDEX NEAREST (2 days ago) FROM data

null := INDEX NEAREST (2 days ago) FROM (3,4)

9.13.4 Slope (unary, right associative)

The slope operator performs a regression and returns the slope for the result of a query assuming the y axis
contains the values and the x axis contains the times. The result is expressed as units per day, but is
considered to be a number. Null results if the argument has fewer than two items. If all the elements of the
list have the same primary time, the result is null. If one or more of the primary times is non-existent, the
result is null. The result of the slope operator does not have a primary time. Its usage is (assuming the
same data as above):

<1:number> := SLOPE <n:number>

1 := SLOPE data

null := SLOPE (3,4)

9.14 Transformation Operators:

9.14.1 General Properties:

The transformation operators do not follow the default list handling, or the default primary time handling.
They transform a list, producing another list. If the list argument is a single item, then it is treated as a list
of length one. The result is always a list even if there is only one item (except if there is an error, in which
case the result is null).

Operators that are unary (that is, that do not include the from word) may optionally be followed by of.

Arden Syntax for Medical Logic Systems

Health Level Seven © 1999. All rights reserved. Page 57

Final Standard 07/1999

9.14.2 Minimum ... From (binary, right associative)

The minimum ... from operator has one synonym: min ... from. It expects a number (call it N) as its first
argument and a homogeneous list of an ordered type as its second argument. It returns a list with the N
smallest items from the argument list, in the same order that they are in the second argument, and with any
duplicates preserved. The result is null if N is not a non-negative integer. If there are not enough items in
the argument list, then as many as possible are returned. If there is a tie, then it selects the latest of those
elements that have a primary time. The primary times of the argument are maintained. Its usage is:

<n:ordered> := MINIMUM <1:number> FROM <m:ordered>

(11,12) := MINIMUM 2 FROM (11,14,13,12)

(,3) := MINIMUM 2 FROM 3

null := MINIMUM 2 FROM (3, "asdf")

() := MINIMUM 2 FROM ()

() := MINIMUM 0 FROM (2,3)

(1,2,2) := MINIMUM 3 FROM (3,5,1,2,4,2)

9.14.3 Maximum ... From (binary, right associative)
The maximum ... from operator has one synonym: max ... from. It expects a number (call it N) as its first
argument and a homogeneous list of an ordered type as its second argument. It returns a list with the N largest items
from the argument list, in the same order that they are in the second argument, and with any duplicates preserved.
The result is null if N is not a non-negative integer. If there are not enough items in the argument list, then as many
as possible are returned. If there is a tie, then it selects the latest of those elements that have a primary time. The
primary times of the argument are maintained. Its usage is:

<n:ordered> := MAXIMUM <1:number> FROM <m:ordered>

(14,13) := MAXIMUM 2 FROM (11,14,13,12)

(,3) := MAXIMUM 2 FROM 3

null := MAXIMUM 2 FROM (3, "asdf")

() := MAXIMUM 2 FROM ()

() := MAXIMUM 0 FROM (1,2,3)

(5,4,4) := MAXIMUM 3 FROM (1,5,2,4,1,4)

9.14.4 First ... From (binary, right associative)

The first ... from operator expects a number (call it N) as its first argument and a list as its second
argument. It returns a list with the first N items from the argument list. The result is null if N is not a non-
negative integer. If the list is the result of a time-sorted query, then the returned items are the earliest in
time. If there are not enough items in the argument list, then as many as possible are returned. This means
that first 1 from x differs from first x if x is empty; the former returns () and the latter returns null. The
primary times of the argument are maintained. Its usage is:

<n:any-type> := FIRST <1:number> FROM <m:any-type>

(11,14) := FIRST 2 FROM (11,14,13,12)

(3) := FIRST 2 FROM 3

(null,1) := FIRST 2 FROM (null,1,2,null)

() := FIRST 2 FROM ()

9.14.5 Last ... From (binary, right associative)

The last ... from operator expects a number (call it N) as its first argument and a list as its second argument.
It returns a list with the last N items from the argument list. The result is null if N is not a non-negative
integer. If the list is the result of a time-sorted query, then the returned items are the latest in time. If there
are not enough items in the argument list, then as many as possible are returned. This means that last 1

Arden Syntax for Medical Logic Systems

Page 58 Health Level Seven © 1999. All rights reserved.

07/1999 Final Standard.

from x differs from last x if x is empty; the former returns () and the latter returns null. The primary times
of the argument are maintained. Its usage is:

<n:any-type> := LAST <1:number> FROM <m:any-type>

(13,12) := LAST 2 FROM (11,14,13,12)

(3) := LAST 2 FROM 3

(2,null) := LAST 2 FROM (null,1,2,null)

() := LAST 2 FROM ()

9.14.6 Increase (unary, right associative)

The increase operator returns a list of the differences between successive items in a homogeneous numeric,
time, or duration list. There is one fewer item in the result than in the argument; if the argument is an
empty list, then null is returned. The primary time of the second item in each successive pair is kept. Its
usage is:

<n:number> := INCREASE <m:number>

(4,-2,-1) := INCREASE (11,15,13,12)

() := INCREASE 3

null := INCREASE ()

<n: duration> := INCREASE <m:time>

(1 day) := INCREASE (1990-03-01,1990-03-02)

<n:duration> := INCREASE <m:duration>

(1 day) := INCREASE (1 day, 2 days)

9.14.7 Decrease (unary, right associative)

The decrease operator returns a list of the negative differences between successive items in a homogeneous
numeric, time, or duration list. There is one fewer item in the result than in the argument; if the argument is
an empty list, then null is returned. Decrease is the additive inverse of increase. The primary time of the
second item in each successive pair is kept. Its usage is:

<n:number> := DECREASE <m:number>

(-4,2,1) := DECREASE (11,15,13,12)

() := DECREASE 3

null := DECREASE ()

<n: duration> := DECREASE <m:time>

((-1) day) := DECREASE (1990-03-01,1990-03-02)

<n:duration> := DECREASE <m:duration>

((-1) day) := DECREASE (1 day, 2 days)

9.14.8 % Increase (unary, right associative)

The % increase operator has one synonym: percent increase. It returns a list of the percent increase
between items in successive pairs in a homogeneous number or duration list (the denominator is the first
item in each pair; if it is zero, then null is returned). The primary time of the second item in each
successive pair is kept. Its usage is:

<n:number> := % INCREASE <m:number>

(36.3636,-13.3333) := % INCREASE (11,15,13)

() := % INCREASE 3

null := % INCREASE ()

Arden Syntax for Medical Logic Systems

Health Level Seven © 1999. All rights reserved. Page 59

Final Standard 07/1999

<n:number> := % INCREASE <m:duration>

(100) := % INCREASE (1 day, 2 days)

9.14.9 % Decrease (unary, right associative)

The % decrease operator has one synonym: percent decrease. It returns a list of the percent decrease
between items in successive pairs in a homogeneous number or duration list (the denominator is the first
item in each pair, if it is zero, then null is returned). The primary time of the second item in each
successive pair is kept. Its usage is:

<n:number> := % DECREASE <m:number>

(-36.3636,13.3333) := % DECREASE (11,15,13)

() := % DECREASE 3

null := % DECREASE ()

<n:number> := % DECREASE <m:duration>

(-100) := % DECREASE (1 day, 2 days)

9.14.10 Earliest ... From (binary, right associative)

The earliest ... from operator expects a number (call it N) as its first argument and a list as its second
argument. It returns a list with the earliest N items from the argument list, in the order they appear in the
argument list. The result is null if N is not a non-negative integer. If any of the elements do not have
primary times, the result is null (the argument can always be qualified by where time of it is present, if
this is not desired behavior). If there are not enough items in the argument list, then as many as possible
are returned. This means that earliest 1 from x differs from earliest x if x is empty; the former returns ()
and the latter returns null. The primary times of the argument are maintained. Its usage is:

<n:any-type> := EARLIEST <1:number> FROM <m:any-type>

() := EARLIEST 2 FROM ()

<

9.14.11 Latest ... From (binary, right associative)

The latest ... from operator expects a number (call it N) as its first argument and a list as its second
argument. It returns a list with the latest N items from the argument list, in the order they appear in the
argument list. The result is null if N is not a non-negative integer. If any of the elements do not have
primary times, the result is null (the argument can always be qualified by where time of it is present, if
this is not desired behavior). If there are not enough items in the argument list, then as many as possible
are returned. This means that latest 1 from x differs from latest x if x is empty; the former returns () and
the latter returns null. The primary times of the argument are maintained. Its usage is:

<n:any-type> := LATEST <1:number> FROM <m:any-type>

() := LATEST 2 FROM ()

9.14.12 Index Extraction Transformation Operators

These operators behave similarly to their non-index extracting counterparts with the exception that they
return the value of the index of the element that matches the specified criteria rather than the element itself.
These operators do not maintain primary times.

9.14.12.1 Index Minimum ... From (binary, right associative)
The index minimum ... from operator has one synonym: index min ... from. It expects a number (call it N) as its
first argument and a homogeneous list of an ordered type as its second argument. It returns a list with the indices of
the N smallest items from the argument list, in the same order that they are in the second argument, and with any
duplicates preserved. The result is null if N is not a non-negative integer. If there are not enough items in the

Arden Syntax for Medical Logic Systems

Page 60 Health Level Seven © 1999. All rights reserved.

07/1999 Final Standard.

argument list, then as many indices as possible are returned. If there is a tie, then it selects the latest of those
elements that have a primary time. The primary times of the argument are not maintained. Its usage is:

<n:number> := INDEX MINIMUM <1:number> FROM <m:ordered>

(1,4) := INDEX MINIMUM 2 FROM (11,14,13,12)

(3,4,6) := INDEX MINIMUM 3 FROM (3,5,1,2,4,2)

null := INDEX MIN 2 FROM (3, "asdf")

(,1) := INDEX MINIMUM 2 FROM 3

() := INDEX MINIMUM 0 FROM (2,3)

9.14.12.2 Index Maximum ... From (binary, right associative)

The index maximum ... from operator has one synonym: index max ... from. It expects a number (call it
N) as its first argument and a homogeneous list of an ordered type as its second argument. It returns a list
with the indices of the N largest items from the argument list, in the same order that they are in the second
argument, and with any duplicates preserved. The result is null if N is not a non-negative integer. If there
are not enough items in the argument list, then as many indices as possible are returned. If there is a tie,
then it selects the latest of those elements that have a primary time. The primary times of the argument are
not maintained. Its usage is:

<n:number> := INDEX MAXIMUM <1:number> FROM <m:ordered>

(2,3) := INDEX MAXIMUM 2 FROM (11,14,13,12)

(2,3,5) := INDEX MAXIMUM 3 FROM (3,5,1,2,4,2)

null := INDEX MAX 2 FROM (3, "asdf")

(,1) := INDEX MAXIMUM 2 FROM 3

() := INDEX MAXIMUM 0 FROM (2,3)

9.14.12.3 First… From; Last… From

There are no INDEX extraction operator parallels for First … From and Last … From as these can be
generated using either the seqto operator (for First … From) or the seqto and count operators (for Last …
From). Thus if these functions are needed, use the following:

Index First x From y : 1 seqto x

Index Last x From y : (count(y)-x) seqto count(y)

9.15 Query Transformation Operator:

9.15.1 General Properties:

The query transformation operator does not follow the default list handling, or the default primary time
handling. It transforms a list, producing another list. If the list argument is a single item, then it is treated
as a list of length one. The result is always a list even if there is only one item (except if there is an error, in
which case the result is null).

The query transformation operator can only be applied to the result of a query, since it requires that a time
be associated with each item in the argument list. Null is returned if it is used on other data.

The query transformation operator may optionally be followed by of.

9.15.2 Interval (unary, right associative)

The interval operator returns the difference between the primary times of succeeding items in a list. It is
analogous to increase. The primary times of the argument are lost. Its usage is (assuming that data is the

Arden Syntax for Medical Logic Systems

Health Level Seven © 1999. All rights reserved. Page 61

Final Standard 07/1999

result of a query with these primary times: 1990-03-15T15:00:00, 1990-03-16T15:00:00, 1990-03-
18T21:00:00):

<n:duration> := INTERVAL <m:any-type>

(1 day, 2.25 days) := INTERVAL data

null := INTERVAL (3,4)

9.16 Numeric Function Operators

The numeric function operators are all unary functions that work with numbers. When an illegal operation
is attempted (for example, log 0) then null is returned.

9.16.1 Arccos (unary, right associative)

The arccos operator calculates the arc-cosine (expressed in radians) of its argument. Its usage is:

<n:number> := ARCCOS <n:number>

0 := ARCCOS 1

9.16.2 Arcsin (unary, right associative)

The arcsin operator calculates the arc-sine (expressed in radians) of its argument. Its usage is:

<n:number> := ARCSIN <n:number>

0 := ARCSIN 0

9.16.3 Arctan (unary, right associative)

The arctan operator calculates the arc-tangent (expressed in radians) of its argument. Its usage is:

<n:number> := ARCTAN <n:number>

0 := ARCTAN 0

9.16.4 Cosine (unary, right associative)

The cosine operator has one synonym: cos. It calculates the cosine of its argument (expressed in radians).
Its usage is:

<n:number> := COSINE <n:number>

1 := COSINE 0

9.16.5 Sine (unary, right associative)
The sine operator has one synonym: sin. It calculates the sine of its argument (expressed in radians). Its usage is:

<n:number> := SINE <n:number>

0 := SINE 0

9.16.6 Tangent (unary, right associative)

The tangent operator has one synonym: tan. It calculates the tangent of its argument (expressed in
radians). Its usage is:

<n:number> := TANGENT <n:number>

0 := TANGENT 0

9.16.7 Exp (unary, right associative)

The exp operator raises mathematical e to the power of its argument. Its usage is:

Arden Syntax for Medical Logic Systems

Page 62 Health Level Seven © 1999. All rights reserved.

07/1999 Final Standard.

<n:number> := EXP <n:number>

1 := EXP 0

9.16.8 Log (unary, right associative)

The log operator returns the natural logarithm of its argument. Its usage is:

<n:number> := LOG <n:number>

0 := LOG 1

9.16.9 Log10 (unary, right associative)

The log10 operator returns the base 10 logarithm of its argument. Its usage is:

<n:number> := LOG10 <n:number>

1 := LOG10 10

9.16.10 Int (unary, right associative)

The int operator returns the largest integer less than or equal to its argument (truncates towards negative
infinity). It is synonymous with floor (Section 9.16.11). Its usage is:

<n:number> := INT <n:number>

-2 := INT -1.5

-2 := INT -2.0

1 := INT (1.5)

9.16.11 Floor (unary, right associative)

The floor operator is synonymous with int. It returns the largest integer less than or equal to its argument
(truncates towards negative infinity).

9.16.12 Ceiling (unary, right associative)

The ceiling operator returns the smallest integer greater than or equal to its argument (truncates towards
positive infinity). Its usage is:

<n:number> := CEILING <n:number>

-1 := CEILING -1.5

-1 := CEILING -1.0

2 := CEILING 1.5

9.16.13 Truncate (unary, right associative)
The truncate operator removes any fractional part of a number (truncates towards zero). Its usage is:

<n:number> := TRUNCATE <n:number>

-1 := TRUNCATE -1.5

-1 := TRUNCATE -1.0

1 := TRUNCATE 1.5

9.16.14 Round (binary, right associative)

The round operator rounds a number to an integer.

