Chapter 3: Implementation Methodology

Chapter 3: Implementation Methodology

Implementation
Methodology

1.1 INTRODUCTION

The implementation methodology outlines key activities that should be considered and planned for when developing and/or implementing an HL7 interface. It also includes some activities specific to the installation of an interface engine. It begins with the design and development activities involved in creating an HL7 interface then outlines the planning steps required for an organization to install and support HL7 interfaces.

HL7, as a specification, provides a guideline to develop and implement interfaces between various applications. The implementation of these interfaces will be specific to the site and applications involved. It is, therefore, necessary for the health care organization implementing HL7 interfaces to manage the application of the HL7 specification with all parties involved.

HL7 may be implemented to replace an existing custom interface, for a new application, or as part of a total system replacement. The level to which the HL7 interface is visible to users will vary with the nature and extent of the implementation. This guide takes a ‘broad brush’ approach by attempting to cover a wide variety of possible implementations. Readers of this guide should therefore review and apply those sections which are most appropriate.

1.2 INTERFACE DEVELOPMENT

1.2.1 Project Planning

1.2.1.1 Identify Tasks

Document tasks to be completed during the implementation phase of the project. Also determine interdependencies among tasks to assist in scheduling and resource allocation. Depending on the number of interrelated projects going on at your institution, external projects (e.g., network design and installation, and interface engine selection and installation) may have a direct impact on your application and interface installation. Make sure that interdependencies between the projects are understood and that resource requirements and dates are determined with the global picture in mind.

1.2.1.2 Identify Resources

Identify those resources necessary to complete the tasks defined, including resources under your direct control and those from other internal, or external, areas (e.g., networking or communications department, technical services, and consultants). Use the output from section 2.6.1, “Organizational Considerations.”

1.2.1.3 Develop Schedule

Within the context of the overall project, and relative to resource availability and task interdependencies, determine the due dates and/or duration times for all tasks. From this, develop the implementation schedule and publish. Distribute this schedule to the clinical area management as well as information systems. Also share the schedule with vendors involved in the implementation so that they are clear as to what is expected of them and when. The schedule should be updated and redistributed on a regular basis.

1.2.1.4 Review/Revise Internal Standards

Review, and revise as necessary, internal standards regarding interface development including migration, conversion, change control, restart/recovery and backup.

1.2.1.5 Attend Interface Engine Training

If installing an interface engine, it is a good idea to complete product training prior to finalizing interface specifications. This will enable you to take specific interface engine capabilities into account when designing the interfaces, and should reduce specification modifications later on.

1.3 FUNCTIONAL DESIGN
1.3.1 Develop Interface Descriptions

Document general functional descriptions of the interfaces to be developed, including the applications, systems, departments, and vendors involved. List the perceived or anticipated benefits of the interface.

It is very important that decisions made during interface design be thoroughly and clearly documented and kept up to date. Interface programming, testing, support, maintenance, and upgrades will all be facilitated by detailed, accurate design documentation.

1.3.2 Complete HL7 Transaction Checklists For Each Interface

Appendix A contains a template of a design checklist that can be used to document key design decisions.

1.3.2.1 Define Trigger Events By Application

Using the current (or agreed upon) HL7 Standard, define all trigger events to be used through the interface. This should come directly from functional descriptions and analysis of current work and data flow as well as vendor capabilities to support. For example, an ADT vendor that does not provide “Leave of Absence” functionality in their registration system will not support triggers A21 (Patient Goes on a Leave of Absence) and A22 (Patient Returns from a Leave of Absence). Also make sure to document what action in the originating system triggers specific transactions over the interface.

1.3.2.2 Identify Required HL7 Segments

For each trigger event, define the HL7 segments required for the interface. Common segments can be defined once and referenced in each trigger event as needed.

1.3.2.3 Identify Data Elements/Characteristics

For each segment, define the data elements that will be utilized and indicate whether they are required or optional. Reconcile naming differences, lengths, data types, table values, and internal segmentation for each element.

1.3.2.4 Identify Extra (‘Z’) Segment Requirements

Identify required data elements not available within the HL7 specification. Define and document extra (‘Z’) segments across applications to include these elements.

The use of 'Z' Segments is highly discouraged as they are extremely costly to maintain, especially as the application and HL7 advance over time. They should be used only if there is no other way in HL7 to communicate the information.