For positive numbers: If the fractional portion of the operand is greater than or equal to 0.5, the operator
rounds to the next highest integer. Fractional portions less than 0.5 round to the next lowest integer.

Arden Syntax for Medical Logic Systems

Health Level Seven © 1999. All rights reserved. Page 63

Final Standard 07/1999

For negative numbers: If the absolute value of the fractional portion of the operand is greater than or equal
0.5, the operator rounds to the next lower negative integer. Fractional portions with absolute values less
than 0.5 round to the next highest integer.

Its usage is:

<n:number> := ROUND <n:number>

1 := ROUND 0.5

3 := ROUND 3.4

4 := ROUND 3.5

-3 := ROUND -3.5

-3 := ROUND -3.4

-4 := ROUND -3.7

9.16.15 Abs (unary, right associative)

The abs operator returns absolute value of its argument. Its usage is:

<n:number> := ABS <n:number>

1.5 := ABS (-1.5)

9.16.16 sqrt (unary, right associative)

The sqrt operator returns the square root of its argument. Because imaginary numbers are not supported,
the square root of a negative number results in null. Its usage is:

<n:number> := SQRT <n:number>

2 := SQRT 4

null := SQRT(-1)

9.16.17 As number (unary, non-associative)

The as number operator attempts to convert a string or Boolean to a number. If conversion to a number is
possible, the number is returned, otherwise null is returned. The primary time of the argument is
preserved. The usual use for this will be to convert a string which contains a valid number representation
i.e. "123" into the represented number. If the string does not contain a valid number then the result will be
null. Boolean values are translated at follows: Boolean TRUE is represented at 1 and Boolean FALSE is
represented at 0.

<n:number> := <n:numeric string> AS NUMBER;

5 := "5" AS NUMBER;

null := "xyz" AS NUMBER;

<n:number> := <n:Boolean> AS NUMBER;

1 := True AS NUMBER;

0 := False AS NUMBER;

<n:number> := <n:number> AS NUMBER;

6 := 6 AS NUMBER;

 (7, 8, 230, 4100, null, null, 1, 0, null, null, null) := ("7", 8,
"2.3E+2", 4.1E+3, "ABC", Null, True, False, 1997-10-31T00:00:00, now, 3
days) AS NUMBER;

():= () AS NUMBER;

Arden Syntax for Medical Logic Systems

Page 64 Health Level Seven © 1999. All rights reserved.

07/1999 Final Standard.

9.17 Time Function Operator

The time function operator does not follow the default primary time handling.

9.17.1 Time (unary, right associative)

The time operator returns the primary time (that is, time of occurrence) of the result of a value derived
from a query (see Section 8.9). Null is returned if it is used on data that has no primary time. The result of
time preserves the primary time of its argument; so time time x is equivalent to time x. Its usage is
(assuming that data is the result of a query with one element whose primary time is: 1990-03-
15T15:00:00):

<n:time> := TIME [OF] <n:any-type>

1990-03-15T15:00:00 := TIME OF data

1990-03-15T15:00:00 := TIME TIME data

null := TIME (3,4)

The inverse of the time operator (to set the primary time of a value) can be achieved by using time on the
left side of an assignment statement. For example:

TIME [OF] <n:any-type> := <n:time>;

TIME data1 := time data2;

10 LOGIC SLOT

10.1 Purpose

The logic slot uses data about the patient obtained from the data slot, manipulates the data, tests some
condition, and decides whether to execute the action slot. It is in this slot that most of the actual health
logic is obtained.

10.2 Logic Slot Statements

The logic slot is composed of a set of statements.

10.2.1 Assignment Statement

The assignment statement places the value of an expression into a variable. There are two equivalent
versions:

<identifier> := <expr> ;

LET <identifier> BE <expr> ;

<identifier> is an identifier; it represents the name of the variable. <expr> is a valid expression as defined
in Section 7.2.2.

Any reference to the identifier that occurs after the assignment statement will return the value that was
assigned from the expression (even if it is in another structured slot; for example, the action slot). A
subsequent assignment to the same variable will overwrite the value. If a variable is referred to before its
first assignment, null is returned (it is poor programming practice to depend on this).

The following variables cannot be re-assigned in the logic slot after they have been assigned in the data
slot: event (Section 11.2.2), mlm (Section 11.2.3), and interface (Section 11.2.12). Once defined in the
data slot, they should not change.

Arden Syntax for Medical Logic Systems

Health Level Seven © 1999. All rights reserved. Page 65

Final Standard 07/1999

After executing these statements, the value of variable var2 is 5:

 var1 := 1;

 var1 := 3;

 var2 := var1 + 2;

10.2.2 If-Then Statement

The if-then statement permits conditional execution based upon the value of an expression. It tests whether
the expression (<expr>) is equal to a single Boolean true. If it is, then a block of statements (<block>) is
executed. (A block of statements is simply a collection of valid statements possibly including other if-then
statements; thus the if-then statement is a nested structure.) If the expression is a list, or if it is any single
item other than true, then the block of statements is not executed. The flow of control then continues with
subsequent statements. The if-then statement has several forms:

10.2.2.1 Simple If-Then Statement

This form executes <block1> if <expr1> is true:

IF <expr1> THEN

<block1>

ENDIF;

10.2.2.2 If-Then-Else Statement

This form executes <block1> if <expr1> is true; otherwise it executes <block2>:

IF <expr1> THEN

<block1>

ELSE

<block2>

ENDIF;

10.2.2.3 If-Then-Elseif Statement

This form sequentially tests each of the expressions <expr1> to <exprN> (there may be any number of
them). When it finds one that is true, its associated block is executed. Once one block is executed, no
other expressions are tested, and no other blocks are executed. If none of the expressions is true, then
<blockE> is executed. The else <blockE> portion is optional. Its form is:

IF <expr1> THEN

<block1>

ELSEIF <expr2> THEN

<block2>

ELSEIF <expr3> THEN

<block3>

...

ELSEIF <exprN> THEN

<blockN>

ELSE

<blockE>

ENDIF;

Arden Syntax for Medical Logic Systems

Page 66 Health Level Seven © 1999. All rights reserved.

07/1999 Final Standard.

10.2.2.4 Treatment of Null

It is important to emphasize that non-true is different from false. That is, the else portion of the if-then-
else statement is executed whether the expression is false, or null, or anything other than true. Thus these
two if-then statements, which appear to be the same, produce different results when var1 is null.

IF var1 THEN

var2 := 0;

ELSE

var2 := 45;

ENDIF;

IF not(var1) THEN

var2 := 45;

ELSE

var2 := 0;

ENDIF;

To avoid the null problem, it is safer to test for existence first, then test for true.

IF var1 is Boolean THEN

IF var1 THEN

var2 := "var1 is true";

ELSE

var2 := "var1 is false";

ENDIF;

ELSE

var2 := "var1 is null or some other type";

ENDIF;

10.2.2.5 Treatment of Lists

Lists are always non-true; therefore using an expression that contains a list will always produce the same
negative result. Instead, one of the Boolean aggregation operators should be used: any, all, or no (see
Sections 9.12.13, 9.12.14, and 9.12.15). For example, to execute a statement if any of the elements in
Bool_list is true, use:

IF any(Bool_list) THEN

var2 := 0;

ENDIF;

10.2.3 Conclude Statement

The conclude statement ends execution in the logic slot. If the expression (<expr1>) in the conclude
statement is a single true then the action slot is executed immediately. Otherwise the whole MLM
terminates immediately. No further execution in the logic slot occurs regardless of the expression. There
may be more than one conclude statement in the logic slot, but only one will be executed in a single run of
the MLM. Its form is:

CONCLUDE <expr>;

The cautions for the if-then statement about null and list (in Section 10.2.2) also hold for the conclude
statement.

Arden Syntax for Medical Logic Systems

Health Level Seven © 1999. All rights reserved. Page 67

Final Standard 07/1999

If no conclude statement is executed, then the logic slot terminates after it executes its last statement, and
the action slot is not executed. In effect, the default is conclude false.

These are valid conclude statements:

CONCLUDE false;

CONCLUDE potas > 5.0;

10.2.4 Call Statement

The call statement permits nesting of MLMs. Given an MLM filename, the MLM can be called directly
with optional parameters and return zero or more results. Given an event definition, all the MLMs that are
normally evoked by that event can be called; the called MLMs can be given optional parameters and
optionally return results. Given an interface definition, the foreign function can be called directly with
optional parameters and return zero or more results. There are two basic forms, CALL and CALL…WITH,
(the pairs represent equivalent versions):

<var> := CALL <name>;

LET <var> BE CALL <name>;

<var> := CALL <name> WITH <expr>;

LET <var> BE CALL <name> WITH <expr>;

(<var>, <var>, …) := CALL <name> WITH <expr>;

LET (<var>, <var>, …) BE CALL <name> WITH <expr>;

<var> := CALL <name> WITH <expr>, …, <expr>;

LET <var> BE CALL <name> WITH <expr>, …, <expr>;

(<var>, <var>, …) := CALL <name> WITH <expr>, …, <expr>;

LET (<var>, <var>, …) BE CALL <name> WITH <expr>, …, <expr>;

10.2.4.1 Commas

Because arguments to a call are separated by commas (see argument, Section 11.2.4), and comma is also
an operator (list construction, see Section 9.2.1), there is an apparent ambiguity. This ambiguity is resolved
in favor of comma as a parameter separator. Any argument expression containing the comma operator or
another operator of the same or lower precedence must be enclosed in parentheses. For example,

This call passes three arguments:

x := CALL xxx with (a,b),(c merge d),e+f;

This call passes two arguments:

y := CALL yyy WITH expr1, expr2;

This call appears similar to the one above, but it only passes one argument :

z := CALL zzz WITH (expr3, expr4);

10.2.4.2 <name>

<name> is an identifier that must represent either a valid MLM variable as defined by the MLM statement
in the data slot (see Section 11.2.3), a valid event variable as defined by the event statement in the data slot
(see Section 11.2.2), or a valid interface variable as defined by the interface statement in the data slot (see
Section 11.2.12).

Arden Syntax for Medical Logic Systems

Page 68 Health Level Seven © 1999. All rights reserved.

07/1999 Final Standard.

10.2.4.3 <expr>

<expr>s are optional parameters, which may be of any type, including list and null. Primary times
associated with the parameter are maintained.

10.2.4.4 <var>

<var> is an identifier that represents the local variable that will be assigned the result.

10.2.4.5 MLM Call

If <name> is an MLM variable, then when the call statement is executed, the main MLM (that is, the one
issuing the call) is interrupted, and the named MLM is called. If the called MLM has argument
statement(s) in its data slot (see Section 11.2.4), then the values of the <expr>s are assigned. If a called
MLM's argument statement has more variables (parameters) than sent by the call statement, then null is
assigned to the extra variable(s). If the call statement passes more variables (parameters) than the called
MLM is expecting, the additional parameters are silently dropped. The called MLM is executed, and when
it terminates, execution of the main MLM resumes. If the called MLM concludes true and there is a return
statement in the called MLM's action slot (see Section 12.2.2), then the value of its expression is assigned
to <var>. If the return statement has more values than the calling MLM can accept, then the extra return
values are silently dropped. If the return statement has fewer values than the calling MLM is expecting,
then the extra return values are null. If there is no return statement, or if the called MLM concludes false,
then null is assigned to <var>. Examples:

var1 := CALL my_mlm1 WITH param1, param2;

(var2, var3, var4) := CALL my_mlm2 WITH param1, param2;

10.2.4.6 Event Call

If <name> is an event variable, then execution is similar. The main MLM is interrupted, and all the MLMs
whose evoke slots refer to the named event are executed (see Section 13). They each receive the
parameters if there are any via their argument statement(s). The results of all called MLM's return
statements are concatenated together into a list; called MLMs with no return statement and called MLMs
that return a single null are not included in the result. The order of the returned values is implementation
dependent. The result is assigned to <var>, and execution continues. <var> will always be a list, even if it
has one item. Example:

var1 := CALL my_event WITH param1, param2;

10.2.4.7 Interface Call

If <name> is an INTERFACE variable, then when the call statement is executed, the MLM (that is, the one
issuing the call) is interrupted, and the named INTERFACE is called. If the called INTERFACE functions
accept variables (parameters), then the values of the <expr>s are assigned. If a called INTERFACE's
function expects more variables (parameters) than sent by the call statement, then null is assigned to the
extra variable(s). The called function is executed, and when it finishes, execution of the MLM resumes. If
the called function returns one or more values, then the values are assigned to the <var>s. If the function
returns more values than the calling MLM can accept, then the extra return values are silently dropped. If
the INTERFACE function returns fewer values than the calling MLM is expecting, then the extra values are
null. If the function does not return any values, then null is assigned to <var>. Examples:

var1 := CALL my_interface_function1 WITH param1, param2;

(var1, var2, var3) := CALL my_interface_function2 WITH param1, param2;

10.2.4.8 Example: Valid MLM Statement and Call Statement

Here is a valid call statement:

Arden Syntax for Medical Logic Systems

Health Level Seven © 1999. All rights reserved. Page 69

Final Standard 07/1999

/* Define find_allergies MLM */

find_allergies := MLM 'find_allergies' from institution "ABC Hospital";

/* Lists two medications and their allergens */

med_orders:= ("PEN-G", "aspirin");

med_allergens:= ("penicillin", "aspirin");

/* Lists three patient allergies and their reactions */

patient_allergies:= ("milk", "codeine", "penicillin");

patient_reactions:= ("hives", NULL, "anaphylaxis");

/* Passes 4 arguments and receives 3 lists as values */

(meds, allergens, reactions):= call find_allergies with med_orders,

med_allergens,

patient_allergies,

patient_reactions;

10.2.4.9 Example: Valid Interface Statement and Call Statement

Here is a valid interface statement:

/* Define find_allergies external function*/

find_allergies := INTERFACE
{\\RuleServer\AllergyRules\my_institution\find_allergies.exe};

/* Lists two medications and their allergens */

med_orders:= ("PEN-G", "aspirin");

med_allergens:= ("penicillin", "aspirin");

/* Lists three patient allergies and their reactions */

patient_allergies:= ("milk", "codeine", "penicillin");

patient_reactions:= ("hives", NULL, "anaphylaxis");

/* Passes 4 arguments and receives 3 lists as values */

(meds, allergens, reactions):= call find_allergies with med_orders,

med_allergens,

patient_allergies,

patient_reactions;

10.2.5 While Loop

A simple form of looping is provided by the while loop. Its form is:

WHILE <expr> DO

<block>

ENDDO;

The while loop tests whether an expression (<expr>) is equal to a single Boolean true (similar to the
conditional execution introduced in the if ... then syntax - see Section 10.2.2). If it is, the block of
statements (<block>) is executed repeatedly until <expr> is not true. If <expr> is not true, the block is
not executed.

Authors should take care when using while loops in MLMs, since it is possible to create infinite loops. It is
the author's responsibility, not the compiler, to avoid infinite looping.

Here is an example:

/* Initialize variables */

a_list:= ();

Arden Syntax for Medical Logic Systems

Page 70 Health Level Seven © 1999. All rights reserved.

07/1999 Final Standard.

m_list:= ();

r_list:= ();

num:= 1;

/* Checks each allergen in the medications to determine if the patient is
allergic to it */

while num <= (count med_allergen) do

allergen:= last(first num from med_allergens);

allergy_found:= (patient_allergies = allergen);

reaction:= patient_reactions where allergy_found;

medication:= med_orders where (med_allergens = allergen);

/* Adds the allergen, medication, and reaction to variables that will */

/* be returned to the calling MLM */

If any allergy_found then

a_list:= a_list, allergen;

m_list:= m_list, medication;

r_list:= r_list, reaction;

endif;

/* Increments the counter that is used to stop the while-loop */

num:= num + 1 ;

enddo;

10.2.6 For Loop

Another form of looping is provided by the for loop. Its form is:

FOR <identifier> in <expr> DO

<block>

ENDDO;

The <expr> will usually be a list generator. If <expr> is empty or null, the block is not executed.
Otherwise, the block is executed with the <identifier> taking on consecutive elements in <expr>. The
<identifier> cannot be assigned to inside the <block> (the compiler must produce a compilation error if
this is attempted). After the enddo, the <identifier> becomes undefined and its value should not be used.
A compiler may flag this as an error.

Here is an example:

/* Initialize variables */

a_list:= ();

m_list:= ();

r_list:= ();

/* Checks each allergen in the medications to determine if the patient is
allergic to it */

for allergen in med_allergens do

allergy_found:= (patient_allergies = allergen);

reaction:= patient_reactions where allergy_found;

medication:= med_orders where (med_allergens = allergen);

/* Adds the allergen, medication, and reaction to variables that will */

/* be returned to the calling MLM */

If any allergy_found then

a_list:= a_list, allergen;

Arden Syntax for Medical Logic Systems

Health Level Seven © 1999. All rights reserved. Page 71

Final Standard 07/1999

m_list:= m_list, medication;

r_list:= r_list, reaction;

endif;

enddo;

Here is an example using a set number of iterations:

for i in (1 seqto 10) do

…

enddo;

10.3 Logic Slot Usage

The general approach in the logic slot is to use the operators and expressions to manipulate the patient data
obtained in the data slot in order to test for some condition in the patient. Once sufficient data, positive or
negative, has been amassed the conclude statement is executed. If there is no conclude statement in the
logic slot, then it will never conclude true, and the action slot will never be executed. Some logic slots are
simple (for example, test whether the serum potassium is greater than 5.0), and some are complex (for
example, calculate a diagnosis score).

11 DATA SLOT

11.1 Purpose

The purpose of the data slot is to define local variables used in the rest of the MLM. The goal is to isolate
institution-specific portions to one slot. Within the data slot, the institution-specific portions are placed in
mapping clauses (see Section 7.1.8) so that the institution-specific part does not interfere with the MLM
syntax.

11.2 Data Slot Statements:

The following variables cannot be re-assigned in the logic slot after they have been assigned in the data
slot: event (Section 11.2.2), mlm (Section 11.2.3), and interface (Section 11.2.12). Once defined in the
data slot, they should not change.

11.2.1 Read Statement

The main source of data is the patient database. Each institution will need to do its own queries; databases
may be hierarchical, relational, object oriented, etc. The vocabulary used to represent entities in the
database will vary from institution to institution. (No attempt was made to select a standard vocabulary in
this version of this specification.) The read statement is designed to isolate those parts of a database query
that are specific to an institution from those parts that are universal.

There is no restriction that a read statement must derive its input from the patient database. A read
statement might access a medical dictionary, for example; or it might interactively request information from
somebody (and, if the compiler does on-demand optimization, the interaction might happen only if needed).
How this is done is implementation defined.

11.2.1.1

The database query itself is divided into three parts: the aggregation or transformation operator, the time
constraint, and the rest of the query. For backward compatibility, parentheses may be placed around the
<mapping> WHERE <constraint> part. The general form of the read statement is (there are two
equivalent versions):

Arden Syntax for Medical Logic Systems

Page 72 Health Level Seven © 1999. All rights reserved.

07/1999 Final Standard.

<var> := READ <aggregation> <mapping> WHERE <constraint>;

LET <var> BE READ <aggregation> <mapping> WHERE <constraint>;

11.2.1.2 Definitions

<var> is a variable that is assigned that result of the query.

<aggregation> is an aggregation operator (see Section 9.12) or a transformation operator (see Section
9.14), which is applied after the query constraints. If <aggregation> is omitted, then all the data that
satisfy the constraints are returned. Only the following aggregation and transformation operators are
permitted:

exist

sum

average

avg

minimum

min

maximum

max

last

first

earliest

latest

minimum ... from

min ... from

max ... from

maximum ... from

last ... from

first ... from

earliest ... from

latest ... from

In the default sort ordering, first and last are equivalent to earliest and latest.

<constraint> is any occur comparison operator (see Section 9.7) with it (or they) as the left argument. In
this case it refers to the body of the query. The comparison operator specifies the time constraints for the
query. If <constraint> is omitted, then there are no constraints on time. Examples of valid constraints are:

they occurred within the past 3 days

it occurred before the time of surgery

<mapping> is a valid mapping clause (see Section 7.1.8), which contains the institution-specific part of the
query enclosed in curly brackets. It contains any vocabulary terms and any query syntax that is necessary
in the institution to perform a query, except that the aggregation and time constraints are missing.
<mapping> is required.

11.2.1.3 Examples

These are valid read statements (the portions within curly brackets are arbitrary):

var1 := READ {select potassium from results where specimen = `serum`};

var1 := READ latest {select potassium from results};

Arden Syntax for Medical Logic Systems

Health Level Seven © 1999. All rights reserved. Page 73

Final Standard 07/1999

LET var1 BE READ {select potassium from results} WHERE it occurred within the
past 1 week;

var1 := READ earliest 3 from {select potassium from results} WHERE it
occurred within the past 1 week;

11.2.1.4 Effect

The effect of the read statement is to execute a query, mapping the data in the patient database to a variable
that can be used elsewhere in the MLM. The execution of the read statement will be institution-specific.
The time constraints must be added to whatever other constraints are within the mapping clause, and the
aggregation or transformation operator must also be added to complete the query.

11.2.1.5 Result Type

The result of a query includes the primary time for each item that is returned (see Section 8.9). If
<aggregation> is an aggregation operator, then the query returns a single item. If <aggregation> is a
transformation operator or it is absent, then the query returns a list. Thus even if the query requests an
entity that is usually singular, such as the birthdate of the patient, a list is assumed unless an aggregation
operator is applied (but the list might contain only a single value, in which case it would be
indistinguishable from a scalar). The reason for this is that a patient database may have multiple values for
a birthdate; it may be that the latest one is assumed to be correct. For example,

birthdate := READ latest {select birthdate from demographics};

11.2.1.6 Multiple Variables

A query may return more than one result at a time. This is useful for batteries of tests in order to keep the
corresponding tests within one blood sample coordinated. The two versions are equivalent (the parentheses
around the where are optional):

(<var>, <var>, ...) := READ <aggregation> <mapping> WHERE <constraint> ;

LET (<var>, <var>, ...) BE READ <aggregation> (<mapping> WHERE <constraint>);

This is the only situation where a "list of lists" is allowed. The where constraint (if any) is applied
separately to each of the resulting lists. Queries must always return the same number of elements, with the
same primary times.

11.2.1.7

There may be one or more <var> within the parentheses. <aggregation>, <constraint>, and <mapping>
are defined as above. The fact that multiple entities are being queried at once is represented in the
institution-specific part, <mapping>. The <aggregation> and <constraint> are performed separately on
the individual variables; it is institution-defined whether the <mapping> returns all the values with
matching primary times. For example,

/* in this example three anion gaps are calculated */

(Na,Cl,HCO3) := read last 3 from {select sodium, chloride, bicarb from
electro};

anion_gap := Na - (Cl + HCO3) ;

11.2.1.8

The order in which read mappings are evaluated is undefined, except that an implementation must
guarantee that a read mapping is evaluated before the first time that its value is needed. An implementation
may optimize code to avoid executing a read mapping, even if the read mapping has side effects.

11.2.2 Event Statement

The event statement assigns an institution-specific event definition to a variable. An event can be an
insertion or update in the patient database, or any other medically relevant occurrence. The variable is

Arden Syntax for Medical Logic Systems

Page 74 Health Level Seven © 1999. All rights reserved.

07/1999 Final Standard.

currently used in the evoke slot (see Section 13), as part of the call statement to call other MLMs (see
Section 10.2.4), and as a Boolean value in a logic or action slot. There are two equivalent versions:

<var> := EVENT <mapping>;

LET <var> BE EVENT <mapping>;

11.2.2.1 Definitions

 <var> is a variable that represents the event to be defined. It can only be used in the evoke slot or as part
of a call statement.

<mapping> is a valid mapping clause (see Section 7.1.8) which contains the institution-specific event
definition. How the event is defined and used is up to the institution.

The variable that represents the event can be treated like a Boolean in the logic or action slots.

The time operator (see Section 9.17) can be applied to an event variable. It yields the clinically relevant
time of the event. This may be different from the eventtime variable, which refers to the time that the
event was recorded in the database (see Section 8.4.4).

The order in which event mappings are evaluated is undefined, except that an implementation must
guarantee that an event mapping is evaluated before the first time that its value is needed.

11.2.2.2 Example:

event1 := EVENT {storage of serum potassium};

11.2.3 MLM statement

The MLM statement assigns a valid mlmname to a variable. That variable is currently used only as part of
the call statement to call another MLM, as defined in Section 10.2.4. There are two basic forms (the pairs
represent equivalent versions):

<var> := MLM <term>;

LET <var> BE MLM <term>;

<var> := MLM <term> FROM INSTITUTION <string>;

LET <var> BE MLM <term> FROM INSTITUTION <string>;

11.2.3.1 Definitions

<var> is a variable that represents the MLM to be called. It can only be used as part of a call statement.

<term> is a valid constant term as defined in Section 7.1.7. It is the mlmname of the MLM to be called.
mlm_self (case insensitive) is a special constant that represents the name of the current MLM.

<string> is a valid constant string as defined in Section 7.1.6. If specified, it is the institution name found
in the institution slot of the MLM to be called.

If the institution is specified, then a unique MLM is found using the institution name, the mlmname, and
the latest version number. If the institution is not specified, then a unique MLM is found using the same
institution as the main (calling) MLM, the mlmname, the MLM's validation, and the latest version number.
Although the exact form of the version is institution-specific, within an institution it is possible to
determine the latest version of an MLM (see Section 6.1.4).

11.2.3.2 Examples:

mlm1 := MLM 'mlm_to_be_called';

mlm2 := MLM 'diagnosis_score' FROM INSTITUTION "LDS Hospital";

Arden Syntax for Medical Logic Systems

Health Level Seven © 1999. All rights reserved. Page 75

Final Standard 07/1999

11.2.4 Argument Statement

The argument statement is used by an MLM that is called by another MLM, as defined in Section 10.2.4. If
the main MLM passes parameters to the called MLM, then the called MLM retrieves the parameters via the
argument statement. The argument statements access the corresponding passed arguments. Thus, the first
variable refers to the first passed argument, the second variable to the second argument, etc. If the number
of variables is greater than the number of arguments passed from the CALL, null is assigned to the extra
left-hand-side variable(s). If the MLM is evoked instead of called, all the arguments are treated as null
(just like any other uninitialized variable). There are two basic forms (the pairs represent equivalent
version). One receives a single parameter, and the other receives multiple parameters:

<var> := ARGUMENT;

LET <var> BE ARGUMENT;

(<var1>,<var2>,…) := ARGUMENT;

LET (<var1>,<var2>,…) BE ARGUMENT;

<var> is a variable that is assigned whatever expression followed with in the main MLM's call statement.
If there was no such expression, or if the MLM was not called by another MLM, then null is assigned.

11.2.4.1 Example:

In the calling MLM:

var1 := CALL my_mlm WITH param1, (item1, item2);

In the called MLM, named "my_mlm":

(arg1, list1) := ARGUMENT;

11.2.5 Message Statement

The message statement assigns an institution-specific message (for example, an alert) to a variable. It
allows an institution to write coded messages in the patient database (see Section 12.2.1). There are two
equivalent versions:

<var> := MESSAGE <mapping>;

LET <var> BE MESSAGE <mapping>;

<var> is a variable that represents the message to be defined. It can only be used in a write statement.

<mapping> is a valid mapping clause (see Section 7.1.8), which contains the message definition. How the
message is defined and used is up to the institution.

11.2.5.1 Example:

message1 := MESSAGE {pneumonia~23 45 65};

11.2.6 Destination Statement

The destination statement assigns an institution-specific destination to a variable. It allows one to write a
message to an institution-specific destination (see Section 12.2.1). There are two equivalent versions:

<var> := DESTINATION <mapping>;

LET <var> BE DESTINATION <mapping>;

<var> is a variable that represents the destination to be defined. It can only be used in a write statement.

<mapping> is a valid mapping clause (see Section 7.1.8) that represents an institution-specific destination.
How the destination is defined and used is up to the institution.

Arden Syntax for Medical Logic Systems

Page 76 Health Level Seven © 1999. All rights reserved.

07/1999 Final Standard.

11.2.6.1 Example

In this example, the destination is an electronic mail address:

destination1 := DESTINATION {email: user@cuasdf.bitnet};

destination2 := DESTINATION { attending_physician(Pt_id) };

destination3 := DESTINATION { "primary physician email" };

11.2.7 Assignment Statement

The assignment statement, defined in Section 10.2.1, is also permitted in the data slot.

11.2.8 If-Then Statement

The if-then statement, defined in Section 10.2.2, is also permitted in the data slot.

11.2.9 Call Statement

The call statement, defined in Section 10.2.4, is also permitted in the data slot.

11.2.10 While Loop

The while loop, defined in Section 10.2.5, is also permitted in the data slot.

11.2.11 For Loop

The for loop, defined in Section 10.2.6, is also permitted in the data slot.

11.2.12 Interface Statement

The interface statement assigns an institution-specific foreign function interface definition to a variable.
The interface statement permits specification of a foreign function, i.e., a function written in another
programming language. Sometimes medical logic requires information not directly available from the
database (via read statements). It may be desirable to call operating system functions or libraries obtained
from other vendors. A foreign function, when specified, can then be called with the call statement (see
Section 10.2.4). Curly braces ({}) are used to specify the foreign function. The specification within the
curly braces is implementation specific. There are two equivalent versions:

<var> := INTERFACE <mapping>;

LET <var> BE INTERFACE <mapping>;

<var> is a variable that represents the interface to be defined. It can only be used as part of a call
statement.

<mapping> is a valid mapping clause (see Section 7.1.8) which contains the institution-specific event
definition. How the function interface is defined and used is up to the institution.