1.3.3 Document And Resolve Functional Interface Issues

Document and resolve inconsistencies between applications. These may include data elements of different types (text vs. code), non-passable edits or error correction, and non-automatable processes. These inconsistencies may be handled manually with modified user procedures, by customization of one or more vendors’ code, or by the use of an interface engine.

1.3.4 Develop Restart/Recovery Approach

Develop procedures to handle downtime situations, system and interface restart, recovery and re-synchronization, and disaster or contingency planning. If installing an interface engine, develop comprehensive procedures for downtime and recovery keeping in mind that interface engine downtime will mean that all of your interfaces passing through the engine will also be down. Analyze potential points of failure and consider keeping spare parts to facilitate quick recovery.

1.3.5 Develop Failure Mode/Response Approach

Review the ability of each system to detect/correct errors, and report those errors to the remote system. Since the set of error codes in the current version of HL7 is user-defined, a set of error codes should be agreed upon to represent certain failure conditions. The failure condition that is represented by each code must be understood, and the handling of each error condition must be specified.

1.3.6 Develop Migration Approach

Define overall approach for migration of the developed interfaces to production. Include separate communications mechanisms, if needed, parallel testing and acceptance criteria.

1.3.7 Develop User Access/Security Approach

Define overall approach for user access to and the security of interfaced systems. Include single vs. multiple point of entry and number of log ins and passwords.

1.3.8 Obtain User Review And Acceptance

Document and present for approval the entire functional design documentation, including applied HL7 specifications, new/modified manual procedures, and any vendor code modifications.

1.4 TECHNICAL DESIGN

1.4.1 Define Required Hardware Platforms

Document existing hardware environment for applications to be interfaced. Document modifications, as needed, to each system.

1.4.2 Document Communications Design

1.4.2.1 Select Lower Level Protocol

The interface will be built on top of some media and access method. HL7 interfaces exist at the seventh, or application, layer of the OSI model. As such, they require the support of some lower level protocol (LLP). It is important for each site to select an LLP that meets the needs of the interface and fits into the overall telecommunications strategy and architecture of the company.

Things to consider include the time frame for installation, existing staff experience/expertise, long-range communications strategy, and cost. Also there may be existing LLP that can be utilized with little or no disruption to the overall environment.

1.4.2.2 Define Communications Hardware

Once the lower level protocol has been identified, define any additional communications hardware required. This may include network adapter cards, wiring hubs, bridges, routers, repeaters, additional cabling, or specialized communications servers.

1.4.3 Define Workstation Requirements

Determine requirements for workstations to be used with the interfaced systems.

1.4.4 Define Application/Facility Names

Define and document application or facility names for identification during interface development, testing and implementation. These names may be used in interface lookup tables or in the messaging of the protocol.

1.4.5 Design Programs/Lower Level Protocol

Design programs to interact or operate with the lower level protocol. This may include programs at the transport level to communicate with the hardware, or using the application program interface of third party lower level protocol software.

1.4.6 Application Level (HL7)

Design programs to format or translate messages into HL7 format. This will come directly from the analysis of the trigger events, segments and data elements completed in section 3.3.2. Design should include specifics regarding message acknowledgment procedures.

1.4.6.1 Application Code Modifications (As Needed)

Design modifications to vendor application code and interface engine configuration files as needed to resolve inconsistencies or support special needs.

1.4.7 Define/Document Specifications

Develop detailed specifications per the above analysis and design. This should include who (vendor/internal/consultant) will be involved and what specifically will be done. Design specifications and responsibilities should be formally approved by all involved parties.

1.4.8 Develop Implementation And Testing Approach

Define high-level implementation and testing strategies. This should be reviewed with all parties (users, resources, etc.). This document should include all procedures, processes, criteria, data, and documentation to be used. This approach will be finalized as part of the implementation phase of the project.

1.4.8.1 Define The Testing Methodology

· Approach

· Documentation required

· Procedures

· End user system performance (response time parameters)

· Test model

1.4.8.2 Define Test Data

· Test data bases

· Test files

· Methods of test data creation

· Storage and recovery of test data

1.4.8.3 Testing Software Aides

Identify and apply as appropriate:

· Emulators, if required

· Editors

· Test data generators

· Test results comparer

· Dump facility

1.4.8.4 Testing Environment

Establish the following as appropriate:

· Isolate hardware

· Use of live system

· Location

1.4.9 Testing

1.4.9.1 Testing Support

Identify resources and skills necessary for test team. Assign as appropriate. Use output from section 3.2.1.2, “Identify Resources.”