11.2.12.1 Example:

The implementation within the {}-braces shows that a string (char*) will be returned when the third-party
API (ThirdPartyAPI) is used to call the drug-drug interaction function (DrugDrugInteraction). The
function expects that two medication strings (char*,char*) will be passed.

data:

/* Declares the third-party drug-drug interaction function */

Arden Syntax for Medical Logic Systems

Health Level Seven © 1999. All rights reserved. Page 77

Final Standard 07/1999

func_drugint := INTERFACE {char* ThirdPartyAPI :
 DrugDrugInteraction (char*, char*)};

logic:

/* Calls the drug-drug interaction function */

alert_text := call func_drugint with "terfenadine", "erythromycin";

11.3 Data Slot Usage:

The data slot is used to map institution-specific entities to variables used locally in the MLM. Keeping the
mappings in one slot facilitates modifying an MLM for use in another institution.

Although the data slot can perform assignment statements and if-then statements like the logic slot, it is
recommended that most of the logic be left in the logic slot. For example, it would be possible to write an
MLM with all its mappings and health logic in the data slot, leaving only a simple conclude statement in
the logic slot; but this defeats the purpose of separating the data slot and the logic slot. Assignment
statements and if-then statements should be used in the data slot only where necessary to support database
queries (for example, to calculate a time constraint or to handle details of database semantics, such as
handling missing data).

12 ACTION SLOT

12.1 Purpose

Once the MLM has concluded that the condition specified in the logic slot holds true, the action slot is
executed, performing whatever actions are appropriate to the condition. Typical actions include sending a
message to a health care provider, adding an interpretation to the patient record, returning a result to a
calling MLM, and evoking other MLMs. Good programming practice is for an MLM's action slot to
contain only return statements, or to contain only call and write statements. If an MLM is called from an
action slot (see Section 12.2.4) or evoked by an external event (see Section 13), the only effect of a return
statement is to terminate execution of the action slot.

12.2 Action Slot Statements:

12.2.1 Write Statement

The write statement is the main statement in the action slot. It sends a text or coded message (for example,
an alert) to a destination. It has several forms:

WRITE <expr>;

WRITE <expr> AT <destination>;

WRITE <message>;

WRITE <message> AT <destination>;

<expr> is any valid expression, which usually contains text to be read by the health care provider or
variables defined in the logic slot.

<destination> is a destination variable as defined in Section 11.2.6. The format and implementation of the
destination is institution-specific. Typical destinations include the patient record, a printer, databases, and
electronic mail addresses. When the destination is omitted, the message is sent to the default destination.
This is generally the health care provider or the patient record, but the implementation is institution-
specific.

Arden Syntax for Medical Logic Systems

Page 78 Health Level Seven © 1999. All rights reserved.

07/1999 Final Standard.

<message> is a message variable as defined in Section 11.2.5. The message variable permits institutions to
write institution-specific coded MLM messages to databases that will not accommodate the <expr> form.

The effect of the write statement is to send the specified message either to the default destination (which is
usually a health care provider or the patient record) or the destination that is specified.

Within a single MLM, the effect of grouping write statements is unspecified, and depends on the
implementation of the syntax.

If an MLM is called by another MLM's action block (see Section 12.2.4), its write statements are output as
a separate group from the calling MLM's. However, the order of the groupings is unspecified and depends
on the implementation of the syntax.

12.2.1.1 Examples<expr>

In these examples, serum_pot is a variable assigned in the logic slot, email_dest is a destination variable
defined in the data slot, and a_message is a message variable defined in the data slot.

WRITE "the patient's potassium is " || serum_pot;

WRITE "this is an email alert" AT email_dest;

WRITE a_message;

12.2.1.2 Examples<message>

An institution can store coded messages without using the message variable. For example, the following
message could be stored not as a free text string but as a unique code that symbolizes the message along
with a single field that holds the serum potassium value, which is variable:

WRITE "the patient's potassium is " || serum_pot;

WRITE CK0023 || serum_pot;

CK0023 would be the institution-specific code representing "the patient's potassium is".

The message must be explicitly assigned to the institution-specific code before the code is used in a write
statement. Generally, this assignment should take place in the data slot.

12.2.2 Return Statement

The return statement is used in MLMs that are called by other MLMs. It returns a result back to the calling
MLM; the result is assigned to the variable in the call statement (see Section 10.2.4). One or more results
can be returned by the MLM. Its form is:

RETURN <expr>;

RETURN <expr>, ... , <expr>;

<expr> is any valid expression, which may be a single item or a list. Primary times are maintained.

When a return statement is executed, no further statements in the MLM are executed.

12.2.2.1 Examples:

RETURN (diagnosis_score,diagnosis_name);

RETURN diagnosis_score, diagnosis_name;

The first example returns one expression, which is a list. The second example returns two expressions.

Arden Syntax for Medical Logic Systems

Health Level Seven © 1999. All rights reserved. Page 79

Final Standard 07/1999

12.2.3 If-then Statement

The if-then statement, defined in Section 10.2.2, is also permitted in the action slot.

12.2.4 Call Statement

The call statement in the action slot permits an MLM to call other MLMs conditionally based upon the
conclusion in the logic slot. It is similar to the call statement in the logic slot defined in Section 10.2.4; the
arguments can be accessed with the argument statement in Section 11.2.4. Given an mlmname, the MLM
can be called directly with an optional delay. Given an event definition, all the MLMs that are normally
evoked by that event can be called with an optional delay. If the call statement is used to evoke an event,
any arguments are ignored. Its forms are:

CALL <name>;

CALL <name> DELAY <duration>;

CALL <name> WITH <expr>;

CALL <name> WITH <expr> DELAY <duration>;

CALL <name> WITH <expr>, ..., <expr>;

CALL <name> WITH <expr>, ..., <expr> DELAY <duration>;

<name> is an identifier that must represent either a valid MLM variable as defined by an MLM statement
in the data slot (see Section 11.2.3), or a valid event variable as defined by an event statement in the data
slot (see Section 11.2.2).

<duration> is a valid expression whose value is a duration.

12.2.4.1 Operation

If <name> is an MLM variable, then when the main MLM terminates, the named MLM is called. If
<name> is an event variable, then all the MLMs whose evoke slots refer to the named event are executed
(see Section 13). If a delay is present, then the execution of the called MLMs is delayed by the specified
duration. Whereas the call statement in the logic slot is synchronous, the call statement in the action slot is
asynchronous. The order of execution of called MLMs is implementation dependent.

12.2.4.2 Example
(where mlmx has been assigned a suitable value in the data slot, say by mlmx := MLM 'my_mlm'):

CALL mlmx DELAY 3 days ;

12.2.5 WHILE Loop

The while loop, defined in Section 10.2.5, is also permitted in the action slot

12.2.6 FOR Loop

The for loop, defined in Section 10.2.6, is also permitted in the action slot.

12.3 Action Slot Usage

The action slot is usually simple, containing a single message to be written or a single value to be returned
to a calling MLM. Multiple actions can be performed by listing several action statements. The slot can be
made more complex by using its if-then statement to select among alternative actions. While this is useful,
it is recommended that the amount of health logic in the action slot be kept to a minimum.

Arden Syntax for Medical Logic Systems

Page 80 Health Level Seven © 1999. All rights reserved.

07/1999 Final Standard.

13 EVOKE SLOT

13.1 Purpose

The evoke slot defines how an MLM may be triggered. An MLM may be triggered by any of the
following:

13.1.1 Occurrence of Some Event

For example, on the storage of a serum potassium value in the patient database, in order to check for values
that are far out of range.

13.1.2 A Time Delay After an Event

For example, five days after ordering gentamicin for a patient, in order to check renal function.

13.1.3 Periodically After an Event

For example, every five days after ordering gentamicin for a patient, in order to check renal function over a
period of time.

13.2 Events

Events are distinct from data. An event may be an update or insertion in the patient database, a medically
relevant occurrence, or an institution-defined occurrence. Examples include the storage of a serum
potassium level, the ordering of a medication, the transferring of a patient to a new bed, and the recording
of a new address for a patient.

13.2.1 Event Properties

The main attribute of an event is the time that it occurred, which must be an instant in time. Events have no
values. Note the distinction between events and data. Data have values and have primary times, which are
the times that are medically most relevant. For example, a serum potassium result may have a value of 5.0
and a primary time that is the time that it was drawn from the patient. But the storage of serum potassium
event has no value, and its time is the time that the potassium was stored in the patient database.

13.2.2 Time of Events

The time operator (see Section 9.17) applied to an event results in the time that the event occurred. For
example, time of storage_of_potassium returns the time that the potassium was stored. This value might
be different from the time of the corresponding data value that is retrieved by a read mapping (the data
value typically uses a clinically relevant time, which would often be different from the time of storing the
data). Eventtime (see Section 8.4.4) is the time of the event that evoked the MLM.

13.2.3 Declaration of Events

Events are declared in the data slot as defined in Section 11.2.2.

Arden Syntax for Medical Logic Systems

Health Level Seven © 1999. All rights reserved. Page 81

Final Standard 07/1999

13.3 Evoke Slot Statements:

13.3.1 Simple Trigger Statement

A simple trigger statement specifies an event or a set of events. When any of the events occurs, the MLM
is triggered. Its form is:

<event-expr>

<event-expr> is an expression that contains only event variables as defined in Section 11.2.2, the or
operator (see Section 9.4.1), the any operator (see Section 9.12.13), and parentheses. The keyword call
may also be present, to indicate that the MLM may be called by another MLM.

13.3.1.1 Operation

Although events do not have values, they are used in this statement as if they were syntactically Boolean.
Thus one ends up with a statement like this: event1 OR event2 OR event3. The MLM is triggered
whenever an event occurs and any of the evoke statements evaluate to true. If more than one event occurs,
the MLM may be triggered. No additional trigger criteria must be satisfied for the MLM to be evoked.

13.3.1.2 Examples

In the following examples, all the variables are event variables defined in the data slot.

penicillin_storage

penicillin_storage OR cephalosporin_storage

ANY OF (penicillin_storage,cephalosporin_storage,aminoglycoside_storage)

data:

penicillin_storage := event {store penicillin order}

cephalosporin_storage := event {store cephalosporin order}

;;

evoke:

penicillin_storage OR

cephalosporin_storage;;

13.3.2 Delayed Trigger Statement
A delayed trigger statement permits the MLM to be triggered some time after an event occurs. Its basic form is
shown first, followed by a more specific example of the basic form:

<time-expr>

<duration-expr> AFTER TIME <event>

<time-expr> is an expression that contains only times expressed as time constants (see Section 7.1.5) or as
the time operator (see Section 9.17) applied to event variables (see Section 11.2.2); durations expressed as
duration operators (see Section 9.11) applied to number constants (see Section 7.1.4); and the after
operator (see Section 9.10.1).

<duration-expr> is a duration constant formed by using a number constant with a duration operator.

<event> is an event variable.

Arden Syntax for Medical Logic Systems

Page 82 Health Level Seven © 1999. All rights reserved.

07/1999 Final Standard.

13.3.2.1 Operation

The MLM is triggered at the time specified in the delayed trigger statement. This is usually some specified
duration after the occurrence of an event. This statement can also be used to trigger an MLM once on a
particular date using a time constant.

13.3.2.2 Examples

In the following examples, all variables are event variables:

3 days after time of penicillin_storage

1992-01-01T00:00:00

13.3.3 Periodic Trigger Statement

A periodic trigger statement permits the MLM to be triggered at specified time intervals after an event
occurs. The cycles may continue for a specified duration, and they may be terminated by a Boolean
condition. It has two forms:

EVERY <duration-expr> FOR <duration-expr> STARTING <time-expr>

EVERY <duration-expr> FOR <duration-expr> STARTING <time-expr> UNTIL
<Boolean-expr>

<duration-expr> is a duration constant formed by using a number constant (see Section 7.1.4) with a
duration operator (see Section 9.11).

<time-expr> is a time expressed as a time constant (see Section 7.1.5) or as the time operator (see Section
9.17) applied to an event variable (see Section 11.2.2).

<Boolean-expr> is any valid expression. It is usually a Boolean expression that becomes true when the
MLM triggering should stop.

13.3.3.1 Operation

The MLM is first triggered at the time specified after the starting word. It is then triggered repeatedly in
cycles of length equal to the duration specified after the every word. These cycles continue for the duration
specified after the for word. The for duration is inclusive, so every 1 day for 1 day starting 3 days after
time of event1 would trigger the MLM twice: at three days and at four days after the event.

13.3.3.2 Until

If there is an until clause, then it is evaluated as soon as the MLM is triggered; the clause may contain
references to the patient database unrelated to the event. If it is true then the MLM exits immediately, and
no further triggering occurs. Otherwise, the MLM is executed, and it is triggered again after the every
duration (assuming the for duration has not run out).

13.3.3.3 Examples

In the following examples, variables beginning with event are event variables:

every 1 day for 14 days starting 1992-01-01T00:00:00

every 1 day for 14 days starting time of event1

every 2 hours for 1 day starting 5 hours after the time of event2

every 1 week for 1 month starting 3 days after the time of event3 until
last(serum_potassium) > 5.0

Arden Syntax for Medical Logic Systems

Health Level Seven © 1999. All rights reserved. Page 83

Final Standard 07/1999

13.3.4 Where Trigger Statement

A where trigger statement contains a simple trigger statement along with a where phrase that provides
additional criteria that must be satisfied for the MLM to be evoked. Its form is the same as the simple
trigger statement except that the event variables in <event-expr> may be replaced with:

<event> WHERE <Boolean-expr>

<event> is an event variable as defined in 11.2.2.

<Boolean-expr> is an expression whose result is a Boolean value and whose variables are the result of
read statements. This construct usually contains a Boolean restriction on data that are stored as part of a
data storage event.

Or and any are permitted as in the simple trigger statement.

13.3.4.1 Operation

The MLM is triggered whenever an event occurs and its corresponding where clause results in true. If the
where clause results in anything else, the MLM is not triggered.

13.3.4.2 Example

In this example, the data and evoke slots are both shown.

data:

penicillin_storage := event {store penicillin order};

penicillin_dose := read last {dose of stored penicillin order};

cephalosporin_storage := event {store cephalosporin order};

cephalosporin_dose := read last {dose of stored cephalosporin order};

;;

evoke:

(penicillin_storage WHERE penicillin_dose > 500)

OR

(cephalosporin_storage WHERE cephalosporin_dose > 500);;

13.3.4.3

The where trigger statement is provided only for systems that must use it for execution efficiency. It is
recommended that it not be used, if possible. Instead, put all logical constraints in the logic slot. The
above example would become (assuming that a query for the dosage of a medication that was not stored is
null):

data:

penicillin_storage := event {store penicillin order};

penicillin_dose := read last {dose of stored penicillin order};

cephalosporin_storage := event {store cephalosporin order};

cephalosporin_dose := read last {dose of stored cephalosporin order};

;;

evoke:

penicillin_storage OR cephalosporin_storage;;

logic:

IF penicillin_dose > 500 OR cephalosporin_dose > 500 THEN …

ENDIF;;

Arden Syntax for Medical Logic Systems

Page 84 Health Level Seven © 1999. All rights reserved.

07/1999 Final Standard.

13.4 Evoke Slot Usage
The evoke slot usually contains a single statement that specifies when an MLM is triggered. If the evoke slot has
more than one statement, then the MLM is evoked whenever any of the criteria in any of the statements occurs.

Arden Syntax for Medical Logic Systems

Health Level Seven © 1999. All rights reserved. Page 85

Final Standard 07/1999

Annexes
(Mandatory Information)

A1 BACKUS-NAUR FORM
The MLM syntax is defined using Backus-Naur Form (BNF) (3). In the interest of readability and computability,
the context free grammar is expressed in Backus-Naur Form rather than in the more compact Extended Backus-Naur
Form (EBNF) (3). The following definitions hold:

<expression> - represents the non-terminal expression

"IF" - represents the terminal if, iF, If, or IF

":=" - represents the terminal :=

::= - is defined as

/*...*/ - a comment about the grammar

| - or

Terminals are listed in uppercase, but the language is case insensitive outside of character strings. In structured
slots, space, carriage return, line feed, horizontal tab, vertical tab, and form feed are considered white space and are
ignored. in addition, the terminal the is treated as white space (that is, the word the is ignored).
With minor modifications, the following grammar can be processed by an LALR(1) parser generator, except where
noted by comments against individual rules

/****** physical file containing one or more MLMs ******/

/****** file of individual MLMs ******/

<mlms> ::=
 <mlm>
| <mlm> <mlms>

/****** categories ******/

<mlm> ::=
 <maintenance_category>
 <library_category>
 <knowledge_category>
 "END:"

<maintenance_category> ::=
 "MAINTENANCE:" <maintenance_body>

<maintenance_body> ::=
 <title_slot>
 <mlmname_slot>
 <arden_version_slot>
 <version_slot>
 <institution_slot>
 <author_slot>
 <specialist_slot>
 <date_slot>
 <validation_slot>

<library_category> ::=
 "LIBRARY:" <library_body>

<library_body> ::=
 <purpose_slot>
 <explanation_slot>
 <keywords_slot>
 <citations_slot>
 <links_slot>

<knowledge_category> ::=
 "KNOWLEDGE:" <knowledge_body>

Arden Syntax for Medical Logic Systems

Page 86 Health Level Seven © 1999. All rights reserved.

07/1999 Final Standard.

<knowledge_body> ::=
 <type_slot>
 <data_slot>
 <priority_slot>

 <evoke_slot>
 <logic_slot>
 <action_slot>
 <urgency_slot>

/****** slots ******/
/****** maintenance slots ******/

<title_slot> ::=
 "TITLE:" <text> ";;"

<mlmname_slot> ::=
 "MLMNAME:" <identifier> ";;"
| "FILENAME:" <identifier> ";;"

/* the "FILENAME:" form is only valid */
/* combination with the empty version */
/* of <arden_version_slot> */

<arden_version_slot> ::=
 "ARDEN:" <arden_version> ";;"
| /*empty*/

/* the empty version is only valid */
/* combination with the "FILENAME" */
/* form of < mlmname_slot > */

<arden_version> ::=
 "VERSION" "2"

<version_slot> ::=
 "VERSION:" <mlm_version> ";;"

<mlm_version>
 <text>

<institution_slot> ::=
 "INSTITUTION:" <text> ";;" /* text limited to 80 characters */

<author_slot> ::=
 "AUTHOR:" <text> ";;" /* see 6.1.6 for details */

<specialist_slot> ::=
 "SPECIALIST:" <text> ";;" /* see 6.1.7 for details */

<date_slot> ::=
 "DATE:" <mlm_date> ";;"

<mlm_date> ::=
 <iso_date>
| <iso_date_time>

<validation_slot> ::=
 "VALIDATION:" <validation_code> ";;"

<validation_code> ::=
 "PRODUCTION"
| "RESEARCH"
| "TESTING"
| "EXPIRED"

/****** library slots ******/
<purpose_slot> ::=

 "PURPOSE:" <text> ";;"

<explanation_slot> ::=
 "EXPLANATION:" <text> ";;"

<keywords_slot> ::=
 "KEYWORDS:" <text> ";;"

/* May require special processing to handle both list and text versions */
<citations_slot> ::=

 /* empty */
| "CITATIONS:" <citations_list> ";;"
| "CITATIONS:" <text> ";;"/* deprecated -- supported for backward

compatibility */

<citations_list> ::=
 /* empty */
| <single_citation>
| <single_citation> ";" <citations_list>

Arden Syntax for Medical Logic Systems

Health Level Seven © 1999. All rights reserved. Page 87

Final Standard 07/1999

<single_citation> ::=
 <digits> "." <citation_type> <citation_text>
| <citation_text>

/* This is a separate definition to allow for future expansion */
<citation_text>

<string>

<citation_type> ::=
 /* empty */
| "SUPPORT"
| "REFUTE"

/* May require special processing to handle both list and text versions */
<links_slot> ::=

 /* empty */
| "LINKS:" <links_list> ";;"
| "LINKS:" <text> ";;" /* deprecated - supported for backward*/

/* compatibility */

<links_list> ::=
 /* empty */
| <single link>
| <links_list> ";" <single link>

<single_link> ::=
<link_type> <link_name> <link_text>

<link_type> ::=
/* empty */
| "URL_LINK"
| "MESH_LINK"
| "OTHER_LINK"
| "EXE_LINK"

<link_name> ::=
/* empty */
| <string>

/* This is a separate definition to allow for future expansion */
<link_text> ::=

 <term>

/****** knowledge slots ******/
<type_slot> ::=

 "TYPE:" <type_code> ";;"

/* This is a separate definition to allow for future expansion */
<type_code> ::=

"DATA_DRIVEN"
| "DATA-DRIVEN" /* deprecated -- supported for backwards */

 /* compatibility */

<data_slot> ::=
"DATA:" <data_block> ";;"

<priority_slot> ::=
 /* empty */
| "PRIORITY:" <number> ";;"

<evoke_slot> ::=
 "EVOKE:" <evoke_block> ";;"

<logic_slot> ::=
 "LOGIC:" <logic_block> ";;"

<action_slot> ::=
 "ACTION:" <action_block> ";;"

<urgency_slot> ::=
 /* empty */
| "URGENCY:" <urgency_val> ";;"

<urgency_val> ::=
 <number>
| <identifier>

/****** logic block ******/
<logic_block> ::=

 <logic_block> ';' <logic_statement>
| <logic_statement>

Arden Syntax for Medical Logic Systems

Page 88 Health Level Seven © 1999. All rights reserved.

07/1999 Final Standard.

<logic_statement> ::=
 /* empty */
| <logic_assignment>
| "IF" <logic_if_then_else2>
| "FOR" <identifier> "IN" <expr> "DO" <logic_block> ";" "ENDDO"
| "WHILE" <epxr> "DO" <logic_block> ";" "ENDDO"
| "CONCLUDE" <expr>

<logic_if_then_else2> ::=
 <expr> "THEN" <logic_block> ";" <logic_elseif> ";"

<logic_elseif> ::=
 "ENDIF"
| "ELSE" <logic_block> ";" "ENDIF"
| "ELSEIF" <logic_if_then_else2>

<logic_assignment> ::=
 <identifier_becomes> <expr>
| <time_becomes> <expr>
| <identifier_becomes> <call_phrase>

<identifier_becomes> ::=
 <identifier> ":="
| "LET" <identifier> "BE"
| "NOW" ":="

<time_becomes> ::=
 "TIME" "OF" <identifier> :=
| "TIME" <identifier> :=
| "LET" "TIME" "OF" <identifier> "BE"
| "LET" "TIME" <identifier> "BE"

<call_phrase> ::=
 "CALL" <identifier>
| "CALL" <identifier> "WITH" <expr>

/****** expressions ******/
<expr> ::=

 <expr_sort>
| <expr> "," <expr_sort>

<expr_sort> ::=
 <expr_where>
| <expr_where> "MERGE" <expr_sort>
| "SORT" "DATA" <expr_sort>
| "SORT" "TIME" <expr_sort>

<expr_where> ::=
 <expr_range>
| <expr_range> "WHERE" <expr_range>

<expr_range> ::=
 <expr_or>
| <expr_or> "SEQTO" <expr_or>

<expr_or> ::=
 expr_or OR expr_and
| expr_and

<expr_and> ::=
 expr_and AND expr_not
| expr_not

<expr_not> ::=
 NOT expr_comparison
| expr_comparison

<expr_comparison> ::=
 <expr_string>
| <expr_string> <simple_comp_op> <expr_string>
| <expr_string> <is> <main_comp_op>
| <expr_string> <is> "NOT" <main_comp_op>
| <expr_string> <occur> <temporal_comp_op>
| <expr_string> <occur> "NOT" <temporal_comp_op>
| <expr_string> "MATCHES" "PATTERN" <expr_string>

<expr_string> ::=
 <expr_plus>
| <expr_string> "||" <expr_plus>
| <expr_plus> "FORMATTED" "WITH" <format_string>

Arden Syntax for Medical Logic Systems

Health Level Seven © 1999. All rights reserved. Page 89

Final Standard 07/1999

<format_string> ::=
 """ <format_specification> """ /* The format string is a true */

 /* Arden Syntax string, enclosed */
 */

| <string>

<format_specifiation> ::= /* See section 9.8.2 (p. 34) and */
/* Annex 5 for explanation of */
/* valid combinations and meanings.*/

 <format_specificaton> <format_specification_single>
| <format_specification_single>

<format_specification_single>
 "%"<format_options><format_flag><width_precision>
/* No spaces are permitted between elements in above form */
| <text>

<format_options> ::=
/* empty */
| "+"
| "-"
| "0"
| " " /* space */
| "#"

<format_flag> ::= /* Format flags are case sensitive */
 "c"
| "C"
| "d"
| "I"
| "o"
| "u"
| "x"
| "X"
| "e"
| "E"
| "f"
| "g"
| "G"
| "n"
| "p"
| "s"
| "t"

<width_precision> ::=
/* empty */
| <digits>
| <digits>"."<digits>

<expr_plus> ::=
 <expr_times>
| <expr_plus> "+" <expr_times>
| <expr_plus> "-" <expr_times>
| "+" <expr_times>
| "-" <expr_times>

<expr_times> ::=
 <expr_power>
| <expr_times> "*" <expr_power>
| <expr_times> "/" <expr_power>

<expr_power> ::=
 <expr_before>
| <expr_function> "**" <expr_function>

<expr_before> ::=
 <expr_ago>
| <expr_ago> "BEFORE" <expr_ago>
| <expr_ago> "AFTER" <expr_ago>

<expr_ago> ::=
 <expr_function>
| <expr_duration>
| <expr_duration> "AGO"

<expr_duration> ::=
 <expr_function> <duration_op>

Arden Syntax for Medical Logic Systems

Page 90 Health Level Seven © 1999. All rights reserved.

07/1999 Final Standard.

<expr_function> ::=
 <expr_factor>
| <of_func_op> <expr_function>
| <of_func_op> "OF" <expr_function>
| <from_of_func_op> <expr_function>
| <from_of_func_op> "OF" <expr_function>
| <from_of_func_op> <expr_factor> "FROM" <expr_function>
| <from_func_op> <expr_factor> "FROM" <expr_function>
| <index_from_of_func_op> <expr_function>
| <index_from_of_func_op> "OF" <expr_function>
| <index_from_of_func_op> <expr_factor> "FROM" <expr_function>
| <index_from_func_op> <expr_factor> "FROM" <expr_function>
| <expr_factor> "AS" <as_func_op>

<expr_factor> ::=
 <expr_factor_atom>
| <expr_factor_atom> "[" <expr> "]" /* number [<expr>] is not */

/* a valid construct */

<expr_factor_atom> ::=
 <identifier>
| <number>
| <string>
| <time_value>
| <boolean_value>
| "NULL"
| <it> /* Value is NULL outside of a where */

/* clause and may be flagged as an */
/* error in some implementations. */

| "(" ")"
| "(" <expr> ")"

/****** for readability *******/
<it> ::= "IT" | "THEY"

/****** comparison synonyms ******/
<is> ::= "IS" | "ARE" | "WAS" | "WERE"

<occur> ::= "OCCUR" | "OCCURS" | "OCCURRED"

/****** operators ******/
<simple_comp_op> ::=

 "=" | "EQ"
| "<" | "LT"
| ">" | "GT"
| "<=" | "LE"
| ">=" | "GE"
| "<>" | "NE"

<main_comp_op> ::=
 <temporal_comp_op>
| <range_comp_op>
| <unary_comp_op>
| <binary_comp_op> <expr_string>

/* the WITHIN TO operator will accept any ordered parameter, */
/* including numbers, strings (single characters), times, Boolean /*

<range_comp_op> ::=
"WITHIN" <expr_string> "TO" <expr_string>

<temporal_comp_op> ::=
 "WITHIN" <expr_string> "PRECEDING" <expr_string>
| "WITHIN" <expr_string> "FOLLOWING" <expr_string>
| "WITHIN" <expr_string> "SURROUNDING" <expr_string>
| "WITHIN" "PAST" <expr_string>
| "WITHIN" "SAME" "DAY" "AS" <expr_string>
| "BEFORE" <expr_string>
| "AFTER" <expr_string>
| "EQUAL" <expr_string>

<unary_comp_op> ::=
 "PRESENT"
| "NULL"
| "BOOLEAN"
| "NUMBER"
| "TIME"
| "DURATION"
| "STRING"
| "LIST"

Arden Syntax for Medical Logic Systems

Health Level Seven © 1999. All rights reserved. Page 91

Final Standard 07/1999

<binary_comp_op> ::=
 "LESS" "THAN"
| "GREATER" "THAN"
| "GREATER" "THAN" "OR" "EQUAL"
| "LESS" "THAN" "OR" "EQUAL"
| "IN"

<of_func_op> ::=
 <of_read_func_op>
| <of_noread_func_op>

<of_read_func_op> ::=
 "AVERAGE"| "AVG"
| "COUNT"
| "EXIST" | "EXISTS"
| "SUM"
| "MEDIAN"

<of_noread_func_op> ::=
 "ANY"
| "ALL"
| "NO"
| "SLOPE"
| "STDDEV"
| "VARIANCE"
| "INCREASE"
| "PERCENT" "INCREASE" | "%" "INCREASE"
| "DECREASE"
| "PERCENT" "DECREASE" | "%" "DECREASE"
| "INTERVAL"
| "TIME"
| "ARCCOS"
| "ARCSIN"
| "ARCTAN"
| "COSINE" | "COS"
| "SINE" | "SIN"
| "TANGENT"| "TAN"
| "EXP"
| "FLOOR"
| "INT"
| "ROUND"
| "CEILING"
| "TRUNCATE"
| "LOG"
| "LOG10"
| "ABS"
| "SQRT"
| "EXTRACT" "YEAR"
| "EXTRACT" "MONTH"
| "EXTRACT" "DAY"
| "EXTRACT" "HOUR"
| "EXTRACT" "MINUTE"
| "EXTRACT" "SECOND"
| "TIME"
| "STRING"
| "EXTRACT" "CHARACTERS"

<from_func_op> ::=
 "NEAREST"

<index_from_func_op> ::=
 "INDEX" "NEAREST"

<from_of_func_op> ::=
 <from_of_read_func_op>
| <from_of_noread_func_op>

<from_of_read_func_op>
 "MINIMUM"| "MIN"
| "MAXIMUM"| "MAX"
| "LAST"
| "FIRST"
| "EARLIEST"
| "LATEST"

<from_of_noread_func_op>
 "REVERSE" /* must be careful as reverse 5 from x does */

/* not make sense */

Arden Syntax for Medical Logic Systems

Page 92 Health Level Seven © 1999. All rights reserved.