1.4.9.2 Test Conditions

Outline the requirements for each possible condition to be tested. Document potential conditions as they arise throughout the entire development process. Additional conditions may be added during the testing process to identify unanticipated conditions. Fault-insertion testing procedures should be documented.

1.4.9.3 Expected Results

Document the expected results for each test, including output to another process and performance of the interface. This provides the method for verifying the result.

1.4.9.4 Testing Worksheet

Develop a document that will be used as a checklist during testing. It should provide step-by-step tasks including the setup and execution of the tests as well as expected results.

1.4.10 Finalize Migration Approach

Review and finalize the high-level migration approach defined during functional design. Detail the process and timetable for parallel testing, identify pilot users, separate or shared communications, and production cutover. Use the output from section 3.3.5, “Develop Migration Approach.”

1.4.11 Finalize User Access/Security Approach

Review and finalize user access and security approach. This includes technical requirements to provide single or multiple points of entry, and resolution of log ins and passwords. Use the output from section 3.3.6, “Develop User Access/Security Approach.”

1.4.12 Conduct Review And Obtain Acceptance For Technical Design

Document and present for approval entire technical design, including lower level protocol, communications hardware, programs, testing, migration and access approaches.

1.4.13 Conduct Review And Obtain Acceptance For Functional Performance

Document and present for approval the entire functional performance specification including:

· End user response time

· Data integrity/data flow

· Availability

· User access acceptance

1.5 PROGRAM DEVELOPMENT

The following section applies to those persons involved with program development. Program development should begin only after the technical design has been completed and approved. The development serves to provide the actual program code used for the interface and also to provide documentation that accurately reflects this code. If any interface engine is being installed, it includes the development of site-specific configuration and supporting documentation. Documentation, though often overlooked, is an important tool for both supporting and upgrading your system. Alter documentation to reflect any program changes.

1.5.1 Program Architecture

Develop an overall program architecture to identify all the functions of the program. This will be used for the detailed design of the program. The design may indicate multiple modules (subroutines) to handle specific functions. Use the design documents generated in section 3.4.5, “Design Programs/Lower Level Protocols.”

Minimal functions should include:

· Build HL7 messages.

· Parse HL7 messages.

· Interface to program handling the lower level protocol.

· Interface to program handling the application.

· Error handling/trapping.

1.6 IMPLEMENTATION

1.6.1 Site Preparation

1.6.1.1 Physical

This involves any physical changes necessary to implement the interface, including modifications to physical workspace or computer room, additional furniture or equipment racks, and reservation of space for training or testing. (Use output from section 3.4.1, “Define Required Hardware Platforms” and section 3.4.2.2, “Define Communications Hardware”).

1.6.1.2 Technical

This includes technical changes to the existing environment, such as the addition of or modifications to cabling, communications closets and lighting or power/electrical requirements.

1.6.2 Select/Install Lower Level Protocol

Interfaces can be implemented in a number of environments, including among applications on a single processor, point-to-point between systems, or over a network. In most cases, the interface will be built on top of some media and access method. HL7 interfaces exist at the seventh, or application, layer of the OSI model. As such, they usually require the support of some lower level protocol (LLP). Things to consider include the current environment, time frame for installation, existing staff experience/expertise, long-range communications strategy, and cost. Use the output from section 3.4.2.1, “Select Lower Layer Protocol.”

1.6.3 Select/Install Hardware

Hardware includes upgrades to and/or purchases of new hardware components such as memory or disk, CPU, communications boards, networking hardware (e.g., bridges, routers, gateways, modems, multiplexers, etc.), workstations and printers. Make sure to take delivery and installation lead times into account when planning your order dates for any hardware components.

1.6.4 Select/Install Software

Software includes not only HL7 interface code for each application, but also additions or modifications to system or application software, communications software and perhaps network management or diagnostic software.

1.6.5 Network/Communication Testing

After selecting and installing the hardware, you have software and lower level protocol necessary for the interface, the basic communications environment. This should include testing point-to-point connection, virtual circuits, concurrent access and volume stress. Devices such as line monitors and network ‘sniffers’ should be employed to generate and monitor basic (lower level protocol) traffic. This unit-type test of the communications equipment will facilitate interface testing and isolation of problems during integration and parallel testing.