07/1999 Final Standard.

<index_from_of_func_op> ::=
 "INDEX" "MINIMUM" | "INDEX" "MIN"
| "INDEX" "MAXIMUM" | "INDEX" "MAX"
| "INDEX" "EARLIEST"
| "INDEX" "LATEST"

<as_func_op> ::=
 "NUMBER"

<duration_op> ::=
 "YEAR" | "YEARS"
| "MONTH" | "MONTHS"
| "WEEK" | "WEEKS"
| "DAY" | "DAYS"
| "HOUR" | "HOURS"
| "MINUTE" | "MINUTES"
| "SECOND" | "SECONDS"

/****** factors ******/
<boolean_value> ::=

 "TRUE"
| "FALSE"

<time_value> ::=
 "NOW"
| <iso_date_time>
| <iso_date>
| "EVENTTIME"
| "TRIGGERTIME"

/****** data block ******/
<data_block> ::=

 <data_block> ';' <data_statement>
| <data_statement>

<data_statement> ::=
/* empty */
| <data_assignment>
| "IF" <data_if_then_else2>
| "FOR" <identifier> "IN" <expr> "DO" <data_block> ";" "ENDDO"
| "WHILE" <epxr> "DO" <data_block> ";" "ENDDO"

<data_if_then_else2> ::=
 <expr> "THEN" <data_block> ";" <data_elseif>

<data_elseif> ::=
 "ENDIF"
| "ELSE" <data_block> ";" "ENDIF"
| "ELSEIF" <data_if_then_else2>

<data_assignment> ::=
 <identifier_becomes> <data_assign_phrase>
| "(" <data_var_list> ")" ":=" "READ" <read_phrase>
| "LET" "(" <data_var_list> ")" "BE" "READ" <read_phrase>
| "(" <data_var_list> ")" ":=" "ARGUMENT"
| "LET" "(" <data_var_list> ")" "BE" "ARGUMENT"

<data_var_list> ::=
 <identifier>
| <identifier> "," <data_var_list>

<data_assign_phrase> ::=
 "READ" <read_phrase>
| "MLM" <term>
| "MLM" <term> "FROM" "INSTITUTION" <string>
| "MLM" "MLM_SELF"
| "INTERFACE" <mapping_factor>
| "EVENT" <mapping_factor>
| "MESSAGE" <mapping_factor>
| "DESTINATION" <mapping_factor>
| "ARGUMENT"
| <call_phrase>
| <expr>

<read_phrase> ::=
 <read_where>
| <of_read_func_op> <read_where>
| <of_read_func_op> "OF" <read_where>
| <from_of_read_func_op> <read_where>
| <from_of_read_func_op> "OF" <read_where>
| <from_of_read_func_op> <expr_factor> "FROM" <read_where>

Arden Syntax for Medical Logic Systems

Health Level Seven © 1999. All rights reserved. Page 93

Final Standard 07/1999

<read_where> ::=
 <mapping_factor>
| <mapping_factor> "WHERE" <it> <occur> <temporal_comp_op>
| <mapping_factor> "WHERE" <it> <occur> "NOT" <temporal_comp_op>
| "(" <read_where> ")"

<mapping_factor> ::=
 "{" <data_mapping> "}"

/****** evoke block ******/
<evoke_block> ::=

 <evoke_statement>
| <evoke_block> ";" <evoke_statement>

<evoke_statement> ::=
/* empty */
| <event_or>
| <evoke_time>
| <qualified_evoke_cycle>
| <event_where>
| "CALL" /* deprecated -- kept for backward compatibility */

<event_list> ::=
 <event_or>
| <event_list> "," <event_or>

<event_or> ::=
 <event_or> "OR" <event_any>
| <event_any>

<event_any> ::=
 "ANY" "(" <event_list> ")"
 "ANY" "OF" "(" <event_list> ")"
| "ANY" <identifier>
| "ANY" "OF" <identifier>
| <event_factor>

<event_factor> ::=
 "(" <event_or> ")"
| <identifier>

<event_where> ::=
<event_or> "WHERE" <expr> /* this expression must evaluate to a */

/* boolean value (see 13.3.4)
*/

<evoke_time> ::=
 <evoke_duration> "AFTER" <evoke_time>
| "TIME" <event_any>
| "TIME" "OF" <event_any>
| <iso_date_time>
| <iso_date>

<qualified_evoke_cycle> ::=
 <simple_evoke_cycle>
| <simple_evoke_cycle> "UNTIL" <expr>

<simple_evoke_cycle> ::=
 "EVERY" <evoke_duration> "FOR" <evoke_duration> "STARTING"

<evoke_time>

<evoke_duration> ::=
 <number> <duration_op>

/****** action block ******/
<action_block> ::=

 <action_statement>
| <action_block> ";" <action_statement>

<action_statement> ::=
 /* empty */
| "IF" <action_if_then_else2>
| "FOR" <identifier> "IN" <expr> "DO" <action_block> ";" "ENDDO"
| "WHILE" <epxr> "DO" <action_block> ";" "ENDDO"
| <call_phrase>
| <call_phrase> "DELAY" <expr>
| "WRITE" <expr>
| "WRITE" <expr> "AT" <identifier>
| "RETURN" <expr>

<action_if_then_else2> ::=
<expr> "THEN" <action_block> ";" <action_elseif>

Arden Syntax for Medical Logic Systems

Page 94 Health Level Seven © 1999. All rights reserved.

07/1999 Final Standard.

<action_elseif> ::=
 "ENDIF"
| "ELSE" <action_block> ";" "ENDIF"
| "ELSEIF" <action_if_then_else2>

/****** lexical constructs ******/
<string> ::=

 /* any string of characters enclosed in double quotes (" ASCII 22)
with nested "" but without ";;" */

<identifier> ::=
/* up to 80 characters total (no reserved words allowed) */
 <letter> <identifier_rest>

<identifier_rest> ::= /* no spaces are permitted between elements */
 /* empty */
| <letter> <identifier_rest>
| <digit> <identifier_rest>
| "_" <identifier_rest>

<text> ::=
 /* any string of characters without ";;" */

<number> ::= /* no spaces are permitted between elements */
 <digits> <exponent>
| <digits> "." <exponent>
| <digits> "." <digits> <exponent>
| "." <digits> <exponent>

<exponent> ::= /* no spaces are permitted between elements */
 /* null */
 | <e> <sign> <digits>

<e> ::=
 "E"
| "e"

<sign> ::=
 /* null */
| "+"
| "-"

<digits> ::= /* no spaces are permitted between elements */
 <digit>
| <digit> <digits>

<digit> ::=
 "0"
| "1"
| "2"
| "3"
| "4"
| "5"
| "6"
| "7"
| "8"
| "9"

<letter> ::=
 "a" | "b" | "c" | "d"
| "e" | "f" | "g" | "h"
| "i" | "j" | "k" | "l"
| "m" | "n" | "o" | "p"
| "q" | "r" | "s" | "t"
| "u" | "v" | "w" | "x"
| "y" | "z" |

 "A" | "B" | "C" | "D"
| "E" | "F" | "G" | "H"
| "I" | "J" | "K" | "L"
| "M" | "N" | "O" | "P"
| "Q" | "R" | "S" | "T"
| "U" | "V" | "W" | "X"
| "Y" | "Z"

<iso_date> ::= /* no spaces are permitted between elements */
<digit> <digit> <digit> <digit> "-" <digit> <digit> "-" <digit> <digit>

<iso_date_time> ::= /* no spaces are permitted between elements */
<digit> <digit> <digit> <digit> "-" <digit> <digit> "-" <digit> <digit>

<t>
<digit> <digit> ":" <digit> <digit> ":" <digit> <digit>
<fractional_seconds>
<time_zone>

Arden Syntax for Medical Logic Systems

Health Level Seven © 1999. All rights reserved. Page 95

Final Standard 07/1999

<t> ::=
 "T"
| "t"

<fractional_seconds> ::= /* no spaces are permitted between
elements */

 "." <digits>
| /* empty */

<time_zone> ::= /* no spaces are permitted between
elements */

 /* null */
| <zulu>
| "+" <digit> <digit> ":" <digit> <digit>
| "-" <digit> <digit> ":" <digit> <digit>

<zulu> ::=
 "Z"
| "z")

<term> ::=
/* any string of characters enclosed in single quotes (' , ASCII 44)

without ";;" */

<data_mapping> ::=
/* any balanced string of characters enclosed in curly brackets { } */
/* (ASCII 123 and 125, respectively) without ";;" the data mapping */
/* does not include the curly bracket characters */

Arden Syntax for Medical Logic Systems

Page 96 Health Level Seven © 1999. All rights reserved.

07/1999 Final Standard.

A2 RESERVED WORDS
Listed here in alphabetic order are all the reserved words. None of these words may be used as variable names.

abs

action

after

ago

alert

all

and

any

arccos

arcsin

arctan

arden

are

argument

as

at

author

average

avg

be

before

Boolean

call

ceiling

characters

citations

conclude

cos

cosine

count

data

date

day

days

decrease

delay

destination

do

duration

earliest

else

elseif

enddo

endif

end

eq

equal

event

eventtime

every

evoke

exist

exists

exp

expired

explanation

extract

false

filename

first

floor

following

for

formatted

from

ge

greater

gt

hour

hours

if

in

increase

index

institution

int

interface

interval

is

it

keywords

knowledge

last

latest

le

less

let

library

links

list

log

log10

logic

lt

maintenance

matches

max

maximum

median

merge

message

min

minimum

minute

minutes

mlm

mlmname

mlm_self

month

months

ne

nearest

no

not

now

null

number

occur

occurred

occurs

of

or

past

pattern

percent

preceding

present

priority

production

purpose

read

refute

research

return

reverse

round

same

second

seconds

seqto

sin

sine

slope

sort

Arden Syntax for Medical Logic Systems

Health Level Seven © 1999. All rights reserved. Page 97

Final Standard 07/1999

specialist

sqrt

starting

stddev

string

sum

support

surrounding

tan

tangent

testing

than

the

then

they

time

title

to

triggertime

true

truncate

type

unique

until

urgency

validation

variance

version

was

week

weeks

were

where

while

with

within

write

year

year

The following identifiers are reserved for future use:

union intersect excluding citation select

Arden Syntax for Medical Logic Systems

Page 98 Health Level Seven © 1999. All rights reserved.

07/1999 Final Standard.

A3 SPECIAL SYMBOLS
Listed here are all the special symbols.

|| := , = >=
> <= < { (
[- <> % +
})] ; #
/ * ** ;; :
/* */ // ' "

Arden Syntax for Medical Logic Systems

Health Level Seven © 1999. All rights reserved. Page 99

Final Standard 07/1999

A4 OPERATOR PRECEDENCE AND ASSOCIATIVITY

A4.1
The operators for the structured slots are shown here grouped by precedence. Groups are separated by horizontal
lines. Within groups, operators have equal precedence. Groups are arranged from lowest to highest precedence.

A4.2
Synonyms are listed on the same line, separated by °. The symbol [of] means that the word of is optional, and does
not affect the logic of the operator.

A4.3
The position of the arguments relative to the operator is indicated by the ellipsis … The operator’s associativity is
shown in italics after each operator. Some operators have both a unary form (one argument) and a binary form (two
arguments); each form is listed separately.

… , … (left associative)
… merge … (left associative)
sort data … (non-associative)
sort time … (non-associative)
… where … (non-associative)
… or … (left associative)
… and … (left associative) … not … (non-associative)
… = … ° … is equal … (non-associative)
… <> … ° … is not equal … (non-associative)
… < … ° … is less than … ° … is not greater than or equal … (non-associative)
… <= … ° … is less than or equal … ° … is not greater than … (non-associative)
… > … ° … is greater than … ° … is not less than or equal … (non-associative)
… >= … ° … is greater than or equal … ° … is not less than (non-associative)
… is within … to … (non-associative)
… is not within … to … (non-associative)
… is within … preceding … (non-associative)
… is not within … preceding (non-associative)
… is within … following … (non-associative) is not within … following … (non-associative)
… is within … surrounding … (non-associative)
… is not within … surrounding … (non-associative)
… is within past … (non-associative)
… is not within past … (non-associative)
… is within same day as … (non-associative)
… is not within same day as (non-associative)
… is before … (non-associative)
… is not before … (non-associative)
… is after … (non-associative)
… is not after … (non-associative)
… occur equal … (non-associative)
… occur within … to … (non-associative)
… occur not within … to … (non-associative)
… occur within … preceding … (non-associative)
… occur not within … preceding … (non-associative)
… occur within … following … (non-associative)
… occur not within … following … (non-associative)
… occur within … surrounding … (non-associative)
… occur not within … surrounding … (non-associative)
… occur within past … (non-associative)
… occur not within … past … (non-associative)

Arden Syntax for Medical Logic Systems

Page 100 Health Level Seven © 1999. All rights reserved.

07/1999 Final Standard.

… occur within same day as … (non-associative)
… occur not within same day as … (non-associative)
… occur before … (non-associative)
… occur not before … (non-associative)
… occur after … (non-associative)
… occur not after … (non-associative)
… is in … (non-associative)
… is not in … (non-associative)
… is present ° … is not null (non-associative)
… is not present ° … is null (non-associative)
… is Boolean (non-associative)
… is not Boolean (non-associative)
… is number (non-associative)
… is not number (non-associative)
… is time (non-associative)
… is not time (non-associative)
… is duration (non-associative)
… is not duration (non-associative)
… is string (non-associative)
… is not string (non-associative)
… is list (non-associative)
… is not list (non-associative)
…�… (left associative)
… formatted with … (non-associative)
+ … (non-associative)
… + … (left associative)
- … (non-associative)
… - … (left associative)
… * … (left associative)
… / … (left associative)
… ** … (non-associative)
… round … (non-associative)
… before … (non-associative)
… after … (non-associative)
… ago … (non-associative)
… year ° … years (non-associative)
… month ° … months (non-associative)
… week ° … weeks (non-associative)
… day ° … days (non-associative)
… hour ° … hours (non-associative)
… minute ° minutes (non-associative)
… second ° … seconds (non-associative)
… matches pattern … (non-associative)
count [of] … (right associative)
exist [of] … (right associative)
avg [of] … ° average [of] … (right associative)
median [of] … (right associative)
sum [of] … (right associative)
stddev [of] … (right associative)
variance [of] … (right associative)
any [of] … (right associative)
all [of] … (right associative)
no [of] … (right associative)
slope [of] … (right associative)
min … from … ° minimum … from … (right associative)
min [of] … ° minimum [of] … (right associative)

Arden Syntax for Medical Logic Systems

Health Level Seven © 1999. All rights reserved. Page 101

Final Standard 07/1999

max … from … ° maximum … from … (right associative)
max [of] … ° maximum [of] … (right associative)
index min … from … ° index minimum … from … (right associative)
index min [of] … ° index minimum [of] … (right associative)
index max … from … ° index maximum … from … (right associative)
index max [of] … ° index maximum [of] … (right associative)
last … from … (right associative)
last [of] … (right associative)
first … from … (right associative)
first [of] … (right associative)
latest … from … (right associative)
latest [of] … (right associative)
earliest … from … (right associative)
earliest [of] … (right associative)
nearest … from … (right associative)
index nearest … from … (right associative)
increase [of] … (right associative)
decrease [of] … (right associative)
percent increase [of] … ° % increase [of] … (right associative)
percent decrease [of] … ° % decrease [of] … (right associative)
interval [of] … (right associative)
time [of] … (right associative)
arccos [of] … (right associative)
arcsin [of] … (right associative)
arctan [of] … (right associative)
cos [of] … ° cosine [of] … (right associative)
sin [of] … ° sine [of] … (right associative)
tan [of] … ° tangent [of] … (right associative)
exp [of] … (right associative)
floor [of] … (right associative)
ceiling [of] … (right associative)
truncate [of] … (right associative)
log [of] … (right associative)
log10 [of] … (right associative)
abs [of] … (right associative)
sqrt [of] … (right associative)
extract year [of] … (right associative)
extract month [of] … (right associative)
extract hour [of] … (right associative)
extract minute [of] … (right associative)
extract second [of] … (right associative)
reverse [of] … (right associative)
extract characters [of] … (right associative)
string [of] … (right associative)

Arden Syntax for Medical Logic Systems

Page 102 Health Level Seven © 1999. All rights reserved.

07/1999 Final Standard.

A5 FORMAT SPECIFICATION (SEE 9.8.2)

A5.1 The following is a complete description of supported types within the format specification:

type Required character that determines whether the associated argument is
interpreted as a character, a string, or a number.

Table A5-1

Character Type Output Format

c number The number is assumed to represent a character code to be output as a character.

C number The number is assumed to represent a character code to be output as a character.

d number Signed decimal integer.

i number Signed decimal integer.

o number Unsigned octal integer.

u number Unsigned decimal integer.

x number Unsigned hexadecimal integer, using "abcdef."

X number Unsigned hexadecimal integer, using "ABCDEF."

e number Signed value having the form [–]d.dddd e [sign]ddd where d is a single decimal digit,
dddd is one or more decimal digits, ddd is exactly three decimal digits, and sign is + or –
.

E number Identical to the e format, except that E, rather than e, introduces the exponent.

f double Signed value having the form [–]dddd.dddd, where dddd is one or more decimal digits.
The number of digits before the decimal point depends on the magnitude of the number,
and the number of digits after the decimal point depends on the requested precision.

g double Signed value printed in f or e format, whichever is more compact for the given value
and precision. The e format is used only when the exponent of the value is less than –4
or greater than or equal to the precision argument. Trailing zeros are truncated, and the
decimal point appears only if one or more digits follow it.

G double Identical to the g format, except that E, rather than e, introduces the exponent (where
appropriate).

n Not supported. Not supported.

p Not supported. Not supported.

s string Specifies a character. Characters are printed until the precision value is reached.

t time A time is printed based on the user's environment settings and the precision value.

A5.2 The optional fields, which appear before the type character, control other aspects of the
formatting, as follows:

flags Optional character or characters that control justification of output and printing of signs, blanks, decimal
points, and octal and hexadecimal prefixes. More than one flag can appear in a format specification.

Table A5-2

Flag Meaning Default

– Left align the result within the given field width. Right align.

+ Prefix the output value with a sign (+ or –) if the output value is of
a signed type.

Sign appears only for
negative signed values (–).

Arden Syntax for Medical Logic Systems

Health Level Seven © 1999. All rights reserved. Page 103

Final Standard 07/1999

Flag Meaning Default

0 If width is prefixed with 0, zeros are added until the minimum
width is reached. If 0 and – appear, the 0 is ignored. If 0 is specified
with an integer format (I, u, x, X, o, d) the 0 is ignored.

No padding.

Space Prefix the output value with a space if the output value is signed
and positive; the space is ignored if both the space and + flags
appear.

No space appears.

When used with the o, x, or X format, the # flag prefixes any
nonzero output value with 0, 0x, or 0X, respectively.

No blank appears.

When used with the e, E, or f format, the # flag forces the output
value to contain a decimal point in all cases.

Decimal point appears only
if digits follow it.

When used with the g or G format, the # flag forces the output
value to contain a decimal point in all cases and prevents the
truncation of trailing zeros.

Decimal point appears only
if digits follow it. Trailing
zeros are truncated.

Ignored when used with c, d, i, u, or s.

The second optional field of the format specification is the width specification. The width argument is a
nonnegative decimal integer controlling the minimum number of characters printed. If the number of characters in
the output value is less than the specified width, blanks are added to the left or the right of the values - depending on
whether the – flag (for left alignment) is specified - until the minimum width is reached. If width is prefixed with 0,
zeros are added until the minimum width is reached (not useful for left-aligned numbers).
The width specification never causes a value to be truncated. If the number of characters in the output value is
greater than the specified width, or if width is not given, all characters of the value are printed (subject to the
precision specification).
If the width specification is an asterisk (*), an integer argument from the argument list supplies the value. The width
argument must precede the value being formatted in the argument list. A nonexistent or small field width does not
cause the truncation of a field; if the result of a conversion is wider than the field width, the field expands to contain
the conversion result.

width Optional number that specifies the minimum number of characters output.

precision Optional number that specifies the maximum number of characters printed for all or part of
the output field, or the minimum number of digits printed for integer values.

Table A5-3

Type Meaning Default

c, C The precision has no effect. Character is printed.

d, i, u,
o, x, X

The precision specifies the minimum number of digits
to be printed. If the number of digits in the argument is
less than precision, the output value is padded on the
left with zeros. The value is not truncated when the
number of digits exceeds precision.

Default precision is 1.

e, E The precision specifies the number of digits to be
printed after the decimal point. The last printed digit is
rounded.

Default precision is 6; if precision is 0,
or the period (.) appears without a
number following it, no decimal point
is printed.

f The precision value specifies the number of digits after
the decimal point. If a decimal point appears, at least
one digit appears before it. The value is rounded to the
appropriate number of digits.

Default precision is 6; if precision is 0,
or if the period (.) appears without a
number following it, no decimal point
is printed.

g, G The precision specifies the maximum number of
significant digits printed. The last printed digit is
rounded.

Six significant digits are printed, with
any trailing zeros truncated.

Arden Syntax for Medical Logic Systems

Page 104 Health Level Seven © 1999. All rights reserved.

07/1999 Final Standard.

Type Meaning Default

s The precision specifies the maximum number of
characters to be printed. Characters in excess of
precision are not printed.

Characters are printed until a null
character is encountered.

t The precision specifies how many of the date and time
fields are printed. Non-printed fields are truncated
(rounded down).

0: Year only

1: Year, Month

2: Date (Year, Month, Day)

3: Date, hour

4: Date, hour, minute

5: Date, hour, minute, second

All fields are printed.

Arden Syntax for Medical Logic Systems

Health Level Seven © 1999. All rights reserved. Page 105

Final Standard 07/1999

Appendices
(Nonmandatory Information)

X1 SAMPLE MLMS
The following are sample MLMS to be used only to demonstrate the syntax. They have not been tested, and they
have not been used in clinical care. More example MLMs, many of which are in current live use, are available at
Columbia’s web site, www.cpmc.columbia.edu/resources/arden.

X1.1 Data Interpretation MLM:
maintenance:

title: Fractional excretion of sodium;;

mlmname: fractional_na;;

arden: Version 2;;

institution: Columbia-Presbyterian Medical Center;;

author: George Hripcsak, M.D.
(hripcsak@cucis.cis.columbia.edu);;

specialist: ;;

date: 1991-03-13;;

validation: testing;;

library:

purpose:
Calculate the fractional excretion of sodium whenever urine:
electrolytes are stored. (This MLM demonstrates data
interpretation across independent laboratory results.);;

explanation:
The fractional excretion of sodium is calculated from the urine
sodium and creatinine and the most recent serum sodium and
creatinine (where they occurred within the past 24 hours). A
value less than 1.0 % is considered low.;;

keywords: fractional excretion; serum sodium; azotemia;;

citations:
1. Steiner RW. Interpreting the fractional excretion of sodium.
 Am J Med 1984;77:699-702.;;

knowledge:

type: data-drivein;;

data:
let (urine_ na, urine_creat) be read last

({urine electrolytes where evoking}
where they occurred within the past 24 hours) ;

let (serum_na, serum_creat) be read last
({serum electrolytes where evoking}
where they occurred within the past 24 hours) ;

let urine_electrolyte_storage be event
{storage of urine electrolytes}

evoke:
urine_electrolyte_storage;;

Arden Syntax for Medical Logic Systems

Page 106 Health Level Seven © 1999. All rights reserved.

07/1999 Final Standard.

logic:
/* calculate fractional excretion of sodium */
let fractional_na be 100 * (urine_na / urine_creat)/

 (serum_na / serum_creat) ;
/* if the fractional Na is invalid (e.g., if the */
/* urine or serum sample is QNS) then stop here */
if fractional_na is null then

conclude false ;
endif ;
/* check whether the fractional Na is low */
let low_fractional_na be fractional_na < 1.0 ;
/* send the message */
conclude true ;
;;

action:
if low_fractional_na then

write "The calculated fractional excretion of sodium is low ("
 || fractional_na || "). If the patient is azotemic, " ||
 "this number may indicate volume depletion, " ||
 "hepatic failure, congestive heart failure, acute " ||
 "glomerulonephritis, oliguric myoglobinuric or " ||
 "hemoglobinuric renal failure, oliguric contrast " ||
 "nephrotoxicity, polyuric renal failure with severe " ||
 "burns, renal transplant rejection, 10 % of cases " ||
 "with non-oliguric acute tubular necrosis, and " ||
 "several other forms of renal injury."

else:
write "The calculated fractional excretion of sodium is " ||

 "not low ("|| fractional_na || "). If the patient " ||
 "is azotemic, this may indicate: acute renal " ||
 "parenchymal injury, volume depletion coexisting " ||
 "with diuretic use or pre-existing chronic renal " ||
 "disease, and up to 10 % of cases of uncomplicated " ||
 "volume depletion."

endif
;;

end

X1.2 Research Study Screening MLM:
maintenance:

title: Screen for hypercalcemia for Dr. B.'s study;;

mlmname: hypercalcemia_for_b;;

arden: Version 2;;

version: 2.02;;

institution: Columbia-Presbyterian Medical Center;;

author: George Hripcsak, M.D.;;

specialist: ;;

date: 1990-12-04;;

validation: research;;

library:

purpose:
Screen for hypercalcemia for Dr. B.'s study. (This MLM demonstrates
screening patients for clinical trials.);;

explanation:
The storage of a serum calcium value evokes this MLM. If a serum
albumin is available from the same blood sample as the calcium,
then the corrected calcium is calculated, and patients with actual
or corrected calcium greater than or equal 11.5 are accepted; if
such a serum albumin is not available, then patients with actual
calcium greater than or equal 11.0 are accepted. Patients with
serum creatinine greater than 6.0 are excluded from the study.;;

keywords: hypercalcemia;;

citations: ;;

knowledge:

type: data-driven;;

Arden Syntax for Medical Logic Systems

Health Level Seven © 1999. All rights reserved. Page 107

Final Standard 07/1999

data:
/* the storage of a calcium value evokes this MLM */
storage_of_calcium " = event {'06210519','06210669'}
/* total calcium in mg/dL */
calcium := read last {'06210519','06210669','CALCIUM'}
/* albumin in g/dL */
evoking_albumin := read last {'06210669';'ALBUMIN' where evoking}
/*albumin in g/dL; not necessary from same test as Ca */
last_albumin := read last ({'06210669';'ALBUMIN'}

where it occurred within the past 2 weeks)
/* creatinine in mg/dL; not necessarily from same test as Ca */
creatinine := read last ({'06210669','06210545','06000545','CREAT'}
where it occurred within the past 2 weeks
;;

evoke
storage_of_calcium;

logic:
/* make sure the Ca is present (vs. hemolyzed , …) */
IF calcium is not present THEN

conclude false
ENDIF
/* if creatinine is present and greater than 6, then stop now */
IF creatinine is present THEN

IF creatinine is greater than 6.0 THEN
conclude false

ENDIF
ENDIF
/* is an albumin present for the same sample as the calcium */
IF evoking_albumin is present THEN
/* calculate the corrected calcium */

IF evoking_albumin is less than 4.0 THEN
corrected_calcium := calcium + (4.0-evoking_albumin)*0.8

ELSE
/* corrected is never less than actual */
corrected_calcium := calcium

ENDIF
/* test for total or corrected calcium >= 11.5 */
IF calcium >= 11.5 OR corrected_calcium >= 11.5 THEN

message := "calcium = " || calcium ||
" on " || time of calcium ||
" (corrected calcium = " ||
corrected calcium || ")"

message := message||"; albumin = " ||evoking_albumin
IF creatinine is present THEN

message := message||
"; last creatinine = ||creatinine

message := message||
"; (total or corrected calcium " ||
"was at least 11.5)"

conclude true
ELSE

conclude false
ENDIF

ENDIF
/* no evoking albumin was present */
ELSE
/* check for true calcium >= 11.0 */

IF calcium >= 11.0 THEN
message := "calcium = "||calcium||" on "||time of calcium
IF last_albumin is present THEN

message := message||"; last albumin "||
"(not from same blood sample as calcium) = "||
last_albumin

IF creatinine is present THEN
message := message|| "; last creatinine = "

||creatinine
message := message||

"; (total calcium was at least 11.0; "||
"corrected calcium was not calculated)" ;

conclude true
ELSE

conclude false
ENDIF

ENDIF
ENDIF

ENDIF
;;

action: write "hypercalcemia study: " || message;;

urgency: 50;;

Arden Syntax for Medical Logic Systems

Page 108 Health Level Seven © 1999. All rights reserved.