1.6.6 Policies/Procedures

1.6.6.1 Develop Policies

Update policy manuals with managerial policies regarding the interfacing of various source systems via the HL7 protocol. The company should provide clear guidelines and rationale for use of open systems or open architecture, and develop or modify policies accordingly.

1.6.6.2 Develop Operating Procedures

1.6.6.2.1 Change Control

Define procedures for maintenance of interface code, installation of new HL7 versions, and modifications to applications software. Control the environment and fully test new releases or updates.

1.6.6.2.2 Restart/Recovery

Define procedures to handle downtime situations, system and interface restart, recovery and re-synchronization, and disaster or contingency planning.

1.6.6.2.3 Backup/Restore

Backup and restore procedures are even more important, and should be developed or modified as needed to ensure data integrity and recoverability.

1.6.6.2.4 Table Maintenance

The addition of new application systems may increase the number of duplicate tables or dictionaries stored in multiple systems. In order to minimize transactions that are rejected by the interfaces due to unsynchronized tables, develop procedures to control the order and frequency of table maintenance in application systems.

1.6.6.2.5 Security

Define procedures to control, update and monitor security at each entry point (e.g., application systems, operating system, network, interface engine).

1.6.6.3 User Procedures

Review the new data flow and interface with users in light of current user procedures. Modify these procedures as needed. Typically this will require changing manual procedures that are no longer necessary for double entry into different system.

1.6.7 Conduct Training

1.6.7.1 User Training

An HL7 interface can be implemented with little impact on application system users, or may require significant changes in workflow and operation. This is dependent on the scope of the effort, (from the migration of an existing interface to HL7 through complete application system replacement). The impact can vary from transparent to major. Selection and use of the following sections depends on the nature and scope of the interface being implemented.

1.6.7.1.1 Review Changes In User Operation

Review operational changes in the user department related to new or redefined user procedures. This review should be from a training perspective in order to develop classes or materials to assist in the transition to the interfaced system.

1.6.7.1.2 Develop Training Material

Develop necessary training material from information gathered through development of user procedures and review of operational changes. Material will be employed during training in use of interfaced systems.

1.6.7.1.3 Schedule Training

Once training materials are available, schedule training. Training should be scheduled conveniently for users. It should also be scheduled over a period of weeks with time between sessions for users to get comfortable with the changes and develop a deep understanding. Training can also be scheduled during parallel testing (after all major bugs have been addressed). This allows for the overall schedule to be compressed by overlapping these functions.

The schedule should also account for preparing the training facility. This may include temporary cabling and workstations, or off-hours use of production areas.

Training should be conducted close to the actual implementation date so any new methods are still fresh when new systems are brought into production.

1.6.7.1.4 Develop User Manual

As a final step in the training process, each department should receive a user manual. This manual should cover standard, daily operations, departmental specific procedures and a reference to available support. The manual may also contain reference or look-up tables for departmental data entry.

1.6.7.1.5 Conduct Training

Training should be held at the user site, but away from user work area for initial sessions. This allows users to concentrate on training without disruption. Training should be hands-on with the interfaced systems (in test or debug mode, if available). Class size should be kept small and consider using two trainers. This allows for more interaction and assistance. In the last phase of training have training staff rotate through the production areas to address on-the-spot, impromptu questions.

1.6.7.2 Support Staff Training

1.6.7.2.1 Environment

In many cases, the MIS support staff must be introduced to HL7 concepts and environment. They must understand the change in philosophy and direction, and how HL7 fits into the long-term strategy of the organization.

1.6.7.2.2 Application

Once the support staff is acclimated to the HL7 approach, they must become familiar with the application areas. In larger shops this is a matter of coordination between the interface and support groups. In most shops, however, this means the support team must work closely with the end users and the vendors. A thorough knowledge of the application systems will be invaluable throughout the implementation period and for ongoing support.

1.6.7.2.3 HL7

It is very important for the support staff to have a thorough understanding of HL7, its role in open systems and its use in interface development. This group must be able to look into the messages and diagnose problems, perform maintenance and foresee the impact of updates to application software or new HL7 releases.

1.6.7.2.4 Interfaces And Interface Engine

Support staff should understand the interfaces that will be implemented and the specific usage and role of the interface engine in your environment.

1.6.7.2.5 Develop Support Reference Manual/Library

Develop manual for support staff that applies the technical education received to specific operations for each system affected by the transition to HL7. This manual should assist help desk personnel in addressing support calls. Establish a library of related materials to assist in problem resolution.