07/1999 Final Standard.

end:

X1.3 Contraindication Alert MLM:
maintenance:

title: Check for penicillin allergy;;

mlmname: pen_allergy;;

arden: ASTM-E1460-1995;;

version: 1.00;

institution: Columbia-Presbyterian Medical Center;;

author: George Hripcsak, M.D.;;

specialist: ;;

date: 1991-03-18;;

validation: testing;;

library:

purpose:
when a penicillin is prescribed, check for an allergy. (This MLM
demonstrates checking for contraindications.);;

explanation:
This MLM is evoked when a penicillin medication is ordered. An
alert is generated because the patient has an allergy to penicillin
recorded.;;

keywords: penicillin; allergy;;

citations: ;;

knowledge:

type: data-driven;;

data:
/* an order for a penicillin evokes this MLM */
penicillin_order := event {medication order where

 class = penicillin};
/* find allergies */
penicillin_allergy := read last {allergy where

 agent_class = penicillin};
;;

evoke:
penicillin_order;;

logic
if exist (penicillin_allergy) then

conclude true;
endif;
;;

action:
write "Caution, the patient has the following allerge to penicillin

documented: " || penicillin_allergy;;

urgency: 50;;

end:

X1.4 Management Suggestion MLM:
maintenance:

title: Dosing for gentamicin in renal failure;;

mlmname: gentamicin_dosing;;

arden: ASTM-E1460-1995;;

version: 1.00;;

institution: Columbia-Presbyterian Medical Center;;

author: George Hripcsak, M.D.;;

Arden Syntax for Medical Logic Systems

Health Level Seven © 1999. All rights reserved. Page 109

Final Standard 07/1999

specialist: ;;

date: 1991-03-18;;

validation: testing;;

library:

purpose:
Suggest an appropriate gentamicin dose in the setting of renal
insufficiency. (This MLM demonstrates a management suggestion.);;

explanation:
Patients with renal insufficiency require the same loading dose of
gentamicin as those with normal renal function, but they require a
reduced daily dose. The creatinine clearance is calculated by serum
creatinine, age, and weight. If it is less than 30 ml/min, then an
appropriate dose is calculated based on the clearance. If the
ordered dose differs from the calculated dose by more than 20%,
then an alert is generated.;;

keywords: gentamicin; dosing;;

citations: ;;

knowledge:

type: data-driven;;

data:
/* an order for gentamicin evokes this MLM */
gentamicin_order := event {medication_order where

 class = gentamicin}
/* gentamicin doses */
(loading_dose,periodic_dose,periodic_interval) :=

read last {medication_order initial dose,
periodic dose, interval}

/* serum creatinine mg/dl */
serum_creatinine := read last ({serum_creatinine}

where it occurred within the past 1 week)
/* birthdate */
birthdate := read last {birthdate}
/* weight kg */
weight := read last ({weight}

where it occurred within the past 3 months
;;

evoke:
gentamicin_order;;

logic:
age := (now – birthdate)/1 year
creatinine_clearance := 140 – age) * (weight)/

 (72 * serum_creatinine)
/* the algorithm can be adjusted to handle higher clearances */
if creatinine_clearance < 30 then

calc_loading_dose := 1.7 * weight
calc_daily_dose := 3 * (0.05 + creatinine_clearance / 100)
ordered_daily_dose := periodic_dose *

periodic_interval/(1 day)
/* check whether order is appropriate */
if abs (loading_dose-calc_loading_dose/calc_loading_dose > 0.2
 or

abs(ordered_daily_dose – calc_daily_dose)/
 calc_daily_dose > 0.2 then

 conclude true
endif

endif
;;

action:
write "Due to renal insufficiency, the dose of gentamicin " ||

"should be adjusted. The patient's calculated " ||
"creatinine clearance is " || creatinine_clearance ||
" ml/min. A single loading dose of " ||
calc_loading_dose || "mg should be given, followed by " ||
calc_daily_dose || "mg daily. Note that dialysis may " ||
"necessitate additional loading doses."

;;

urgency: 50;;

end:

Arden Syntax for Medical Logic Systems

Page 110 Health Level Seven © 1999. All rights reserved.

07/1999 Final Standard.

X1.5 Monitoring MLM:
maintenance:

title: Monitor renal function while taking gentamicin;;

mlmname: gentamicin_monitoring;;

arden: Version 2;;

version: 1.00;;

institution: Columbia-Presbyterian Medical Center;;

author: George Hripcsak, M.D.;;

specialist: ;;

date: 1991-03-19;;

validation: testing;;

library:

purpose:
Monitor the patient's renal function when the patient is taking
gentamicin. (This MLM demonstrates periodic monitoring.);;

explanation:
This MLM runs every five days after the patient is placed on
gentamicin until the medication is stopped. If the serum creatinine
has not been checked recently, then an alert is generated
requesting follow-up. If the serum creatinine has been checked, is
greater than 2.0, and has risen by more than 20 %, then an alert is
generated warning that the patient may be developing renal
insufficiency due to gentamicin.

keywords: gentamicin; renal function;;

citations: ;;

knowledge:

type: data-driven;;

data:
/* an order for gentamicin evokes this MLM */
gentamicin_order := event {medication_order where

 class = gentamicin};
/* check whether gentamicin has been discontinued */
gentamicin_discontinued :=

read exist ({medication_cancellation where class = gentamicin}
where it occurs after eventtime);

/* baseline serum creatinine mg/dl */
baseline_creatinine := read last ({serum_creatinine}

where it occurred before eventtime);
/* followup serum creatinine mg/dl */
recent_creatinine := read last ({serum_creatinine}

where it occurred within the past 3 days;
;;

evoke:
every 5 days for 10 years starting 5 days after time of

gentamicin_order until gentamicin_discontinued;;

logic:
if recent_creatinine is not present then

no_recent_creatinine := true;
conclude true;

else
no_recent_creatinine := false;
if % increase of (serum_creatinine,

recent_creatinine) > 20 /* % * /
and recent_creatinine > 2.0 then
conclude true;

endif;
endiif;
;;

Arden Syntax for Medical Logic Systems

Health Level Seven © 1999. All rights reserved. Page 111

Final Standard 07/1999

action:
if no_recent_creatinine then

write "Suggest obtaining a serum creatinine to follow up " ||
"on renal function in the setting of gentamicin.";

else
write "Recent serum creatinine ("|| recent_creatinine ||

"mg/dl) has increased, possibly due to renal " ||
"insufficiency related to gentamicin use.";

endif;
;;

urgency: 50;;

end:

X1.6 Management Suggestion MLM:
maintenance:

title: Granulocytopenia and Trimethoprim/Sulfamethoxazole;;

mlmname: anctms;;

arden: Version 2;;

version: 2.00;;

institution: Columbia-Presbyterian Medical Center;;

author: George Hripcsak, M.D.;;

specialist: ;;

date: 1991-05-28;;

validation: testing;;

library:

purpose:
Detect granulocytopenia possibly due to
trimethoprim/sulfamethoxazole;;

explanation:
This MLM detects patients that are currently taking
trimethoprim/sulfamethoxazole whose absolute neutrophile count is
less than 1000 and falling;

keywords:
granulocytopenia; agranulocytosis; trimethoprim; sulfamethoxazole;;

citations:
1. Anti-infective drug use in relation to the risk of
 agranulocytosis and aplastic anemia. A report from the
 International Agranulosis and Aplastic Anemia Study.
 Archives of Internal Medicine, May 1989, 149(5):1036-40;;

links:
'CTIM .34.56.78';
'MeSH agranulocytosis/ci and sulfamethoxazole/ae';;

knowledge:

type: data-driven;;

data:
/*capitalized text within curly brackets would be replaced with */
/*an institution's own query*/
let anc_storage be event {STORAGE OF ABSOLUTE_NEUTROPHILE_COUNT};
let anc be read last 2 from ({ABSOLUTE_NEUTROPHILE_COUNT}

where they occurred within the past 1 week);
let pt_is_taking_tms be read exist

{TRIMETHOPRIM_SULFAMETHOXAZOLE_ORDER};
;;

evoke: anc_storage;;

Arden Syntax for Medical Logic Systems

Page 112 Health Level Seven © 1999. All rights reserved.

07/1999 Final Standard.

logic:
if pt_is_taking_tms
and the last anc is less than 1000
and the last anc is less than the first anc
 /* is anc falling? */
then

conclude true;
else

conclude false;
endif;;

action:
write "Caution: patient's relative granulocytopenia may be " ||

"exacerbated by trimethoprim/sulfamethoxazole.";

end:

X1.7 MLM Translated from CARE:
maintenance:

title: Cardiology MLM from CARE, p. 85;;

mlmname: care_cardiology_mlm;;

arden: Version 2;;

version: 1.00;;

author: Clement J. McDonald, M.D.; George Hripcsak, M.D.;;

specialist: ;;

date: 1991-05-28;;

validation: testing;;

library:

purpose:
Recommend higher beta-blocker dosage if it is currently low and the
patient is having excessive angina or premature ventricular
beats;;

explanation:
If the patient is not bradycardic and is taking less than 360 mg of
propolanol or less than 200 mg of metroprolol, then if the patient
is having more than 4 episodes of angina per month or more than 5
premature ventricular beats per minute, recommend a higher dose.;;

keywords:
beta-blocker; angina; premature ventricular beats; bradycardia;;

citations:
1. McDonald CJ. Action-oriented decisions in ambulatory medicine.
 Chicago: Year Book Medical Publishers, 1981, p. 85.
2. Prichard NC, Gillim PM. Assessment of propolanol in angina
 electrocardiogram at rest and on exercise. Br Heart J,
 33:473-480 (1971)
3. Jackson G, Atkinson L, Oram S. Reassessment of failed beta-
 blocker treatment in angina pectoris by peak exercise heart rate
 measurements. Br Med J, 3:616-619 (1975).
;;

knowledge:

type: data-driven;;

Arden Syntax for Medical Logic Systems

Health Level Seven © 1999. All rights reserved. Page 113

Final Standard 07/1999

data:
let last_clinic_visit be read last {CLINIC_VISIT};
let (beta_meds,beta_doses,beta_statuses) be read

{MEDICATION,DOSE,STATUS
where the beta_statuses are 'current'
and beta_meds are a kind of 'beta_blocker'};

let low_dose_beta_use be false;
/* if patient is on one beta blocker, check if it is low dose */
if the count of beta_meds = 1 then

if (the last beta_meds = 'propanolol'
and
 last beta_doses < 360)

or (the last_beta_meds = 'metroprolol'
and
 the last beta_doses <= 200 then
let low_dose_beta be true;

endif;
endif;
let cutoff_time be the maximum of
((1 month ago),(time of last_clinic_visit),
 (time of last_beta_meds));
/* a system-specific query to angina frequency, PVC frequency, */
/* and pulse rate would replace capitalized terms */
let angina_frequency be read last ({ANGINA_FREQUENCY}

where it occurred after cutoff_time);
let premature_beat_frequency be read last

({PREMATURE_BEAT_FREQUENCY}
where it occurred after cutoff_time);

let last_pulse_rate be read last {PULSE_RATE};
;;

evoke: /* this MLM is called directly */;;

logic:
if last_pulse_rate is greater than 60 and

low_dose_beta_use then
if angina_frequency is greater than 4 then

let message be
"Increased dose of beta blockers may be " ||
"needed to control angina.";

else
if premature_beat_frequency is greater than 5 then

let message be
"Increased dose of beta blockers may be " ||
"needed to control PVCs.";

conclude true;
endif;

endif;
endif;
conclude false;
;;

action:
write message;;

end:

X1.8-MLM Using While Loop:
maintenance:

title: Allergy_test_with_while_loop;;

filename: test_for_allergies_while_loop;;

version: 0.00;;

institution: ;;

author: ;;

specialist: ;;

date: 1997-11-06;;

validation: testing;;

library:

purpose:
Illustrates the use of a WHILE-LOOP that processes an entire list
;;

Arden Syntax for Medical Logic Systems

Page 114 Health Level Seven © 1999. All rights reserved.

07/1999 Final Standard.

explanation:
;;

keywords:
;;

knowledge:

type: data-driven;;

data:
/* Receives four arguments from the calling MLM: */
(med_orders,
 med_allergens,
 patient_allergies,
 patient_reactions) := ARGUMENT;
;;

evoke:
;;

logic:
/* Initializes variables */
a_list:= ();
m_list:= ();
r_list:= ();
num:= 1;
/* Checks each allergen in the medications to determine */
/* if the patient is allergic to it */
while num <= (count med_allergen) do

allergen:= last(first num from med_allergens);
allergy_found:= (patient_allergies = allergen);
reaction:= patient_reactions where allergy_found;
medication:= med_orders where (med_allergens = allergen);

/* Adds the allergen, medication, and reaction to */
/* variables that will be returned to the calling MLM */
If any allergy_found then

a_list:= a_list, allergen;
m_list:= m_list, medication;
r_list:= r_list, reaction;

endif;
/* Increments the counter that is used to stop the while-loop */

num:= num + 1 ;
enddo;
/* Concludes true if the patient is allergic to one of */
/* the medications */
If exist m_list

then conclude true;
endif;
;;

action:
/* Returns three lists to the calling MLM */
return m_list, a_list, r_list;
;;

end:

Arden Syntax for Medical Logic Systems

Health Level Seven © 1999. All rights reserved. Page 115

Final Standard 07/1999

X2 SUMMARY OF CHANGES
Summary of changes from the 1992 standard

• Clarification of many details of operator definitions.

• Arden syntax version slot required (6.1.3).

• Citations must be numbered, and can be classified as supporting or refuting (6.2.4).

• Specification of Links slot (6.2.5).

• Times can be constructed from durations via + operator (7.1.5.3).

• Triggertime is the time the MLM was triggered (8.4.5).

• Query retrieval order is not necessarily by primary time (8.9.2).

• Interface statement for using external functions (11.2.12).

• Single-line comments may be introduced with "//" (7.1.9).

• The filename slot has been renamed to mlmname (6.1.2).

• Some new operators have been introduced:

Ø sort data (9.2.4)

Ø sort time (9.2.4)

Ø reverse (9.12.21)

Ø format (9.8.2)

Ø earliest, latest (9.12.17, 9.12.16)

Ø floor, ceiling, truncate, round (9.16.11, 9.16.12, 9.16.13, 9.16.14)

Ø index (…[…]) (9.12.18)

Ø year, month, day, hour, minute, second field extraction (9.11.2, 9.11.4, 9.11.7, 9.11.9, 9.11.11,
9.11.13)

Ø seqto (9.12.20)

Ø string, extract characters (9.8.3, 9.12.19)

• Operators which select from lists may be annotated to return indexes instead of the elements (9.12.18).

• As number operator which converts strings and Booleans to numbers (9.16.17).

• Some restrictions have been removed (e.g., double semi-colon inside strings).

• The call expression and statement can now pass multiple arguments; arguments may also be passed from an
action slot (10.2.4, 11.2.4, 12.2.2, 12.2.4).

• Looping constructs have been added: for loop, while loop (10.2.5, 10.2.6).

• The continue statement may have an unless added to it (this is a readability aid).

• A new form of conditional execution, by allowing unless in a conclude statement.

• The "read… where… " no longer requires parentheses.

• A read query may specify a sort order (different from the default of chronological by primary time).

Arden Syntax for Medical Logic Systems

Page 116 Health Level Seven © 1999. All rights reserved.

07/1999 Final Standard.

REFERENCES

(1) HELP Frame Manual, 1991, LDS Hospital, 325 8th Ave., Salt Lake City, UT 84143.

(2) McDonald, C.J., Action-Oriented Decisions in Ambulatory Medicine, Chicago: Year Book Medical
Publishers, 1981.

(3) Wirth, N., "What Can We Do About the Unnecessary Diversity of Notation for Syntactic Definitions?"
Communications of the ACM, Vol. 20, 1977, pp. 822-823.

(4) UMLS Knowledge Sources, Experimental Edition, Bethesda, MD: National Library of Medicine, September
1990.

(5) International Committee of Medical Journal Editors, Special Report, "Uniform Requirements for
Manuscripts Submitted to Biomedical Journals," The New England Journal of Medicine, Vol 324, No. 6, 1991, pp.
424-428.