1.6.8 Go-Live Planning

1.6.8.1 Finalize Support Staffing Plan

Develop a list of all of the support responsibilities for the new system(s) and interfaces including items such as end-user help desk support, routine maintenance, and interface monitoring. Determine FTE and skill requirements for all support responsibilities. Identify personnel who will be responsible for support and develop training program to address any skills deficiencies.

1.6.8.2 Conversion Preparation

Develop a checklist to be used during the cutover to the new environment. Re-assess go-live dates, resource requirements, etc. Go-live dates and resources will need to be consistently monitored from this point forward and adjustments made as necessary depending on the project’s progress.

1.6.9 Testing/Acceptance

Alert all vendors beforehand to your testing dates so that they can schedule the required resources to support you during the testing phases.

1.6.9.1 Conversion Testing

Test all conversion processes, both automated and manual. Compare actual results to expected results. Validate actual results during the functional interface and parallel testing activities.

1.6.9.2 Functional Interface Testing

Functional interface testing involves testing the data flow from all systems through the interface(s) to the receiving system. This will take on various forms depending on whether the system includes a series of point-to-point interfaces or uses a broadcast, store-and-forward machine. Interface testing and interface engine configuration testing will be closely linked as it will be difficult to test interfaces without the interface engine and vice versa.

1.6.9.3 Stress/Volume Testing

Following functional testing, the interfaces and the interface engine, if applicable, should be stress tested by simulating peak transaction volumes. Carefully monitor interface throughputs during the test to assess the interfaces’ and interface engine’s abilities to keep up during peaks in transaction processing.

1.6.9.4 Restart/Recovery Testing

Using restart/recovery procedures developed in section 3.6.6.2.2, force downtime situations and recover using documented procedures.

1.6.9.5 Parallel Testing

Once functional interface testing is complete, the interface should be brought up in a mirror production environment and parallel tested, if possible, with the existing systems and environment. Specific transactions should be identified to be entered into both systems.

1.6.9.6 Test Results

Document the testing results in a summarized fashion. This document may be used to review the results of the testing and determine whether additional testing is required.

1.6.9.7 User Review And Acceptance

After successful testing, schedule a review meeting with all users to discuss the results of testing and training and to outline the support structure and procedures. Encourage discussion among users to promote common understanding of operations and responsibilities. Reach consensus with all users that the interface is acceptable.

1.6.9.8 Sign Off

Once the users are comfortable with the stability of the system and the support available, obtain sign off as acceptance of a completed interface. It may be necessary to schedule multiple meetings with different application areas and get sign off from each.

1.7 PRODUCTION CUTOVER

The system is ready for cutover into production following the successful completion of all of the other tasks.

1.7.1 Data Conversion

Perform data conversion, which may include initial data load or conversion of data format.

1.7.2 Go Live

Using the conversion checklist developed in section 3.6.8.2, disconnect old or previous system and run full production under the new interfaces (integrated systems).

1.7.3 Post Implementation Support

1.7.3.1 Help Desk

Establish the help desk as planned in section 3.6.8,.“Go-Live Planning.” Staff the help desk with support people trained in the environment, applications and HL7. The help desk should provide assistance to users, troubleshoot problems and answer general questions. Track help desk calls by department, user and application to identify shortcomings in training or systematic problems.

1.7.3.2 Maintenance

Transfer system maintenance to the resources identified and trained in section 3.6.7.2.2.

1.8 BENEFITS REALIZATION

1.8.1 Benefits Realization

Review cost/benefit analysis completed at the start of the project and analyze each anticipated benefit for realization. Document how this benefit was achieved or why it was not and quantify the realized benefits. List additional benefits realized that were not detailed at the project start. Summarize intangible benefits such as improved employee morale.

1.8.1.1.1 Ongoing Review/Evaluation

Define a mechanism for ongoing review and evaluation of the project. This may include periodic meetings with staff and end users to discuss changes in operations.on or difficulties encountered.
Health Level Seven Implementation Support Guide

Page 3-1
for HL7 Standard Version 2.3.1
(1999. All rights reserved.
Ballot #1 – 3/99
Page 3-12

Health Level Seven Implementation Support Guide
Ballot #1 – 3/99

for HL7 Standard Version 2.3 .1(1999. All rights reserved.
Health Level Seven Implementation Support Guide

Page 3-13
for HL7 Standard Version 2.3.1
(1999.
All rights reserved

Ballot #1 – 399

